Maté: A Tiny Virtual Machine for Sensor Networks

Philip Levis and David Culler UC Berkeley Intel Research: Berkeley

A Sensor Network

Sensor Network Motes

A Sensor Network

A Sensor Network

Bottom Line

- Need in-situ programming
- Has to be:
 - Small
 - Expressive
 - Concise
 - Resilient
 - Efficient
 - Tailorable
 - Simple

Proposal

Maté: A Tiny Virtual Machine for Sensor Networks

Outline

- Sensor networks
- Requirements
- Maté
- Evaluation
- Conclusion

Technological Constraints

Mote Type	WeC	Rene	Rene2	Dot	Mica
Date	Sep-99	Oct-00	Jun-01	Aug-01	Feb-02
Microcontroller (4MHz)					
Туре	AT90LS8535		ATMega163		ATMega103/128
Prog. Mem. (KB)	8		16		128
RAM (KB)	0.5		1		4
Communication					
Radio	RFM TR1000				
Rate (Kbps)	10			10/40	
Modulation Type	ООК			OOK/ASK	

Example Application Scenario

- Monitor Storm Petrel nesting on Great Duck Island
- Inaccessible: 50 nodes in bird nests
- Simple sense and send loop
- Runs every 8 seconds low duty cycle
- Frequent reprogramming would be useful
 - Biologists don't know what they need until they see it!

Proposal: Use a Virtual Machine!

- Can express a wide range of applications
- Abstraction of complex operations
- Safe execution environment
- Interpretation overhead small
- Customizable instruction sets
- VM can handle code dissemination

System Requirements

Requirement

- Small
- Expressive
- Concise
- Resilient
- Efficient
- Tailorable
- Simple

Maté provides

- 7286B code, 603B RAM
- Bytecode interpeter
- GDI app is 19 bytes
- Safe execution environment
- Small CPU overhead
- User-definable instructions
- Viral self-programming

Why We Need a New VM

- Communication centric
- Extensibility
- Power a critical consideration
- JVMs (KVM, PicoJava, etc.)
 - Need over 50 KB of RAM
 - Strings? Are you crazy?
- FORTH
 - How do you install code?
 - Maté draws on FORTH's design decisions

Maté in a Nutshell

- Built on TinyOS, runs on rene and mica
- Three concurrent execution contexts
- Execution triggered by predefined events
- Two stack architecture
- Tiny code capsules self-propagate
- Communication and sensing instructions

 built-in multihop routing

Maté Architecture

Maté Instructions

- One byte per instruction
- Three classes: basic, s-type, x-type
 - basic: data, arithmetic, communication, sensing
 - s-type: message headers
 - x-type: embedded operands (e.g. push constant)
- usr0-7 instructions: tailorability

basic	00iiiiii	i = instruction
s-type	01iiixxx	x = argument
x-type	lixxxxxx	

Maté Sense and Send

pushc 1	#	Light is sensor 1
sense	#	Push light reading on stack
pushm	#	Push message buffer on stack
clear	#	Clear message buffer
add	#	Append reading to buffer
send	#	Send message on built-in
halt	#	ad-hoc protocol

Maté Capsules

- Hold up to 24 instructions
- Small enough to fit in a single TinyOS packet
 - atomic installation
 - no buffering
- Four types: send, receive, clock, subroutine
 - context-specific: send, receive, clock
 - shared: subroutines 0-3 (call, ret)

But, How Do Capsules Get There?

Viral Code

- Every capsule contains a version number
- Maté installs newer capsules it hears
- Programs can forward capsules
 - local broadcast
 - forw, forwo

Self-Forwarding Sense and Send

1

Light is sensor 1
Push light reading on stack
Push message buffer on stack
Clear message buffer
Append reading to buffer
Send message
Forward this capsule

Propagation Complete

Evaluation

- What do we care about?
 - CPU cycles
 - bandwidth
 - -energy
- Execution rate
- Code propagation behavior

Maté Interpretation Overhead

- ~10,000 instructions per second
- 34:1 to 1.03:1 compared to native code

Operation	Maté	Native	Cost
and	469 inst	14 inst	34:1
rand	435	45	9.5:1
sense	1342	396	3.4:1
send	685 + ~20,000	~20,000	1.03:1

Where Do the Cycles Go?

Instruction	Time	Time portion
pushc 1	40 us	0.06 %
sense	240 us	0.24 %
pushm	40 us	0.06 %
clear	40 us	0.06 %
add	50 us	0.08 %
send	60,000 us	99.44 %
halt	40 us	0.06%

- Dominated by send
- Aggregate overhead: ~1.15:1

Code Propagation Methodology

- 42 node network
- 3 x 14 grid, spaced 20 cm apart
- 3 hop network (radio at very low power)
 - Cells were 15-30 nodes
- TinyOS 0.61 10Kb networking stack

Time to Complete Infection

- Self-forwarding timer capsule runs every 20 seconds
- Measures a quiet network (< 10% bandwidth)

Propagation Rate Scalability

- Timer capsule ran every second
- Capsule had a forwarding probability:
 - -if ((rand & 0x1) == 0x1) forward();
- Network cell bandwidth: 16 packets/second

Probability	Expected Interval	Time
12.5%	8 s	23 s
25%	4 s	10 s
50%	2 s	21 s
100%	1 s	400 s

Energy Consumption

- Maté imposes a CPU overhead
- Maté provides a reprogramming savings
- Rough energy cost comparison (1 hop)
 - full active: ~15mA x 3V x seconds
 - sense and send overhead/sample (2.5 ms)
 - sleep (~15 uA)
 - reprogramming savings (120 seconds)
 - ⇒ 50,000 samples equals one reprogram budget
 - \Rightarrow 400,000 seconds, 5 days

Conclusions

- Maté can conserve energy
- Spectrum of reprogramming emerges
 - hardware
 - native code
 - bytecode interpreter

Future Work

- VM-land can replace user-land
- Higher-level languages: motile
- Concurrency control
- Code propagation
- Bombilla: application specific Maté flavors

TinyOS Sense and Send

```
event result t Timer.fired() {
 if (state == IDLE && call Photo.sense()) {state = SENSE;}
  return SUCCESS;
event result t Photo.dataReady(uint16 t data) {
  if (state == SENSE) {
   packet->reading = data;
    if (call SendMsg.send(packet, sizeof(DataBuf)) {
      state = SENDING;
    } else {state = IDLE;}
  return SUCCESS;
event result t SendMsg.sendDone(TOS MsgPtr msg) {
 if (state == SENDING) {state = IDLE;}
 return SUCCESS;
```