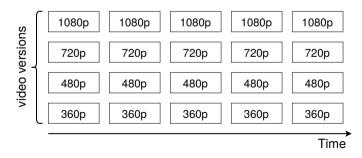
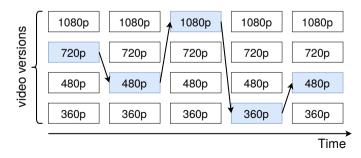
Learning *in situ*: a randomized experiment in video streaming https://puffer.stanford.edu

Francis Y. Yan, Hudson Ayers, Chenzhi Zhu[†], Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, Keith Winstein

Stanford University, [†]Tsinghua University


February 26, 2020

- Video streaming dominates Internet traffic
- Adaptive bitrate (ABR) is a key algorithm to optimize users' quality of experience (QoE)
 - decides the quality level of each video chunk to send
 - primary goals: higher video quality, fewer stalls
 - prior work: BBA [SIGCOMM '14], MPC [SIGCOMM '15], CS2P [SIGCOMM '16], Pensieve [SIGCOMM '17], Oboe [SIGCOMM '18]


- Video streaming dominates Internet traffic
- Adaptive bitrate (ABR) is a key algorithm to optimize users' quality of experience (QoE)
 - decides the quality level of each video chunk to send
 - primary goals: higher video quality, fewer stalls
 - prior work: BBA [SIGCOMM '14], MPC [SIGCOMM '15], CS2P [SIGCOMM '16], Pensieve [SIGCOMM '17], Oboe [SIGCOMM '18]

- Video streaming dominates Internet traffic
- Adaptive bitrate (ABR) is a key algorithm to optimize users' quality of experience (QoE)
 - decides the quality level of each video chunk to send
 - primary goals: higher video quality, fewer stalls
 - prior work: BBA [SIGCOMM '14], MPC [SIGCOMM '15], CS2P [SIGCOMM '16], Pensieve [SIGCOMM '17], Oboe [SIGCOMM '18]

- Video streaming dominates Internet traffic
- Adaptive bitrate (ABR) is a key algorithm to optimize users' quality of experience (QoE)
 - decides the quality level of each video chunk to send
 - primary goals: higher video quality, fewer stalls
 - prior work: BBA [SIGCOMM '14], MPC [SIGCOMM '15], CS2P [SIGCOMM '16], Pensieve [SIGCOMM '17], Oboe [SIGCOMM '18]

Our research study on ABR algorithms

What does it take to create a learned ABR algorithm that robustly performs well over the wild Internet?

• Over the last year, we have streamed 38.6 years of video to 63,508 distinct users

- 1 Confidence intervals in video streaming are bigger than expected
- **2** A simple ABR algorithm performs *better than expected*
- 3 Our way of outperforming existing schemes is *learning in situ*

- 2 A simple ABR algorithm performs better than expected
- **3** Our way of outperforming existing schemes is *learning in situ*

Puffer: a live streaming platform running a randomized experiment

- Free live TV streaming website (puffer.stanford.edu)
- Opened to public December 2018
- More than 100,000 users today
- User sessions are randomized to different algorithms

Google ad for "tv streaming"

Stream live TV online | No charge to watch Ad puffer.stanford.edu

Watch live U.S. TV channels (NBC, CBS, ABC, PBS, FOX, Univision) in your browser.

Press articles

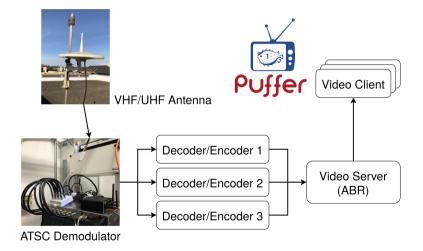
Try 'Puffer': An Open-Source Free Live TV **Streaming Service By Stanford**

By Manisha Priyadarshini - January 18, 201

Hacker News new | past | comments | ask | show | jobs | submit | 2019-07-21

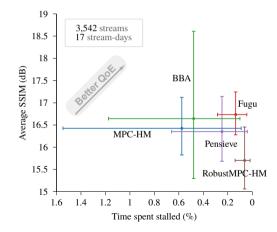
9. A Puffer - Stream live TV in the browser (stanford.edu) 258 points by rowdyranga 3 months ago | hide | 51 comments

Stanford University Launches a Streaming TV Service (for Science)

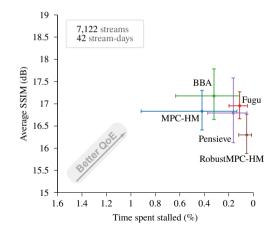

A research team at Stanford University launched the Puffer streaming service in a bid to improve video streaming algorithms. While live, a computer will be taught how to design new algorithms to reduce glitches and stalls while improving image guality.

