GReTA: Hardware Optimized Graph Processing for GNNs

Kevin Kiningham, Phil Levis, Chris Ré Stanford University March 4th, 2020

Deep Neural Networks

Object Detection

Handwriting Recognition

Deep Neural Networks + Graphs = ?

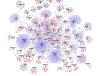
Speech Recognition

Object Detection

Translation

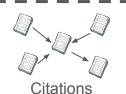
Handwriting Recognition

Traditional DNN



Protein Interactions

Introduction



a la tam

Road Networks

?

Deep Neural Networks + Graphs = GNNs

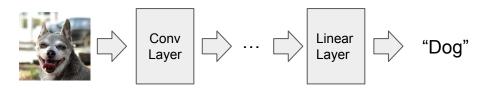
Speech Recognition

Object Detection

Translation

Handwriting Recognition

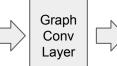
Traditional DNN



Citations

Protein Interactions

Gra Cor Lay

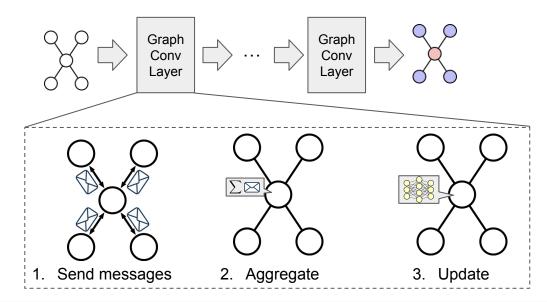


Graph Neural Network (GNN)

Introduction

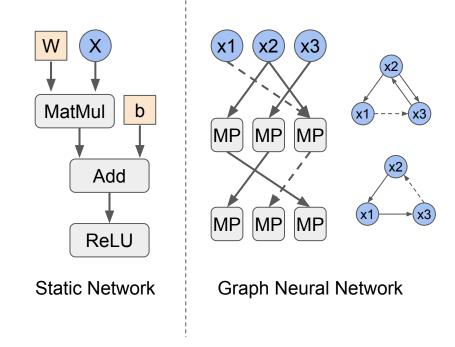
GNN Computation Is Irregular

- Computation pattern changes depending on input graph structure
- GNN layers follow message passing architecture



Existing DNN Representations Bad for GNNs

- Irregular computation is difficult to represent with static tensor network
 E.g. Tensorflow
- Hard to handle large graphs
 - Must manually deal with partitioning variables
 - Hard to make efficient when graph shape can change



GReTA: Graph Framework for GNNs

- Simple to represent GNN layers
 - Computation defined on edges and vertices of input graph
 - Maps directly to message passing
- Flexible enough to allow a wide range of GNN models
 - Allows each execution phase to be customized
- Efficient execution on an accelerator
 - Partitioning: Limit accelerator memory usage without modifying user code
 - Tiling: Increase the reuse of layer weights

Talk Agenda

- Introduction
- GReTA Overview
- Execution Model
- Partitioning
- Experimental Results
- Conclusion

GReTA Overview

- GReTA represents computation using graph framework
 - Functions defined on edges and vertices
 - Can directly map message passing layer
- GNN layers implemented using four user-defined functions (UDFs)
 - 1. <u>**G**</u>ather: compute message for each edges
 - 2. <u>**Re</u>**duce: reduce incoming messages per-vertex</u>
 - 3. <u>Transform: combine reduced value with per-vertex accumulator</u>
 - 4. <u>Activate: perform non-linear function</u>

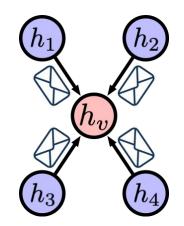
$$h_v^{(\ell+1)} \leftarrow \operatorname{ReLU}\left(W^{(\ell)} \cdot \left(\sum_{u \to v} h_u\right) + b^{(\ell)}\right)$$

GCN layer update function

$$h_v^{(\ell+1)} \leftarrow \operatorname{ReLU}\left(W^{(\ell)} \cdot \left(\sum_{u \to v} \boxed{h_u}\right) + b^{(\ell)}\right)$$

GCN layer update function

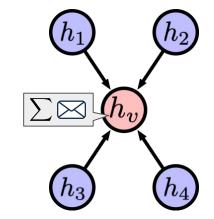
1. Gather messages using connected edges



$$h_v^{(\ell+1)} \leftarrow \operatorname{ReLU}\left(W^{(\ell)} \cdot \left(\sum_{u \to v} \overline{h_u}\right) + b^{(\ell)}\right)$$

