The Firecracker Protocol

Philip Levis and David Culler
UC Berkeley
Data Dissemination in Sensor Nets

- Sensor net: many low power, wireless “motes”
 - 1-10 KB RAM, 4-8MHz CPU, 10-100Kbs radio
- Dissemination: deliver a data item to every mote in a network
 - Configuration constants
 - Code updates, virtual programs
- Requires a continuous protocol
 - Transient disconnections, network repopulation
- Two metrics: energy efficiency, rate
Broadcast-based Protocols

• Every node forwards
• Energy efficient
 – Can use physical density, opportunistic receptions
• Slow: can’t immediately forward
 – Suppression mechanisms, timers
 – CSMA: broadcast storms
 – RTS/CTS: control packet exchange latency
Routing-based Protocols

• One node forwards
• Fast
 – Next hop can immediately retransmit
• **Energy inefficient**: naming
 – Need many routes to reach entire network
 – Naming every node unfeasible
Firecracker Dissemination

- Combine routing and broadcasts
 - Routing’s speed
 - Broadcasting’s efficiency
- Seeding phase
 - Route data to distant points in the network
- Propagation phase
 - Start broadcasting from routes
Firecracker Example
Firecracker Example
Firecracker Example
Firecracker Example
Outline

• Data dissemination
• Sensor networking, Trickle
• Firecracker
• Randomized Seeds
• Conclusion
Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion
Sensor Networking

- Energy is critical, communication is costly
- Local wireless broadcast primitive
 - Unique node identifiers
- Many application requirements, many network protocols
 - Collection
 - Any-to-any (logical coordinates: GEM, BVR, etc.)
 - Local aggregation
 - Dissemination
 - Trickle
Trickle Algorithm

- Periodically broadcast metadata M
- Suppression interval of length T
- Pick a random point b in T
 - Broadcast unless you hear M
- When T expires, double it (up to a max)
- If you hear $M+$, make T very small (1 sec)
- If you hear $M-$, send an update
- Trickle plots
Experimental Methodology

- TOSSIM, a TinyOS simulator
- Compiles applications into a simulator engine
- Radio loss model based on empirical distributions
 - Asymmetric
 - Highly variable
- Unit disk interference model
- Bit-level or packet-level simulation
 - We used packet-level
Trickle Plot

- 20x20 grid (400 nodes)
- New datum
- 15 foot spacing
- 32 hop network
- Time to reception in seconds
- Wave of activity
Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion
Firecracker

- Start dissemination by seeding network
- Route data to a few distant points
- Start broadcast dissemination along paths
 - Destination, route, snooping
- Example: corners on a grid-based protocol
 - Nodes can forward to manhattan neighbors
 - If two options, select randomly
 - Network density ensures manhattan links exist
- Same methodology as Trickle example
Basic Trickle
Adjacent Corners
Reception Time Distributions

Larger domain (42 s)
Reception Time Distributions

Larger domain (42 s)

20835 Sends
9/19/04

19544 Sends
SIGOPSEW

18275 Sends

6665 Sends
22
Routing Reduces Cost

- Routing happens quickly
 - Synchronizes nodes
 - Trickle performance improves
- Fewer nodes need metadata exchanges
 - Metadata is most of the traffic
Hybrid Approach is Beneficial

- Distant seed points
 - Improves rate
 - Reduces cost
- Can’t assume knowing what distant points exist
 - Can’t store all the names
 - Need a way to select seeds
 - Randomization prevents corner cases
Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion
Experimental Methodology

- Use same grid arrangement
- Run twenty experiments, average results
Four Policies

- From corner to one random node in the grid
- From corner to three random nodes
- From center to three random nodes
- From corner to three random distant nodes
Histograms

One from corner

Three from corner

Three from center

SIGOPSEW

Three distant from corner
Results

- Picking random nodes works OK
 - Adding more does not improve results a great deal
- Coverage improves from center
- Distant nodes works best
- Need route to edge of the network
 - Logical coordinate spaces support this
Outline

• Data dissemination
• Sensor networking, Trickle
• Firecracker
• Randomized Seeds
• Conclusion
Network Protocols

- Varying communication requirements
 - Collection (n to one)
 - Dissemination (one to n)
 - Diffusion (m to n)
 - Local Aggregation
- Forwarding predicates
 - Density estimation
- Predicate and media access interaction
- Routing’s scoping enables fast propagation
- Slower broadcasts fill in the holes
Any-to-Any Routing

- Current protocols use logical coordinates
 - GEM (Graph Embedding, polar coordinates)
 - BVR (Beacon Vector Routing, n-dimensional)
- GPSR uses geographic coordinates
 - Requires localization
 - Virtual coordinates may be possible
- Data dissemination benefits from being able to name a distant node (*network* distance)
Broadcasting
Broadcasting
Broadcasting
Broadcasting
Broadcasting
Broadcasting
Routing
Routing
Routing
Routing
Routing

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Routing, With Snooping