Visibility:
A New Metric for Protocol Design

Megan Wachs,
Jung Il Choi, Jung Woo Lee, Kannan Srinivasan,
Zhe Chen*, Mayank Jain, & Philip Levis

Stanford University, *Columbia University
Visibility

What are we doing wrong?
Visibility

- It is difficult to observe what occurs deep within a sensor network.
- This is the direct result of energy constraints on a mote.
- This lack of visibility directly hinders development.
Contribution

- This talk is NOT about a debugging tool
- This talk is about quantifying how “easy” it is to debug a protocol
Visibility Cost

The energy required to diagnose the cause of a failure or behavior
Outline

- Survey of Failures
- The Visibility Metric
- PCP: Clean Slate Design
- V-Deluge: Incremental Improvement
- Conclusion
Outline

• **Survey of Failures**
• The Visibility Metric
• PCP: Clean Slate Design
• V-Deluge: Incremental Improvement
• Conclusion
What kinds of failures are observed in real deployments?
What kinds of failures are observed in real deployments?

- Identifiable Failures
What kinds of failures are observed in real deployments?

- Identifiable Failures
 - System Interactions: software conflicts
What kinds of failures are observed in real deployments?

- Identifiable Failures
 - System Interactions: software conflicts
 - Network Problems: Saturation & Congestion
What kinds of failures are observed in real deployments?

- Identifiable Failures
 - System Interactions: software conflicts
 - Network Problems: Saturation & Congestion
 - Protocol Issues: Conflicts & Failures
What kinds of failures are observed in real deployments?

- **Identifiable Failures**
 - System Interactions: software conflicts
 - Network Problems: Saturation & Congestion
 - Protocol Issues: Conflicts & Failures

- **Unknown**
 - Collisions?
 - Interference?
 - Buggy code?
 - Hardware problems?
Effects of Failures on Deployment Performance

Great Duck Island: 58%

Peter Scott

Effects of Failures on Deployment Performance

Great Duck Island: 58%
Redwoods: 40%

Effects of Failures on Deployment Performance

Great Duck Island: 58%
Redwoods: 40%
Potato Field: 2%

Effects of Failures on Deployment Performance

Great Duck Island: 58%
Redwoods: 40%
Potato Field: 2%
Volcan Reventador: 68%

Management and Debugging

- Sympathy
- Lightweight RPC
- Network Snooping Tools
Example Protocol: Collection Tree
Example Protocol: Possible Causes
Example Protocol: Decision Tree

- **Receive No Packets?**
 - Y: Disconnection/Death
 - N: Sequ. # is zero?

- **Seq. # is zero?**
 - Y: Reboot
 - N: Duplicate Suppression?

- **Duplicate Suppression?**
 - Y: Duplicate Suppression
 - N: Above Max Tx?

- **Above Max Tx?**
 - Y: Egress Drop
 - N: Ingress Drop?

- **Ingress Drop?**
 - Y: Ingress Drop
 - N: Link Layer Failure

ACM SenSys - 2007
Outline

- Survey of Failures
- *The Visibility Metric*
- PCP: Clean Slate Design
- V-Deluge: Incremental Improvement
- Conclusion
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.

Q1: cost = 0
Q2: cost = C
Q3: cost = C

Cause A
Cause B
Cause C
Cause D
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.

- **Q1:** cost = 0
- **Q2:** cost = C
- **Q3:** cost = C

- **Cause A**
- **Cause B**
- **Cause C**
- **Cause D**
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.

Q1: cost = 0

Q2: cost = C

Q3: cost = C

Cause A

Cause B

Cause C

Cause D
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.

- **Q1**: cost = 0
- **Q2**: cost = C
- **Q3**: cost = C

<table>
<thead>
<tr>
<th>Cause</th>
<th>Q1: Y</th>
<th>Q1: N</th>
<th>Q2: Y</th>
<th>Q2: N</th>
<th>Q3: Y</th>
<th>Q3: N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>2C</td>
<td></td>
<td></td>
<td>2C</td>
</tr>
</tbody>
</table>

11/7/2007
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.
Visibility Metric

Visibility Cost: The expected energy of traversing the decision tree to diagnose the cause of a behavior.

Visibility Cost = 1.25 C
Increasing Visibility

Visibility Cost = 0.66 C

Remove Leaves From the Tree
Increasing Visibility

Reduce Cost of Questions

Visibility Cost = 0.00 C
Outline

- Survey of Failures
- The Visibility Metric
- *PCP: Clean Slate Design*
- V-Deluge: Incremental Improvement
- Conclusion
A Design Example: Pull Collection Protocol
Diagnosing Why Packets Were Lost

Receive No Packets?

- Y: Disconnection/Death
- N: Seq. # is zero?

Seq. # is zero?

- Y: Reboot
- N: Jump in THLs?

Jump in THLs?

- Y: Duplicate Suppression
- N: Above Max Tx?

Above Max Tx?

- Y: Egress Drop
- N: Ingress Drop?

Ingress Drop?

