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Mobicom’10[1]:

Antenna Cancellation + other techniques
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The story so far...

d d + λ/2  

TX1 TX2RX

[1] Choi et al. “Achieving single channel, full duplex wireless communication”,      
     Mobicom 2010



Mobicom’10[1]:

Antenna Cancellation + other techniques
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The story so far...

d d + λ/2  

TX1 TX2RX

• Frequency dependent, narrowband

• Requires manual tuning

• Two transmit antennas cause complex far-field behavior



• New full-duplex radio design: signal inversion cancellation

• Wideband, frequency independent

• Adaptive

• One transmit antenna design

• Real-time full-duplex MAC layer implementation

• Show MAC layer gains with full-duplex
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Contributions



• RF Design using Signal Inversion

• Adaptive RF Cancellation

• System Performance

• Implications to Wireless Networks

• Open Questions

Talk Outline
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The challenge of full-duplex

➔   Very strong self-interference: ~70dB for 802.11
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TX

RX
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Self-
Interference

Combine RF and digital techniques for cancellation

The challenge of full-duplex

➔   Very strong self-interference: ~70dB for 802.11



Cancellation using Phase Offset
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Cancellation using Phase Offset
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Frequency dependent, narrowband



Cancellation using Signal Inversion
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Cancellation using Signal Inversion
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Time
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Xt +Xt/2

-Xt/2

BALUN

BALUN : Balanced to Unbalanced Conversion
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TX RX
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BALUN : Balanced to Unbalanced Conversion

Cancellation Signal



Time

16

TX RX

TX
RF Frontend

Xt

+Xt/2 -Xt/2

∑

RX
RF Frontend

Xt +Xt/2

-Xt/2

BALUN

Over the air 
attenuation and delay



Time

17

TX RX

TX
RF Frontend

Attenuator and
Delay Line
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Signal Inversion Cancellation

Over the air 
attenuation and delay



+Xt/2

• Measure wideband cancellation

• Wired experiments

• 240MHz chirp at 2.4GHz to measure response

Time

Signal Inversion Cancellation: Wideband Evaluation
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Lower is
better

Higher is
better
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~50dB cancellation at 20MHz bandwidth with balun vs ~38dB with 
phase offset cancellation.

Significant improvement in wideband cancellation

Lower is
better

Higher is
better



Time
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• From 3 antennas per node to 2 antennas

• Parameters adjustable with changing conditions

Attenuator and
Delay Line

TX RX

TX
RF Frontend

Xt

+Xt/2 -Xt/2

∑

RX
RF Frontend

Other advantages



• RF Design using Signal Inversion: ~50dB for 20Mhz 

• Adaptive RF Cancellation

• System Performance

• Implications to Wireless Networks

• Open Questions

Talk Outline
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• Need to match self-interference power and delay

• Can’t use digital samples: Saturated ADC

Adaptive RF Cancellation
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• Need to match self-interference power and delay

• Can’t use digital samples: Saturated ADC

Adaptive RF Cancellation
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RSSI : Received Signal Strength Indicator
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• Need to match self-interference power and delay

• Can’t use digital samples: Saturated ADC

Adaptive RF Cancellation
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Use RSSI as an indicator of self-interference
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Objective: Minimize received power

Control variables: Delay and Attenuation
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Objective: Minimize received power

Control variables: Delay and Attenuation
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➔ Simple gradient descent approach to optimize

Objective: Minimize received power

Control variables: Delay and Attenuation
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Off-the-shelf electronically tunable hardware 
approximation: QHx220 noise canceler
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Off-the-shelf electronically tunable hardware 
approximation: QHx220 noise canceler
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Off-the-shelf electronically tunable hardware 
approximation: QHx220 noise canceler
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Typical convergence within 8-15 iterations (~1ms total)



• RF Design using Signal Inversion: ~50dB for 20Mhz 

• Adaptive RF Cancellation: ~1ms convergence

• System Performance

• Implications to Wireless Networks

• Open Questions

Talk Outline
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Digital Cancellation
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• Measure residual self-interference after RF 
cancellation

• Subtract self-interference from received digital 
signal
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Digital Interference Cancellation
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Channel Coherence

~3dB reduction in cancellation in 1-2 seconds

~6dB reduction in <10 seconds
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Performance

• WiFi full-duplex: with reasonable antenna separation

• Not enough for cellular full-duplex: need 20dB more



• RF Design using Signal Inversion: ~50dB for 20Mhz 

• Adaptive RF Cancellation: ~1ms convergence

• System Performance: ~73dB cancellation

• Implications to Wireless Networks

• Open Questions

Talk Outline
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• Breaks a basic assumption in wireless

