
Execu&on	Templates:	Caching	Control	Plane	Decisions	for	
Strong	Scaling	of	Data	Analy&cs		

Omid	Mashayekhi				Hang	Qu				Chinmayee	Shah				Philip	Levis	

July	13,	2017	

2	2	

Cloud	Frameworks	

3	

SQL	 Streaming	 Machine	
Learning	

Graph	

Cloud	Framework	

......

Cloud	frameworks	abstract	away	the	complexi&es	of	the	cloud	
infrastructure	from	the	applica&on	developers:	

1.  Automa&c	distribu&on	
2.  Elas&c	scalability	
3.  Mul&tenant	applica&ons	
4.  Load	balancing	
5.  Fault	tolerance		

Cloud	Frameworks	

4	

SQL	 Job	

Control	Plane	

......

• 	Job	is	an	instance	of	the	applica&on	running	in	the	framework.	
• 	Task	is	the	unit	of	computa&on	for	the	job.	
• 	Control	plane	par&&ons	job	in	to	tasks,	schedules	task,	and	recovers	from	faults.	

Task	

10s	 1s	 100ms	 10ms	 1ms	

I/O-bound	
data	analy&cs	
MapReduce	
Hadoop	

Task	Length	

2004	

Evolu&on	of	Cloud	Frameworks	

5	

10s	 1s	 100ms	 10ms	 1ms	

I/O-bound	
data	analy&cs	

In-memory	
data	analy&cs	

MapReduce	
Hadoop	

Task	Length	

Spark	
Naiad	

2004	 2012	

Evolu&on	of	Cloud	Frameworks	

6	

10s	 1s	 100ms	 10ms	 1ms	

I/O-bound	
data	analy&cs	

In-memory	
data	analy&cs	

Op&mized	
data	analy&cs	

MapReduce	
Hadoop	

Task	Length	

Spark	
Naiad	

Spark	2.0	
Common	IL	

C++	

2004	 2012	 2016	

Evolu&on	of	Cloud	Frameworks	

7	

8	

Individual	tasks	are	ge]ng	faster.	

But	does	it	necessarily	mean	that	
job	comple&on	&me	is	ge]ng	shorter?	

9	

Control	Plane	
The	New	Boaleneck	

• 	Logis&c	regression	over	a	data	set	of	size	100GB.	
• 	Classic	Spark	used	to	be	CPU-bound.	

10	

Control	Plane	
The	New	Boaleneck	

• 	Logis&c	regression	over	a	data	set	of	size	100GB.	
• 	Spark	2.0	with	Scala	implementa&on	is	already	control-bound.	

11	

Control	Plane	
The	New	Boaleneck	

• 	Logis&c	regression	over	a	data	set	of	size	100GB.	
• 	Spark-opt:	hypothe&cal	case	where	Spark	runs	tasks	as	fast	as	C++.		

12	

Control	plane	is	the	emerging	boaleneck	
for	the	cloud	compu&ng	frameworks.	

13	

Control	Plane	Design	Scope	CHAPTER 1. INTRODUCTION 6

Control Plane Example Task Throughput Scheduling Cost

Design Framework (task per sec) (per task)

Centralized
MapReduce

⇡ 1, 000 ⇡ 100µsHadoop
Spark

Distributed
Naiad ⇡ 100, 000 ⇡ 100, 000µs
TensorFlow

Centralized w/
Nimbus ⇡ 100, 000 ⇡ 100µs

Execution Templates

Table 1.1: Current cloud computing frameworks have either a centralized control
plane model with fast, dynamic scheduling but limited task throughput, or a dis-
tributed control plane model with orders of magnitude higher task throughput but
very high scheduling cost. Execution templates (§4) introduced by this dissertation
enable Nimbus (§5) to match the task throughput of a distributed framework, while
providing the fast, dynamic scheduling similar to centralized frameworks.

at a higher rate to keep workers busy. Current frameworks fail to deliver the high

task throughput required by the applications at scale without sacrificing low latency,

dynamic scheduling. Table 1.1 summarizes these two design approaches for the control

plane with example frameworks and their characteristics in terms of task throughput

and dynamic scheduling cost.

1.3 Execution Templates

This dissertation presents a third strategy using an abstraction called execution tem-

plates. Execution templates schedule at the same per-task granularity as centralized

schedulers do. They do so while imposing the same minimal control overhead as

distributed execution plans. Execution templates leverage the fact that long-running

jobs (e.g. machine learning and graph processing) are iterative, running the same

computation many times [119]. Machine learning algorithms, for example, typically

iterate until the estimation error drops below a threshold.

