
Opening the Sensornet Black Box

Jung Il Choi, Jung Woo Lee, Megan Wachs, and Philip Levis
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Abstract
We argue that the principal cause of sensornet deployment

and development difficulty is an inability to observe a net-
work’s internal operation. We further argue that this lack
of visibility is due to the activity and resource constraints
enforced by limited energy. We present the Mote Network
(MNet) architecture, which elevates visibility to be its dom-
inant design principle. We propose a quantitative metric for
network visibility and explain why network isolation and
fairness are critical concerns. We describe the Fair Wait-
ing Protocol (FWP), MNet’s single-hop protocol and show
how its fairness and isolation can improve throughput and
efficiency. We present the Pull Collection Protocol as a case
study in designing multihop protocols in the architecture.

1 Introduction
Observing what occurs deep within a low-power sensor-

net is hard. This difficulty hinders development: the inability
to monitor the internals of a sensornet transforms develop-
ment from methodical debugging to a guessing game. The
inherent energy constraints of these networks make observa-
tion hard. With unlimited energy, a node could keep detailed
logs and send large amounts of debugging information. Sen-
sornets are grey-box systems, where an operator has a few
limited pieces of information with which to diagnose a prob-
lem or failure.

Two of our experiences developing network protocols il-
lustrate this challenge. The first experience was when the
TinyDB developers observed very high packet loss rates in a
small test network deployed in the Intel Research Berkeley
lab. Their hypothesis was that this was due to overlfowing
send queues. To test the hypothesis, they queried the network
on the current queue depth. Because nodes with full queues
were unable to enqueue responses to the query, this method
never observed full queues. Working with the TinyDB de-
velopers, we discovered the cause of the queue overflows —
transient routing loops — only after many hours with the
TOSSIM simulator.

We had similar challenges when developing CTP [1], the
collection protocol in TinyOS 2.0 [2]. Initial tests of iso-
lated components and full protocol simulations were promis-
ing. The first real-world test was abysmal: 4% data yield.
This sparked a three-week effort to determine the causes.
The eventual solution was to integrate a comprehensive log-
ging system that reported every important event to a testbed
UART backchannel. This timestamped, high-fidelity view of
the protocol explained when, where, and why every packet

was dropped. Once we could observe the internal operation
of the network, it became easy to identify causes quickly and
unambiguously. For the same tests, CTP now has a minimum
yield of 98.2%.

To judge whether other users have shared similar experi-
ences, we surveyed papers and technical reports describing
deployment experiences and canvassed a subset of the low-
power sensornet research community through the tinyos-help
mailing list. In several cases we directly contacted the au-
thors for details. Section 2 describes an overview of the re-
sults. More often than not, those queried could not defini-
tively identify the cause of deployment failures. Furthermore,
we found that the dominant identifiable cause was insuffi-
cient isolation between systems or protocols. Based on this
observation, we argue that increasing network visibility will
simplify system and network design as well as deployment.
This simplification will lead to larger, more complex, and
more advanced systems.

This paper proposes the Mote Network (MNet) architec-
ture, whose design addresses the fundamental difficulties in
deploying low-power sensornets. The visibility principle de-
fines the cardinal goal of the MNet architecture:

“Minimize the energy cost of diagnosing the
cause of a failure or behavior.”

The visibility principle has broad implications to system and
network design. First, the simplest way to reduce the en-
ergy cost of diagnosis is to reduce the set of possible causes.
For example, operating systems typically isolate processes to
simplify debugging and diagnosis. But unlike an OS, which
isolates computational processes that share a processor on
a single node, the MNet architecture must isolate protocols
across multiple nodes that share a wireless channel. Further-
more, in order to simplify diagnosis, the MNet architecture
must enforce this protocol isolation. The simplest way to en-
force isolation is to allow only one protocol to operate. Since
this is not desirable, the second implication for the MNet ar-
chitecture is that it must provide fairness between protocols:
all protocols must have a chance to operate.

In the internet domain, one common example of net-
work isolation and fairness is TCP-friendly congestion con-
trol [9, 20]. Under common conditions, TCP-friendliness
ensures that each of n flows receives approximately 1

n+1 of
the available bandwidth. Just as an OS isolates processes
by giving them an equal virtualized share of the processor,
TCP-friendly congestion control isolates applications by giv-
ing each an equal virtualized share of the network.



Unlike the Internet, sensornets have many multihop pro-
tocols, not all of which are end-to-end flows. This diversity
calls for the “narrow waist” protocol of the architecture to be
single-hop (layer 2) rather than multihop (layer 3) [7]. Proto-
col friendliness must correspondingly move down the stack,
from transport (layer 4) to multihop (layer 3). We can take a
lesson from the complications that UDP traffic introduces to
the Internet’s stability [15]. Rather than require every trans-
port protocol to implement certain mechanisms, the archi-
tecture can mandate it by incorporating them into a unifying
narrow waist protocol.