• Can solve some fundamental problems with 
wireless networks today[1,2]

• Hidden terminals

• Network congestion and WLAN fairness

Implications to Wireless Networks

39

[1] Choi et al. “Achieving single channel, full duplex wireless communication”,      
     in Mobicom 2010
[2] Singh et al. “Efficient and Fair MAC for Wireless Networks with Self-
     interference Cancellation”, in WiOpt 2011

http://research.microsoft.com/apps/pubs/default.aspx?id=148161
http://research.microsoft.com/apps/pubs/default.aspx?id=148161
http://research.microsoft.com/apps/pubs/default.aspx?id=148161
http://research.microsoft.com/apps/pubs/default.aspx?id=148161


• WARPv2 boards with 2 radios

• OFDM reference code from Rice 
University

• 10MHz bandwidth OFDM signaling

• CSMA MAC on embedded processor

• Modified for full-duplex

Implementation

40



• CSMA/CA can’t solve this

• Schemes like RTS/CTS introduce significant overhead

APN1 N2

Current networks have 
hidden terminals

Mitigating Hidden Terminals
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• CSMA/CA can’t solve this

• Schemes like RTS/CTS introduce significant overhead

APN1 N2

Since both sides transmit at the same time, no 
hidden terminals exist

Current networks have 
hidden terminals

Full Duplex solves 
hidden terminals APN1 N2

Mitigating Hidden Terminals

43Reduces hidden terminal losses by up to 88%



Network Congestion and WLAN Fairness

Without full-duplex: 

• 1/n bandwidth for each node in network, including AP
Downlink Throughput = 1/n   Uplink Throughput = (n-1)/n
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Network Congestion and WLAN Fairness

Without full-duplex: 

• 1/n bandwidth for each node in network, including AP
Downlink Throughput = 1/n   Uplink Throughput = (n-1)/n
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With full-duplex: 

• AP sends and receives at the same time
Downlink Throughput = 1   Uplink Throughput = 1



Network Congestion and WLAN Fairness
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1 AP with 4 stations without any hidden terminals

Throughput (Mbps)Throughput (Mbps)
Fairness (JFI)

Upstream Downstream
Fairness (JFI)

Half-Duplex 5.18 2.36 0.845

Full-Duplex 5.97 4.99 0.977

Full-duplex distributes its performance gain to improve fairness



• RF Design using Signal Inversion: ~50dB for 20Mhz 

• Adaptive RF Cancellation: ~1ms convergence

• System Performance: ~73dB cancellation

• Implications to Wireless Networks: Collisions, Fairness

• Open Questions

Talk Outline
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Improving Full-duplex

• Non-linear channel response



• Non-linear channel response
Reduce distortion: feedforward amplifiers
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Improving Full-duplex
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• Non-linear channel response
Reduce distortion: feedforward amplifiers
Compensate: non-linear digital cancellation

Improving Full-duplex
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TX Signal RX Signal

Circulator

• Non-linear channel response
Reduce distortion: feedforward amplifiers
Compensate: non-linear digital cancellation

• Single antenna solution: circulators

Improving Full-duplex
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• Non-linear channel response
Reduce distortion: feedforward amplifiers
Compensate: non-linear digital cancellation

• Single antenna solution: circulators

• MIMO full-duplex

Improving Full-duplex
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Access Point networks

Full-duplex Networking
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Access Point networks
Cellular networks

Cell 
Basestation

Relay

Full-duplex Networking
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Access Point networks

Multi-hop Networks

Cellular networks

Cell 
Basestation
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Full-duplex Networking
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Access Point networks

Multi-hop NetworksSecure Networks[1,2]

Cellular networks

Cell 
Basestation

Relay

Full-duplex Networking

[1] Gollakota et al. “They Can Hear Your Heartbeats: Non-Invasive Security 
     for Implantable Medical Devices.”, in Sigcomm 2011.
[2] Lee et al. “Secured Bilateral Rendezvous using Self-interference 
     Cancellation in Wireless Networks”, in IFIP 2011.
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Access Point networks

Multi-hop NetworksSecure Networks[1,2]

Cellular networks

Cell 
Basestation

Relay

Full-duplex Networking

[1] Gollakota et al. “They Can Hear Your Heartbeats: Non-Invasive Security 
     for Implantable Medical Devices.”, in Sigcomm 2011.
[2] Lee et al. “Secured Bilateral Rendezvous using Self-interference 
     Cancellation in Wireless Networks”, in IFIP 2011.

?