Logically, a framework using execution templates centrally schedules at the task

• 	Centralized	controller	adapts	to	scheduling	changes	reac&vely	with	a	low	cost,	
but	has	limited	task	throughput	and	boalenecks	at	scale.	

• 	Distributed	controller	scales	well,	but	any	scheduling	change	requires	stopping	
all	nodes	and	installing	new	data	flow	with	high	latency.	

14	

Execu>on	Templates	is	an	abstrac&on	for	the	control	plane	of	cloud	compu&ng	
frameworks,	that	enables	orders	of	magnitude	higher	task	throughput,	while	

keeping	the	fine-grained,	flexible	scheduling	with	low	cost.		

15	

Control	Plane	
The	New	Boaleneck	

• 	Logis&c	regression	over	a	data	set	of	size	100GB.	
• 	Nimbus	with	execu>on	templates	scales	almost	linearly,	with	low	cost	scheduling.			

Repe&&ve	Paaerns	

• Advanced	data	analy&cs	are	itera&ve	in	nature.	
– Machine	learning,	graph	processing,	image	recogni&on,	etc.	

•  This	results	in	repe&&ve	paaerns	in	the	control	plane.	
–  Similar	tasks	execute	with	minor	differences.	

16	

Execu&on	Model	

17	

Controller	
Driver Program

Data	

Map	

Reduce	D
at
a	
flo

w
	

Worker	 Worker	

Data	Objects	 Data	Objects	

Ta
sk
	G
ra
ph

	

Execu&on	Model	

18	

Controller	
Driver Program

Data	

Map	

Reduce	D
at
a	
flo

w
	

Worker	 Worker	

Data	Objects	 Data	Objects	

C	
Ta
sk
	G
ra
ph

	

Execu&on	Model	

19	

Controller	
Driver Program

Data	

Map	

Reduce	D
at
a	
flo

w
	

Worker	 Worker	

Data	Objects	 Data	Objects	

C	

Task id
Data list
Dep. list
Function
Parameter

Ta
sk
	G
ra
ph

	

Execu&on	Model	

20	

Controller	
Driver Program

Data	

Map	

Reduce	D
at
a	
flo

w
	

Worker	 Worker	

Data	Objects	 Data	Objects	

Data	Exchange	
C	

Task id
Data list
Dep. list
Function
Parameter

Ta
sk
	G
ra
ph

	

Repe&&ve	Paaerns	

21	

Controller	

Worker	 Worker	

Data	Objects	 Data	Objects	

Ta
sk
	G
ra
ph

	

Repe&&ve	Paaerns	

22	

Controller	

Worker	 Worker	

Data	Objects	 Data	Objects	

C	

Task id
Data list
Dep. list
Function
Parameter

Ta
sk
	G
ra
ph

	

Repe&&ve	Paaerns	

23	

Controller	

Worker	 Worker	

Data	Objects	 Data	Objects	

Ta
sk
	G
ra
ph

	

Data	Exchange	
C	

Task id
Data list
Dep. list
Function
Parameter

Repe&&ve	Paaerns	

24	

Controller	

Worker	 Worker	

Data	Objects	 Data	Objects	

C	

Task id
Data list
Dep. list
Function
Parameter

Ta
sk
	G
ra
ph

	

Repe&&ve	Paaerns	

25	

Controller	

Worker	 Worker	

Data	Objects	 Data	Objects	

Ta
sk
	G
ra
ph

	

Data	Exchange	
C	

Task id
Data list
Dep. list
Function
Parameter

Execu&on	Templates	

•  Tasks	are	cached	as	parameterizable	blocks	on	nodes.	

•  Instead	of	assigning	the	tasks	from	scratch,	templates	
are	instan>ated	by	filling	in	only	changing	parameters.	

26	

Task id
Data list
Dep. list
Function
Parameter

Task id
Data list
Dep. list
Function
Parameter

Task id
Data list
Dep. list
Function
Parameter

Execu&on	Templates	

•  Tasks	are	cached	as	parameterizable	blocks	on	nodes.	

•  Instead	of	assigning	the	tasks	from	scratch,	templates	
are	instan>ated	by	filling	in	only	changing	parameters.	

27	

Task id
Data list
Dep. list
Function
Parameter

Task id
Data list
Dep. list
Function
Parameter

Task id
Data list
Dep. list
Function
Parameter

Load New
Task ids

Parameters
T1
P1

T2
P2

T3
P3

28	

Execu&on	Templates	
Mechanisms	Summary	

•  Instan>a>on:	spawn	a	block	of	tasks	without	processing	each	task	
individually	from	scratch.	It	helps	increase	the	task	throughput.	