GCN layer update function

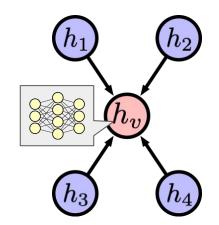
- 1. Gather messages using connected edges
- 2. **Reduce** to single vector by summation



$$h_v^{(\ell+1)} \leftarrow \operatorname{ReLU}\left(W^{(\ell)} \cdot \left(\sum_{u \to v} h_u\right) + b^{(\ell)}\right)$$

GCN layer update function

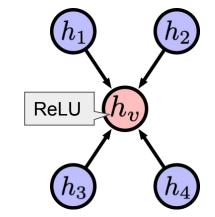
- 1. Gather messages using connected edges
- 2. **Reduce** to single vector by summation
- 3. **Transform** result using linear transformation



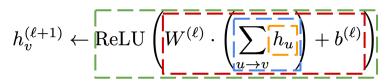
$$h_v^{(\ell+1)} \leftarrow \operatorname{ReLU}\left(W^{(\ell)} \cdot \left(\sum_{u \to v} h_u\right) + b^{(\ell)}\right)$$

GCN layer update function

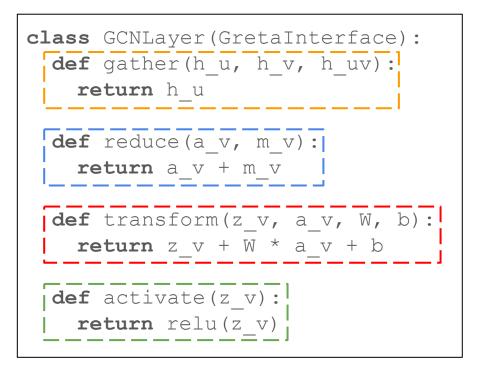
- 1. Gather messages using connected edges
- 2. **Reduce** to single vector by summation
- 3. **Transform** result using linear transformation
- 4. Activate output using element-wise ReLU



GCN Implementation Pseudocode



GCN layer update function



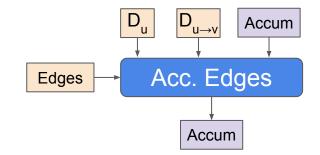
Talk Agenda

- Introduction
- GReTA Overview
- Execution Model
- Partitioning
- Experimental Results
- Conclusion

Execution conceptually split into three phases

Execution conceptually split into three phases

- 1. Accumulate Edges
 - Gather/compute message for each edge
 - Reduce to single value per vertex



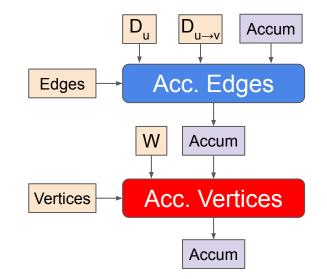
Execution conceptually split into three phases

1. Accumulate Edges

- Gather/compute message for each edge
- Reduce to single value per vertex

2. Accumulate Vertices

• Combine reduced value with prior vertex accumulator state



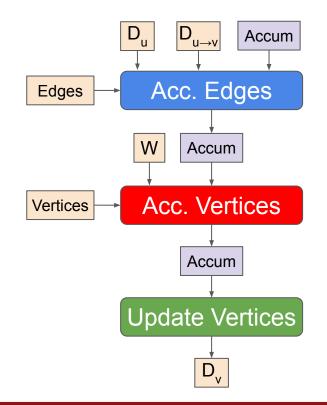
Execution conceptually split into three phases

1. Accumulate Edges

- Gather/compute message for each edge
- Reduce to single value per vertex

2. Accumulate Vertices

- Combine reduced value with prior vertex accumulator state
- 3. Update Vertices
 - Apply activate to accumulator



Talk Agenda

- Introduction
- GReTA Overview
- Execution Model
- Partitioning
- Experimental Results
- Conclusion

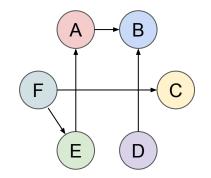
Optimizations for Hardware Implementation

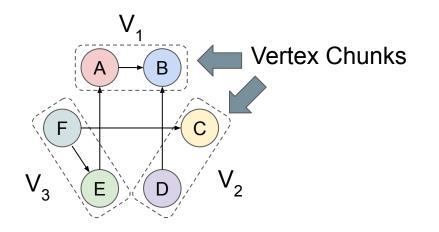
Execution Partitioning

- Problem: Large graphs do not fit into limited accelerator memory
 - \circ $\,$ E.g. social media graphs with millions of users
- Solution: Partition graph and execute GReTA on each partition separately
- Results combined via vertex accumulators