Summary

• Design for real-time full-duplex wireless

• Makes full-duplex WiFi possible

• Still some way to go for full-duplex cellular

• Made practical using adaptive techniques

• Rethinking of wireless networks

• WiFi: hidden terminals and fairness

• Many more possibilities

58
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Thank You

Questions?



Backup

60



• Other cancellation techniques

Digital estimation for RF cancellation[1]
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TX RX

RF ➔ Baseband

ADC

Baseband ➔ RF

DAC

TX Signal RX Signal

Σ

Baseband ➔ RF

DAC

Cancellation Signal

[1] Duarte et al. “Full-Duplex Wireless Communications Using Off-The-Shelf 
     Radios: Feasibility and First Results.”, in Asilomar 2010.



• RF Cancellation using Signal Inversion: ~50dB for 20Mhz 

• Adaptive RF Cancellation: ~1ms convergence

• Adaptive Digital Cancellation

• System Performance

• Implications to Wireless Networks

• Looking Forward

Talk Outline
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Digital Cancellation
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• Create a precise “digital replica” of the self-
interference signal using TX digital samples

• Subtract self-interference replica from received 
digital signal

Requires ADC not saturated: RF cancellation
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OFDM processing

Signal
Band
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OFDM processing

Sub-bands
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OFDM processing

Channel
Distortion
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OFDM processing

Channel
Distortion

Equalization



OFDM processing
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Step 1: Estimation
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Self-interference 
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Estimation includes effect of RF cancellation 



Step 2: Cancellation
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Step 2: Cancellation
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• RF Cancellation using Signal Inversion: ~50dB for 20Mhz 

• Adaptive RF Cancellation: ~1ms convergence

• Adaptive Digital Cancellation: ~30dB cancellation

• System Performance

• Implications to Wireless Networks

• Looking Forward

Talk Outline
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Attenuator

Phase Offset Cancellation: Block Diagram

d d +  �/2TX1 TX2RX

RX
RF Frontend

Digital Processor

TX
RF Frontend

Power Splitter
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Only TX1 Active

Phase Offset Cancellation: Performance
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Phase Offset Cancellation: Performance
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~25-30dB

Only TX1 Active
Only TX2 Active

Both TX1 & 
TX2 Active

Phase Offset Cancellation: Performance
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What about attenuation at intended receivers?
Destructive interference can affect this signal too!

• Different transmit powers for two TX helps

Single Transmit Antenna Two Transmit Antennas
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Sensitivity of Phase Offset Cancellation
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30dB cancellation   <  5% (~0.5dB) amplitude mismatch
                             <  1mm distance mismatch

Sensitivity of Phase Offset Cancellation



81

• Rough prototype good for 802.15.4

• More precision needed for higher power systems (802.11)
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Bandwidth Constraint
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fc

d d + λ/2  

TX1 TX2RX

A λ/2 offset is precise for one frequency



Bandwidth Constraint

A λ/2 offset is precise for one frequency
not for the whole bandwidth
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fc fc+Bfc -B

d d + λ/2  

TX1 TX2RX



Bandwidth Constraint

A λ/2 offset is precise for one frequency
not for the whole bandwidth
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Bandwidth Constraint

A λ/2 offset is precise for one frequency
not for the whole bandwidth
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fc fc+Bfc -B

d d + λ/2  

TX1 TX2RX

d2 d2 + λ+B/2  

TX1 TX2RX

d1 d1 + λ-B/2  

TX1 TX2RX

WiFi (2.4G, 20MHz) => ~0.26mm precision error



Bandwidth Constraint
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2.4 GHz

5.1 GHz

300 MHz

fc

Edge frequency



Bandwidth Constraint
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• WiFi (2.4GHz, 20MHz): Max 47dB reduction

• Bandwidth⬆ => Cancellation⬇
• Carrier Frequency⬆ => Cancellation⬆

2.4 GHz

5.1 GHz

300 MHz



Mitigating Hidden Terminals
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• Full-duplex reduces hidden terminal related losses by 88% at 2 Mbps



Mitigating Hidden Terminals
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• Full-duplex reduces hidden terminal related losses by 88% at 2 Mbps

• At higher loads, half-duplex improves PRR at the expense of fairness
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Time
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Passive components better than active components

• No gain required

• Saturation can lead to non-linearity

• Passive components are more frequency flat

TX RX

TX
RF Frontend

Attenuator and
Delay Line

Xt

+Xt/2 -Xt/2

∑

RX
RF Frontend
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• ~65% converge without going through a local minima

• 98% converge in <20 iterations 
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• Other cancellation techniques

Digital estimation for RF cancellation[1]

• Non-linear channel response

Reduce distortion: feedforward amplifiers
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