•  Edits:	modifies	the	content	of	each	template	at	the	granularity	of	tasks.	It	
enables	fine-grained,	dynamic	scheduling.	

•  Patches:	In	case	the	state	of	the	worker	does	not	match	the	precondi&ons	of	
the	template.	It	enables	dynamic	control	flow.	

Execu&on	Templates	
Instan&a&on	

29	

Controller	

Worker	 Worker	

C	
Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

Execu&on	Templates	
Instan&a&on	

30	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Execu&on	Templates	
Instan&a&on	

31	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Execu&on	Templates	
Instan&a&on	

32	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Instantiate<params> Instantiate<params>

Execu&on	Templates	
Instan&a&on	

33	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Execu&on	Templates	

Caching	tasks	implies	sta&c	behavior;	how	could	
templates	allow	dynamic	scheduling?	

•  Reac&ve	scheduling	changes	for	load	balancing.	

•  Scheduling	changes	at	the	task	granularity.	

34	

Execu&on	Templates	
Edits	

• 	If	scheduling	changes,	even	slightly,	the	templates	are	obsolete.	
– 	For	example	rescheduling	a	task	from	one	worker	to	another.	

• 	Instead	of	paying	the	substan&al	cost	of	installing	templates	for	every	changes,	
templates	allow	edit,	to	change	their	structure.	

• 	Edits	enable	adding	or	removing	tasks	from	the	template	and	modifying	the	
template	content,	in-place.	

• 	Controller	has	the	general	view	of	the	task	graph	so	it	can	update	the	
dependencies	properly,	needed	by	the	edits.	

35	

Execu&on	Templates	
Edits	

36	

Controller	

Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	

C	Te
m
pl
at
e 	

Worker	

Data	Objects	

Te
m
pl
at
e 	

Reschedule	
one	task	

Execu&on	Templates	
Edits	

37	

Controller	

Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	

C	Te
m
pl
at
e 	

Worker	

Data	Objects	

Te
m
pl
at
e 	

Edit<remove								>	Edit<add								>	

Execu&on	Templates	
Edits	

38	

Controller	

Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	

C	Te
m
pl
at
e 	

Worker	

Data	Objects	

Te
m
pl
at
e 	

Execu&on	Templates	
Edits	

39	

Controller	

Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	

C	Te
m
pl
at
e 	

Worker	

Data	Objects	

Te
m
pl
at
e 	

Instantiate<params> Instantiate<params>

Execu&on	Templates	

Caching	tasks	implies	sta&c	behavior;	how	could	
templates	allow	dynamic	control	flow?	

•  Need	to	support	nested	loops.	

•  Need	to	support	data	dependent	branches.	

40	

Execu&on	Templates	
Patching	

• 	Execu&on	templates	operates	at	the	granularity	of	basic	blocks:	

–  A	code	block	with	single	entry	and	no	branches	except	at	the	end.	

• 	Each	template	has	a	set	of	precondi>ons	that	need	to	be	sa&sfied.	

– 	For	example	the	set	of	data	objects	in	memory,	accessed	by	the	tasks.	

• 	Worker	state	might	not	match	the	precondi&ons	of	the	template	in	all	
circumstances.	

• 	Controller	patches	the	worker	state	before	template	instan&a&on,	to	sa&sfy	
the	precondi&ons.	

41	

Execu&on	Templates	
Patching	

42	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Precondi&ons	 Precondi&ons	

Execu&on	Templates	
Patching	

43	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Precondi&ons	 Precondi&ons	

Patch<	load								>	

Execu&on	Templates	
Patching	

44	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Precondi&ons	 Precondi&ons	

Execu&on	Templates	
Patching	

45	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Instantiate<params> Instantiate<params>

Precondi&ons	 Precondi&ons	

Execu&on	Templates	
Patching	

46	

Controller	

Worker	 Worker	

Ta
sk
	G
ra
ph

	

Data	Objects	 Data	Objects	

C	C	Te
m
pl
at
e 	

Te
m
pl
at
e 	

Precondi&ons	 Precondi&ons	

47	

Execu&on	Templates	
Mechanisms	Summary	

•  Instan>a>on:	spawn	a	block	of	tasks	without	processing	each	task	
individually	from	scratch.	It	helps	increase	the	task	throughput.	

•  Edits:	modifies	the	content	of	each	template	at	the	granularity	of	tasks.	It	
enables	fine-grained,	dynamic	scheduling.	

•  Patches:	In	case	the	state	of	the	worker	does	not	match	the	precondi&ons	of	
the	template.	It	enables	dynamic	control	flow.	

48	

Nimbus	
•  Nimbus	is	designed	for	low	latency,	fast	computa&ons	in	the	cloud.	

