The Firecracker Protocol

Philip Levis and David Culler UC Berkeley

Data Dissemination in Sensor Nets

- Sensor net: many low power, wireless "motes" – 1-10 KB RAM, 4-8MHz CPU, 10-100Kbs radio
- Dissemination: deliver a data item to every mote in a network
 - Configuration constants
 - Code updates, virtual programs
- Requires a continuous protocol
 - Transient disconnections, network repopulation
- Two metrics: energy efficiency, rate

Broadcast-based Protocols

- Every node forwards
- Energy efficient
 - Can use physical density, opportunistic receptions
- Slow: can't immediately forward
 - Suppression mechanisms, timers
 - CSMA: broadcast storms
 - RTS/CTS: control packet exchange latency

Routing-based Protocols

- One node forwards
- Fast
 - Next hop can immediately retransmit
- Energy inefficient: naming
 - Need many routes to reach entire network
 - Naming every node unfeasible

Firecracker Dissemination

- Combine routing and broadcasts
 - Routing's speed
 - Broadcasting's efficiency
- Seeding phase
 - Route data to distant points in the network
- Propagation phase
 - Start broadcasting from routes

Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion

Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion

Sensor Networking

- Energy is critical, communication is costly
- Local wireless broadcast primitive
 - Unique node identifiers
- Many application requirements, many network protocols
 - Collection
 - Any-to-any (logical coordinates: GEM, BVR, etc.)
 - Local aggregation
 - Dissemination
 - Trickle

Trickle Algorithm

- Periodically broadcast metadata M
- Suppression interval of length T
- Pick a random point *b* in *T* – Broadcast unless you hear *M*
- When T expires, double it (up to a max)
- If you hear *M*+, make *T* very small (1 sec)
- If you hear *M*-, send an update
- Trickle plots

Experimental Methodology

- TOSSIM, a TinyOS simulator
- Compiles applications into a simulator engine
- Radio loss model based on empirical distributions
 - Asymmetric
 - Highly variable
- Unit disk interference model
- Bit-level or packet-level simulation
 - We used packet-level

Trickle Plot

- 20x20 grid (400 nodes)
- New datum
- 15 foot spacing
- 32 hop network
- Time to reception in seconds
- Wave of activity

Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion

Firecracker

- Start disssemination by seeding network
- Route data to a few distant points
- Start broadcast dissemination along paths

 Destination, route, snooping
- Example: corners on a grid-based protocol
 - Nodes can forward to manhattan neighbors
 - If two options, select randomly
 - Network density ensures manhattan links exist
- Same methodology as Trickle example

Basic Trickle

9/19/04

Adjacent Corners

9/19/04

Opposite Corner

All Corners

9/19/04

Reception Time Distributions

9/19/04

Reception Time Distributions

Routing Reduces Cost

- Routing happens quickly
 - Synchronizes nodes
 - Trickle performance improves
- Fewer nodes need metadata exchanges
 - Metadata is most of the traffic

Hybrid Approach is Beneficial

- Distant seed points
 - Improves rate
 - Reduces cost
- Can't assume knowing what distant points exist
 - Can't store all the names
 - Need a way to select seeds
 - Randomization prevents corner cases

Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion

Experimental Methodology

- Use same grid arrangement
- Run twenty experiments, average results

Four Policies

- From corner to one random node in the grid
- From corner to three random nodes
- From center to three random nodes
- From corner to three random distant nodes

Histograms

Results

- Picking random nodes works OK
 - Adding more does not improve results a great deal
- Coverage improves from center
- Distant nodes works best
- Need route to *edge* of the network
 - Logical coordinate spaces support this

Outline

- Data dissemination
- Sensor networking, Trickle
- Firecracker
- Randomized Seeds
- Conclusion

Network Protocols

• Varying communication requirements

- Collection (n to one)
- Dissemination (one to n)
- Diffusion (m to n)
- Local Aggregation
- Forwarding predicates
 - Density estimation
- Predicate and media access interaction
- Routing's scoping enables fast propagation
- Slower broadcasts fill in the holes

Questions and Discussion

9/19/04

Any-to-Any Routing

- Current protocols use logical coordinates
 - GEM (Graph Embedding, polar coordinates)
 - BVR (Beacon Vector Routing, n-dimensional)
- GPSR uses geographic coordinates
 - Requires localization
 - Virtual coordinates may be possible
- Data dissemination benefits from being able to name a distant node (*network* distance)

9/19/04

9/19/04

9/19/04

9/19/04

9/19/04

9/19/04

9/19/04

9/19/04

Routing, With Snooping

####