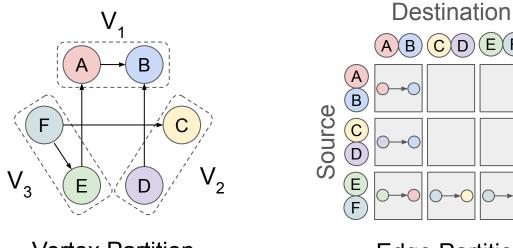
Weight Tiling

- Problem: Bandwidth bottlenecks when layer weights are large
- Solution: Improve reuse by splitting weights into tiles
- Tiles can be reused across multiple vertices





Vertex Partition

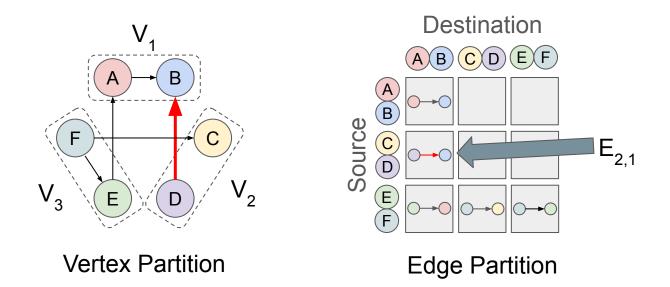


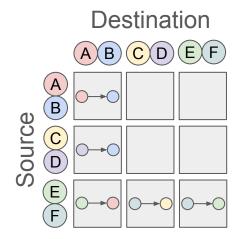
Vertex Partition

Edge Partition

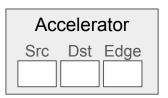
C(D)