In order to isolate protocols, the narrow waist must pre-
vent a protocol from transmitting when its transmission will
interfere with another protocol. The MNet architecture uses
Fair Waiting Protocol (FWP) to achieve this goal. FWP can
grant the channel to a packet recipient, suppressing all other
nearby nodes and allowing interference-free communication.
Section 3 gives a brief description of FWP’s mechanisms for
providing network isolation and fairness. We refer the reader
to a technical report for further details [6].

The visibility principle of the MNet architecture also ap-
plies to higher level protocols. Section 4 is a case study of
designing a network protocol in the MNet architecture. It
describes the Pull Collection Protocol (PCP), a tree collec-
tion protocol that gives each node a fair share of the avail-
able bandwidth to the root. The case study shows how the
visibility principle affects protocol design decisions and how
FWP can enable high-bandwidth packet exchanges without
sacrificing its isolation or fairness properties.

Section 5 discusses some implications of the architecture,
states areas of intended future work, and briefly touches on
major issues such as power conservation.

2 Background
The difficulty in deploying mote-based sensornets has

motivated a large spectrum of research, from program anal-
ysis [24] to programming languages [11] to entire system
architectures [10]. To better understand why developers en-
counter so many software problems, we reviewed the exist-
ing deployment literature and surveyed developers through
mailing lists and personal communication. We broadly
clump the observed failures into four major classes.

System interactions. Often, components that were designed
to work in isolation interfered with each other at a systems
level. Conflicting network protocol snooping requirements
led to MAC protocol failures [17]. In some cases, base sta-
tion failures – due to battery exhaustion [3, 17] or unpre-
dicted program behavior [3, 12] – disconnected many motes
from the network [4, 31].

Network saturation and congestion were major causes of
correlated failures [3, 5, 12, 14, 25, 29]. Collisions oc-
curred under heavy load [25], light but correlated load [5],
or when routing protocols self-interfered [13]. Congestion
affected link symmetry by congesting one direction of a
link [12]. These problems were often attributed to environ-
mental causes, such as weather or RF interference, but these
hypotheses were uncertain [4, 5, 16, 31].

Protocol conflicts and failures. In some cases, a single pro-
tocol could create failures across the entire network. For ex-
ample, Deluge could saturate the network and prevent other
data transfers [17].

Unknown. In many cases the reason for failure was not
known or could not be determined [5, 17, 29]. The many
possible sources of problems can cause deployments to have
significant debugging and remote querying logic which com-
prises up to 80% of the total source code [32].

2.1 Deployment Performance
Low-level failures degrade application-level perfor-

mance. The Great Duck Island network had a median node
data yield of 58% [27]. A deployment in a California red-
wood forest reported a median data yield of 40% [28]. A
deployment designed to use the latest out-of-the box com-
ponents reported a frustrating 2% data yield [17]. A more
recent deployment at a volcano in Ecuador, nominally built
with more mature technology, reported a median data yield
of 68% [31].

Some losses had clear causes, such as a base station fail-
ure. Each deployment used a routing collection tree, and the
cause of many losses remains unknown. In some cases, ex-
tensive post-facto analysis lead to reasonable hypotheses, but
these cannot be validated [28].

2.2 Management and Debugging
The difficulties in understanding the causes of system

failure have motivated several management and debugging
tools. These tools, layered on top of existing systems, im-
prove visibility by gathering data that would otherwise be
internal to the network. They range in complexity from net-
work snooping [12] to lightweight RPC [32].

The Sympathy system builds on these approaches, provid-
ing an expert system that can diagnose failures from gathered
metrics [22]. The challenge that Sympathy faces is the cost
of gathering needed information: it either requires frequent
updates of node state metrics or a way to query the metrics.

The MNet architecture seeks to achieve the same goal as
these systems – improving the visibility of a network – but
takes a completely different approach. Rather than try to
improve the visibility of an obfuscated network by adding
additional layers on top of it, it improves the visibility of
the network architecturally. The MNet architecture comple-
ments and seeks to improve all of these existing tools by us-
ing preventative measures: it simplifies Sympathy decision
trees and reduces the need for RPC queries.

2.3 Visibility Metric
In order to compare how well protocols follow the visi-

bility principle, we must have a quantifiable metric. Because
the visibility principle deals with diagnosing the cause of a
specific behavior, a protocol may have better or worse visi-
bility for different behaviors. For example, a protocol may
be designed for good visibility into why packets are dropped,
but may provide poor visibility into why nodes reboot.

As an initial attempt to quantify visibility, we propose ap-
plying Sympathy’s decision tree approach. A protocol’s vis-
ibility for a behavior of interest can be quantified by measur-



FWPFWP

CSMA

Network ProtocolsNetwork Protocols

Figure 1. FWP sits between network protocols and a CSMA MAC.

A

B

C

A

B

C

Figure 2. Grant-to-send mechanism example. Solid lines are re-
ceived packets, dashed lines are overheard packets. Boxes represent
quiet times. Node A sends a packet to B with a nonzero grant-to-send.
A, the transmitter, must be quiet for the duration of the grant-to-send,
but B, the receiver, is not suppressed. When B sends to C, both B and
A are suppressed. A must wait until both grant-to-sends have expired.
With this mechanism, FWP aims to clear the channel for the receiver
and the protocol which it selects to send.

ing the cost to reach a hypothesis for the cause. This cost
corresponds to the energy cost of traversing the decision tree
for that behavior. A protocol that has a smaller tree, or one
that is less expensive to traverse, follows the visibility prin-
ciple better. We leave whether causes are equally weighted
or not as an open question, and expect that initially each is
equally weighted.