- Y: Ingress Drop
- N: Link Layer Failure
Diagnosing Why Packets Were Lost

- Receive No Packets?
 - Y: Disconnection/Death
 - N: Seq. # is zero?
 - Y: Reboot
 - N: Jump in THLs?
 - Y: Duplicate Suppression
 - N: Above Max Tx?
 - Y: Egress Drop
 - N: Ingress Drop?
 - Y: Ingress Drop
 - N: Link Layer Failure
Eliminating Egress Drops

- Receive No Packets?
 - Y: Disconnection/Death
 - N: Seq. # is zero?
 - Y: Reboot
 - N: Jump in THLs?
 - Y: Duplicate Suppression
 - N: Ingress Drop?
 - Y: Ingress Drop
 - N: Link Layer Failure
Eliminating Ingress Drops

Traditional Rate Control
Eliminating Ingress Drops

Traditional Rate Control
Eliminating Ingress Drops

Traditional Rate Control
Eliminating Ingress Drops

Pull-Based Rate Control
Eliminating Ingress Drops

- Receive No Packets?
 - Y: Disconnection/Death
 - N: Sequ. # is zero?
 - Y: Reboot
 - N: Jump in THLs?
 - Y: Duplicate Suppression
 - N: Ingress Drop?
 - Y: Ingress Drop
 - N: Link Layer Failure
Eliminating Ingress Drops

- Receive No Packets?
 - Yes: Disconnection/Death
 - No: Seq. # is zero?
 - Yes: Reboot
 - No: Jump in THLs?
 - Yes: Duplicate Suppression
 - No: Link Layer Failure

PCP Decision Tree

Receive No Packets?
 Y | Disconnection/Death
 N | Seq. # is zero?
 Y | Reboot
 N | Jump in THLs?
 Y | Duplicate Suppression
 N | Link Layer Failure

 Traverse the remainder with information included in packets, used by the protocol itself
Evaluating PCP

40-Node MoteLab Testbed

- PCP: sending as fast as possible.
- MultihopLQI: 1300ms, 800ms, and 20ms packet generation interval
- Interference-Aware Fair Rate Control (IFRC): Results from SIGCOMM 2006

Metrics:

- Reliability
- Throughput
- Fairness
- Visibility
PCP Performance

Throughput (pps) vs Delivery Probability

- IFRC
- MultihopLQI 1300ms
- MultihopLQI 800ms
- PCP
PCP Fairness

![Bar chart showing PCP Fairness comparisons]

- PCP
- Multi-hopLQI-1300ms
- Multi-hopLQI-800ms
- IFRC
- Multi-hopLQI-20ms

<table>
<thead>
<tr>
<th></th>
<th>Fairness (JFI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP</td>
<td>0.75</td>
</tr>
<tr>
<td>Multi-hopLQI-1300ms</td>
<td>1.00</td>
</tr>
<tr>
<td>Multi-hopLQI-800ms</td>
<td>1.00</td>
</tr>
<tr>
<td>Multi-hopLQI-20ms</td>
<td>0.25</td>
</tr>
<tr>
<td>IFRC</td>
<td>1.00</td>
</tr>
</tbody>
</table>
PCP Visibility

- MultihopLQI visibility cost at 800ms interval: 1.615C
- PCP visibility cost: 0.00 C
Outline

- Survey of Failures
- The Visibility Metric
- PCP: Clean Slate Design
- V-Deluge: Incremental Improvement
- Conclusion
Applying Visibility: Deluge

- Dissemination Protocol
 - Advertises new binary with advertisement packets
 - Nodes send requests for new binary from best neighbor

- “Why does a node still have an out-of-date binary?”

- Two expensive causes to diagnose:
 - Suppressions due to misbehaving nodes
 - Interference during binary transmission
V-Deluge

- Suppressions Due to Misbehaving Nodes:
 - Identify and ignore faulty nodes
- Interference during binary transmission
V-Deluge

- Suppressions Due to Misbehaving Nodes:
 - Identify and ignore faulty nodes
- Interference during binary transmission
V-Deluge

- Suppressions Due to Misbehaving Nodes:
 - Identify and ignore faulty nodes
- Interference during binary transmission
V-Deluge

- Suppressions Due to Misbehaving Nodes:
 - Identify and ignore faulty nodes
- Interference during binary transmission
V-Deluge Visibility

• Deluge Visibility:
 1.02 C

• V-Deluge Visibility:
 1.00 C
V-Deluge Performance

Total Packets Sent (thousands)

Time (sec)

Deluge
V-Deluge
V-Deluge Performance

Percentage of Nodes with Full Binary

Time (sec)

Deluge
V-Deluge
Outline

- Survey of Failures
- The Visibility Metric
- PCP: Clean Slate Design
- V-Deluge: Incremental Improvement
- Conclusion
Future Work

- Refining the visibility metric
- Visibility in networks with multiple protocols depends on isolation between protocols
Conclusions

- We should consider the visibility of a protocol along with traditional metrics
- The visibility metric provides a new way for thinking about and comparing protocols
- Visibility has broader implications: systems, languages
Comments & Questions?

wachs@stanford.edu
Management and Debugging

Sympathy

Receive No Packets?
- Disconnection
 - Reboot
- Seq. # is zero?
- Duplicate Suppression?
 - Alien Failure?
 - Default Overload?
 - Overload
 - Alien Failure
 - Gamma Ray?
 - Alpha Radiation
 - Deadlock
 - Duplicates
 - Egress Drop
 - Above Max Tx?
 - Ingress Drop?
 - Suppression?
 - Suppression
 - Link Layer Failure
Management and Debugging

Sympathy

Receive No Packets?

- Disconnection
- Link Layer Failure
Increasing Visibility

Reduce Probability of Expensive Causes

Visibility Cost = 0.43 C
Conclusions

• Are we just changing the question:
 “Why is the network dropping packets?” becomes
 “Why is a node not sending any packets?”