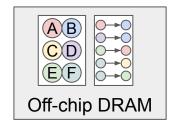
E F

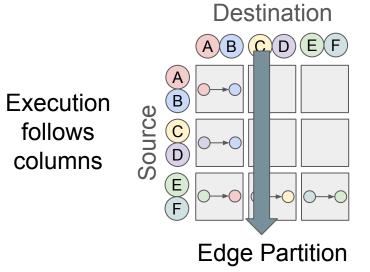


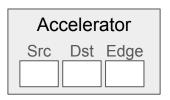


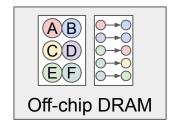
Edge Partition





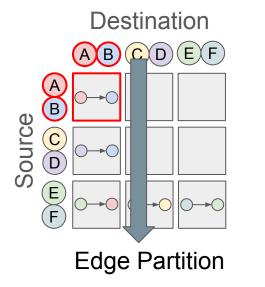


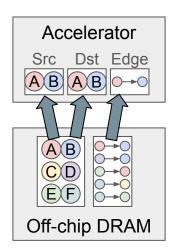


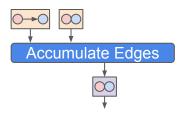


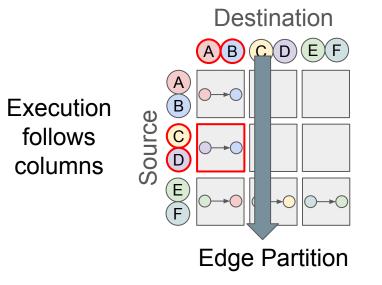
Partitioning

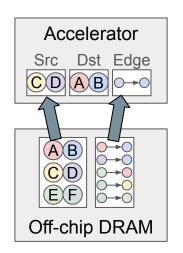
Execution follows columns

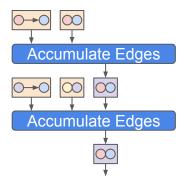






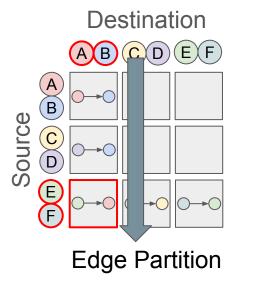


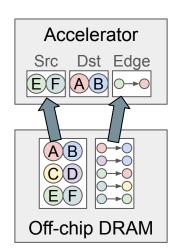


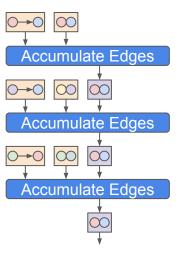


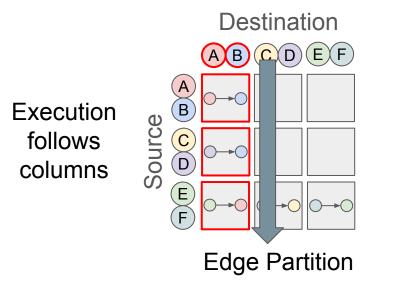
Partitioning

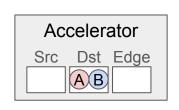
Execution follows columns

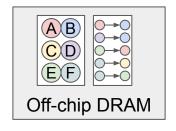


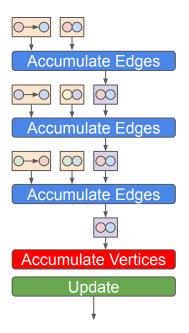












Talk Agenda

- Introduction
- GReTA Overview
- Execution Model
- Partitioning
- Experimental Results
- Conclusion

Experimental Setup

- Implemented range of GNN models
 - GCN (simple, classic GNN model)
 - GraphSage (max-reduce instead of sum)
 - GIN (MLP in transform layer)
 - G-GCN (per-edge computation)
- Baseline

Results

- CPU: 2.6 GHz Intel Xeon E5-2690v4
- GPU: Nvidia Tesla P100
- Models implemented using Tensorflow
- Compared to custom 32nm GReTA accelerator
- Key performance metric: Total inference latency for batch size of 1

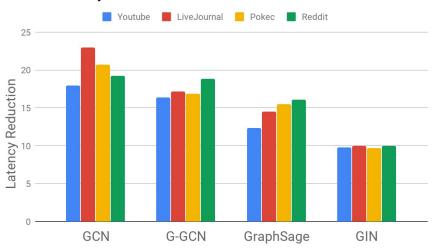
	Dataset	Nodes	Edges	2-Hop
ΥT	YouTube	1.13M	2.98M	25
LJ	LiveJournal	3.99M	34.6M	65
PO	Pokec	1.63M	30.6M	167
RD	Reddit	232K	47.4M	239

Evaluation Datasets

9-23x Latency Reduction vs CPU

- **15x** g.mean across all datasets/models
- Best results on models where message passing dominates (GCN, G-GCN)

GReTA Latency Reduction vs CPU



6-67x Latency Reduction vs GPU

• **21x** g.mean across all datasets/models

Results

- Best speedup on models with low overall latency (GCN, GIN)
- Small batch size means data transfer latency often dominates

GReTA Latency Reduction vs CPU

Conclusion

Key features of GReTA:

- 1. **Simple** representation using a graph framework
- 2. **Expressive** enough to allow for a wide range of GNNs
- 3. **Efficient** execution on an accelerator

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?

Conclusion

Key features of GReTA:

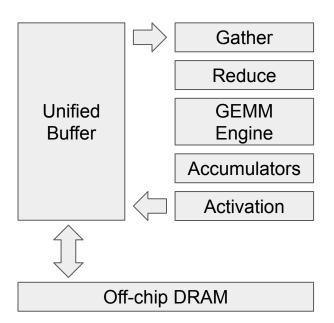
- 1. **Simple** representation using a graph framework
- 2. **Expressive** enough to allow for a wide range of GNNs
- 3. **Efficient** execution on an accelerator

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?

Conclusion

GReTA Accelerator

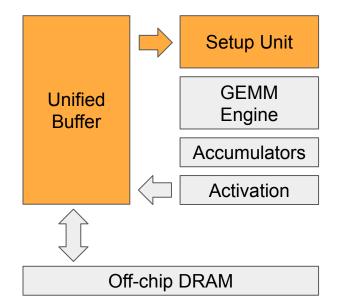
- Replace setup with unit for Gather-ing edge/vertex values
 - Uses graph adjacency info stored in Unified Buffer
- New accumulator unit for Reduce
- Note: Existing NN ops can still run on new architecture!
 - Gather unit just performs single load
 - Reduce unit performs no-op



Compiling GReTA to a TPU-like Architecture

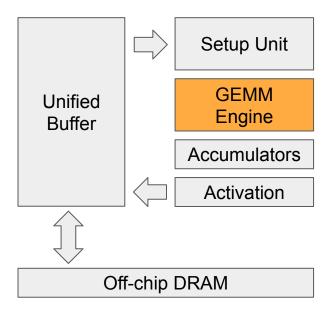
Execution in four stages

1. Load: Move data from unified buffer into setup unit



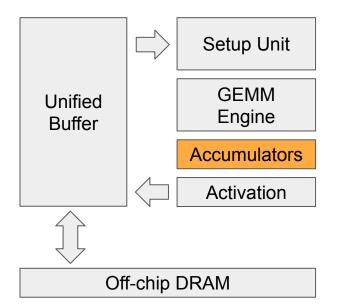
Execution in four stages

- 1. Load: Move data from unified buffer into setup unit
- 2. <u>Compute:</u> Multiply setup data by pre-loaded weight values