By Matthew Humphries January 18, 2019 10:13AM EST

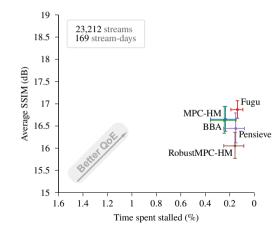
Thank Stanford researchers for Puffer, a free and open source live TV streaming service that uses AI to improve video-streaming algorithms

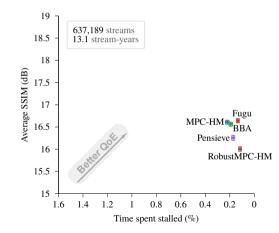

Francis Y. Yan (Stanford)

Puffer architecture



- Existing ABR algorithms found benefits like 10%–20% based on experiments lasting *hours* or *days* between *a few* network nodes
- We found: 2 years of data per scheme are needed to measure 20% precision


• Results on the day of Jan. 26, 2019, with 17 days of video streamed to 600 users

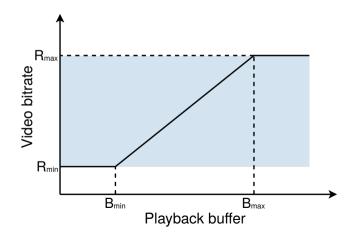

• Results in the *week* starting from Jan. 26, 2019, streaming 42 days of video


• Results in the month starting from Jan. 26, 2019, streaming 169 days of video

• Results in an *eight-month* period after Jan. 26, 2019, streaming > 13 years of video

- Need 2 years of video per scheme to reliably measure a 20% difference
- Reason: Internet is way more noisy and heavy-tailed than we thought
 - Only 4% of the 637,189 streams had any stalls
 - Distributions of throughputs and watch times are highly skewed

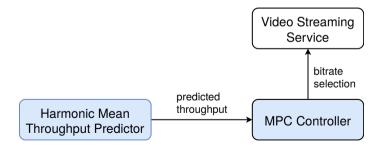
- 2 A simple ABR algorithm performs better than expected
- **3** Our way of outperforming existing schemes is *learning in situ*



2 A simple ABR algorithm performs better than expected

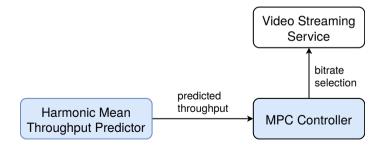
3 Our way of outperforming existing schemes is *learning in situ*

BBA [SIGCOMM '14]

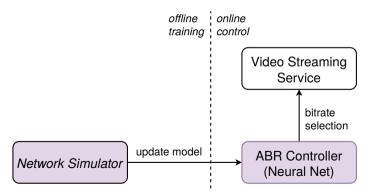

• BBA is a simple buffer-based ABR algorithm

MPC-HM [SIGCOMM '15]

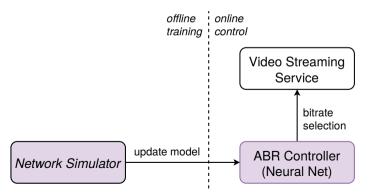
• MPC-HM predicts throughput using the harmonic mean (HM) of past throughputs


- assumes throughput can be modeled with HM
- assumes transmission time = predicted throughput \times chunk size

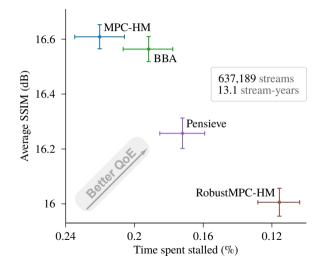
MPC-HM [SIGCOMM '15]


• MPC-HM predicts throughput using the harmonic mean (HM) of past throughputs

- assumes throughput can be modeled with HM ?
- assumes transmission time = predicted throughput \times chunk size ?