•  Nimbus	embeds	execu&on	templates	for	its	control	plane.	

•  Nimbus	supports	tradi&onal	data	analy&cs	as	well	as	Eulerian	and	hybrid	
graphical	simula&ons;	for	the	first	&me	in	a	cloud	framework.	

–  Supervised/unsupervised	learning	algorithms.	

–  Graph	processing.	

–  Physical	simula&on:	water,	smoke,	etc.	(PhysBAM	library)	

nimbus.stanford.edu	

49	

haps://github.com/omidm/nimbus	

Evalua&on	
Strong	Scalability	with	Templates	

50	

• 	Logis&c	regression	over	data	set	of	size	100GB.	
• 	Spark-opt	and	Naiad-opt,	runs	tasks	as	fast	as	C++	implementa&on.	
• 	Nimbus	centralized	controller	with	execu&on	templates	matches	the	
performance	of	Naiad	with	a	distributed	control	plane.		

Evalua&on	
Reac&ve,	Fine-Grained	Scheduling	with	Templates	

51	

• 	Logis&c	regression	over	data	set	of	size	100GB,	on	100	workers.	
• 	Naiad-opt	curve	is	simulated	(migra&ons	every	5	itera&ons).	
• 	Execu&on	templates	allow	low	cost,	reac&ve	scheduling	changes.	

• 	Single	edit	overhead	is	only	41μs	(in	average).			

Rescheduling	5%	of	
the	tasks	

Evalua&on	
High	Task	Throughput	with	Templates	

52	

• 	Spark	and	Nimbus	both	have	centralized	controller.		
• 	Nimbus	task	throughput	scales	super	linearly	with	more	workers.	

• 	O(N2):	more	tasks	and	shorter	tasks,	simultaneously.	
• 	For	a	task	graphs	with	single	stage:	

• 	Instan&a&on	cost	is	<2μs	per	task	(500,000	tasks	per	second).	

0

2

4

6

6SarN-oSW

10 20 30 40 50 60 70 80 90 100
1umber of WorNers

0

50

100

150

1imbus

7
a
sN

 7
h

ro
u

g
h

S
u

W
(7

h
o
u

sa
n

d
s

S
e
r

se
co

n
d

)

• 	To	show	the	generality	of	execu&on	templates,	we	considered	
graphical	simula&ons	in	Nimbus:	

– 	Complex,	and	memory	intensive	from	PhysBAM	library.	

– 	High	tasks	throughput	requirements	(400,000	tasks	per	second).	

– 	Nested	loops	and	data	dependent	branches.	

– 	Require	patching	in	very	subtle	cases.	

– 	Tradi&onally	in	the	HPC	domain.	

53	

Evalua&on	
Graphical	Simula&ons	Distributed	in	Nimbus	

Evalua&on	
Graphical	Simula&ons	Distributed	in	Nimbus	

54	

Conclusion	

55	

CHAPTER 1. INTRODUCTION 6

Control Plane Example Task Throughput Scheduling Cost

Design Framework (task per sec) (per task)

Centralized
MapReduce

⇡ 1, 000 ⇡ 100µsHadoop
Spark

Distributed
Naiad ⇡ 100, 000 ⇡ 100, 000µs
TensorFlow

Centralized w/
Nimbus ⇡ 100, 000 ⇡ 100µs

Execution Templates

Table 1.1: Current cloud computing frameworks have either a centralized control
plane model with fast, dynamic scheduling but limited task throughput, or a dis-
tributed control plane model with orders of magnitude higher task throughput but
very high scheduling cost. Execution templates (§4) introduced by this dissertation
enable Nimbus (§5) to match the task throughput of a distributed framework, while
providing the fast, dynamic scheduling similar to centralized frameworks.

at a higher rate to keep workers busy. Current frameworks fail to deliver the high

task throughput required by the applications at scale without sacrificing low latency,

dynamic scheduling. Table 1.1 summarizes these two design approaches for the control

plane with example frameworks and their characteristics in terms of task throughput

and dynamic scheduling cost.

1.3 Execution Templates

This dissertation presents a third strategy using an abstraction called execution tem-

plates. Execution templates schedule at the same per-task granularity as centralized

schedulers do. They do so while imposing the same minimal control overhead as

distributed execution plans. Execution templates leverage the fact that long-running

jobs (e.g. machine learning and graph processing) are iterative, running the same

computation many times [119]. Machine learning algorithms, for example, typically

iterate until the estimation error drops below a threshold.

Logically, a framework using execution templates centrally schedules at the task

56	

Thank	you!	

nimbus.stanford.edu	

haps://github.com/omidm/nimbus	