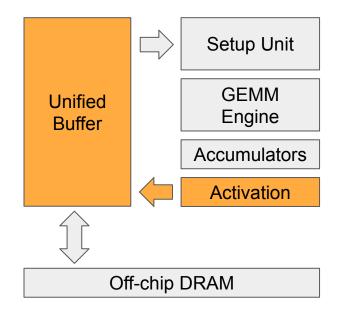
Execution in four stages

- 1. Load: Move data from unified buffer into setup unit
- 2. <u>Compute:</u> Multiply setup data by pre-loaded weight values
- 3. <u>Accumulate:</u> Collect output from compute over *N* cycles



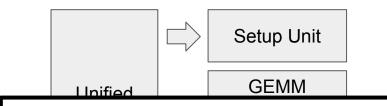
Execution in four stages

- 1. Load: Move data from unified buffer into setup unit
- 2. <u>Compute:</u> Multiply setup data by pre-loaded weight values
- 3. <u>Accumulate:</u> Collect output from compute over *N* cycles
- 4. <u>Activate:</u> Execute required activation/normalization and store result



Execution in four stages

- 1. Load: Move data from unified buffer into setup unit
- 2. <u>Compute:</u> Multiply setup data by pre-loaded weight values
- 3. <u>Accumulate:</u> Collect output from compute over *N* cycles
- 4. <u>Activate:</u> Execute required activation/normalization and store result

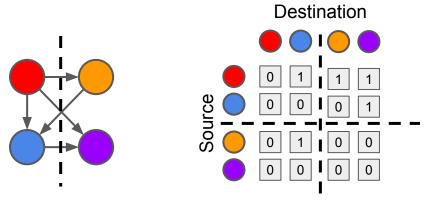


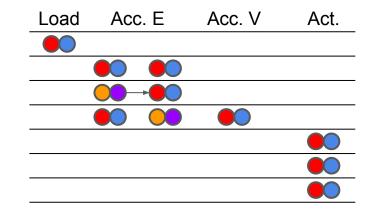
- Key insight: Stages 2-4 can already execute GReTA's Transform and Activate UDFs
- Only need to add hardware for Gather and Reduce

OIT-CNIP DRAIM

Graph Partitioning

- Problem: Data for full graph may be too large to fit entirely on accelerator
- Solution: Partition graph and execute phases for each partition separately





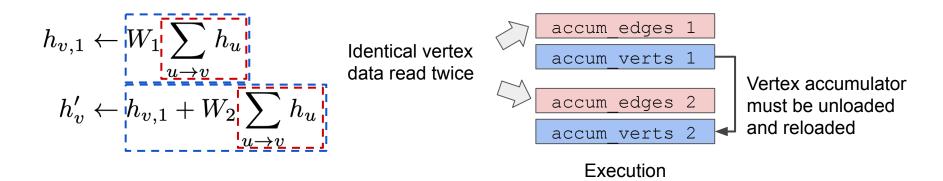
Vertex Partition

GReTA Overview

Edge Partition

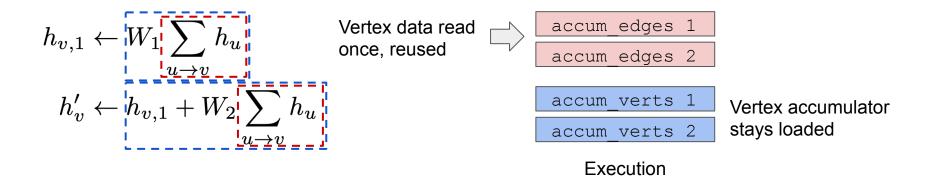
Interleaving Execution

- Multiple GReTA programs in a layer may reuse data
 - Read identical edge/vertex data
 - Reuse accumulator values
- Interleaving execution improves data locality



Interleaving Execution

- Multiple GReTA programs in a layer may reuse data
 - Read identical edge/vertex data
 - Reuse accumulator values
- Interleaving execution improves data locality



Weight Tiling

- Problem: Layer weights can be too large to fully load into GEMM unit
- Existing solution: Slice weights into tiles and reloading for each new vertex
 - Unfortunately, gives worst case reuse of each tile
 - Accelerator often bottlenecked on loading/reload weight tiles