Pensieve [SIGCOMM '17]

- Pensieve learns an end-to-end ABR control
 - requires network simulators as training environments
 - assumes training in simulation generalizes to wild Internet

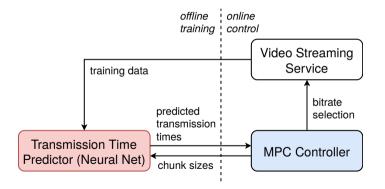


Pensieve [SIGCOMM '17]

- Pensieve learns an end-to-end ABR control
 - requires network simulators as training environments
 - assumes training in simulation generalizes to wild Internet ?

SSIM vs stalls

2 A simple ABR algorithm performs better than expected


3 Our way of outperforming existing schemes is *learning in situ*

- 1 Confidence intervals in video streaming are *bigger than expected*
- **2** A simple ABR algorithm performs *better than expected*
- **3** Our way of outperforming existing schemes is learning in situ

Fugu uses classical model predictive control

• Fugu replaces the throughput predictor in MPC-HM with a transmission time predictor

Fugu's transmission time predictor (TTP)

• Neural network predicts "how long would each chunk take?"

• Input:

- sizes and transmission times of past chunks
- size of a chunk to be transmitted (not a throughput predictor)
- low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)
- Output:
 - probability distribution over transmission time (not a point estimate)

Fugu's transmission time predictor (TTP)

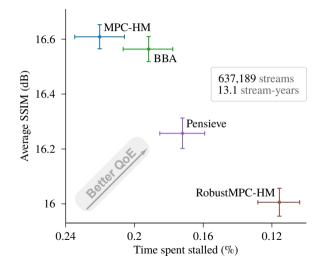
• Neural network predicts "how long would each chunk take?"

• Input:

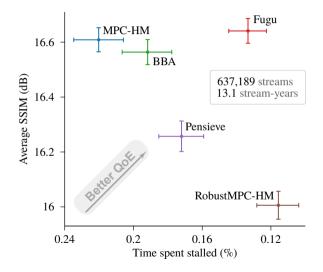
- sizes and transmission times of past chunks
- size of a chunk to be transmitted (not a throughput predictor)
- low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)
- Output:
 - probability distribution over transmission time (not a point estimate)

Fugu's transmission time predictor (TTP)

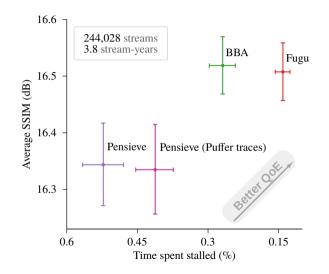
• Neural network predicts "how long would each chunk take?"


• Input:

- sizes and transmission times of past chunks
- size of a chunk to be transmitted (not a throughput predictor)
- low-level TCP statistics (min RTT, RTT, CWND, packets in flight, delivery rate)
- Output:
 - probability distribution over transmission time (not a point estimate)


Learning TTP in situ

- Training: supervised learning in situ (in place) on real data from deployment environment
 - chunk-by-chunk series of each individual video stream
 - chunk *i*: size, timestamp sent, timestamp acknowledged, TCP statistics right before sending
- Learning in situ does not replay throughput traces or require network simulators
 - we don't know how to faithfully simulate the Internet


SSIM vs stalls

SSIM vs stalls

What happens if Pensieve is retrained on Puffer traces?

Takeaways

- **1** Confidence intervals in video streaming are *bigger than expected*
 - we need 2 years of data per scheme to measure 20% precision
- 2 A simple ABR algorithm performs better than expected
 - algorithms that make fewer assumptions are more general?
- Our way of outperforming existing schemes is *learning in situ* we don't know how to faithfully simulate the Internet
- Puffer (puffer.stanford.edu) is an open research platform for
 - ABR schemes, network and throughput prediction, congestion control

Thank You: Emily Marx, Puffer participants, NSF, Google, Huawei, VMware, Dropbox, Facebook, Stanford Platform Lab