2.4 Isolation and Fairness
The visibility principle leads to two major design criteria

for network protocols: isolation and fairness. Isolation sim-
plifies reasoning. For example, isolation between processes
in an OS can make failures due to another program exceed-
ingly rare. In a network architecture, isolation between pro-
tocols can make failures due to another traffic pattern simi-
larly rare. Isolation by itself, however, is insufficient. While
isolation ensures that two separate elements do not conflict,
it does not promise that both of them can operate. In addition
to isolation, the architecture must provide fairness. In combi-
nation, these two criteria allow debugging tools to shrink the
decision tree and lead to more efficient diagnosis. The next
section describes grant-to-send, the low-level protocol mech-
anism that the MNet architecture uses to provide a sound ba-
sis for these goals.

3 FWP: The Narrow Waist
Fair Waiting Protocol (FWP) [6] is the MNet archi-

tecture’s method for providing isolation and fairness be-

Generation Rate
(pps)

330 165 83 41 21 10

1 CSMA 7.795 3.786 0.806 0.4 0.195 0.148
1 FWP 1.637 1.206 0.657 0.34 0.195 0.11
2 CSMA 38.608 29.104 18.674 4.641 0.655 0.24
2 FWP 2.33 2.281 1.94 1.185 0.506 0.167

0

10

20

30

40

33016583412110
Generation Rate (pps)

M
ed

ia
n 

C
os

t 1 CSMA
2 CSMA
1 FWP
2 FWP

Figure 3. Median packet delivery costs - retransmissions per success-
ful transmission - for 1 and 2 instances of CTP running on bare CSMA
and over FWP on 165-node network. FWP effectively isolates the two
instances from each other to reduce packet retransmissions.

tween protocols. It sits between network protocols and a
CSMA/CA MAC (Figure 1). FWP controls which packets to
submit to CSMA and when to submit them. Because many
sensornet protocols are not end-to-end, FWP is a single-hop
protocol and correspondingly sits on top of a data link layer.

3.1 Isolation
FWP’s main goal is to provide inter-protocol isolation.

This means that one protocol may not transmit a packet when
the channel is occupied by another protocol. FWP seeks
to prevent this by allowing protocols to specify times dur-
ing which the channel must remain clear, except for a sin-
gle sender. Nodes can clear the channel for another node
by sending them a grant-to-send. A grant-to-send is an ad-
ditional byte in a packet header which indicates how long
the channel must remain clear for the recipient. Until the
time specified in the grant-to-send expires, only the receiver
may transmit any packets. The sender and any nodes that
overhear the grant-to-send must remain quiet for the dura-
tion of the grant. Figure 2 shows a simple example of how
this mechanism affects a multihop line-topology network.

When a node sends a packet with a non-zero grant-to-
send, it gives permission to the recipient to transmit a packet.
At the same time, the sender indicates to all overhearing
nodes that any transmissions they make will likely collide
with transmissions made by the recipient. Thus, FWP does
not allow the sender or overhearing nodes to transmit until
the grant-to-send expires. One basic use of this mechanism
is to enforce traffic rate-limiting [23] across protocols.

Figure 3 shows how FWP isolates two collection proto-
cols running on a 165-node testbed. The figure shows the
cost of delivering packets with TinyOS 2.0’s Collection Tree
Protocol (CTP) [1] running over plain CSMA and over FWP.
While both handle a single instance of CTP well, two in-
stances of CTP running over bare CSMA interfere with each
other. This is because CTP has built-in rate-limiting mecha-
nisms that prevent self-interference, but these methods are
ineffective when another protocol is simultaneously using
the channel. FWP isolates the two instances of the proto-
col, resulting in lower packet delivery costs. It enforces rate-
limiting across protocols, limiting the sending rate to what



the network can handle. Because FWP drastically reduces
the effects of protocols on one another, it simplifies debug-
ging and makes identifying causes of failure easier.

3.2 Fairness
In addition to isolating protocols, FWP provides fairness

between protocols, using Demers et al.’s fair queuing algo-
rithm [8]. FWP estimates how much of the channel has been
occupied by each protocol by using the grant-to-send dura-
tions and packet transmission times for each protocol. When
there are requests for transmission from multiple network
protocols on a single node, FWP chooses the protocol with
the least channel occupancy and submits it to CSMA. In a
40-node testbed experiment, FWP achieved a median Jain
fairness between protocols of 0.99.

When several nodes are suppressed by a single grant-to-
send, and the grant expires, all of the nodes will try to trans-
mit at once. In this case, CSMA is used to prevent collisions,
so each node has an equal chance to win the channel. This
is problematic if nodes do not have an equal protocol load.
For example, if several nodes are transmitting only protocol
A, and a single node is transmitting only protocol B, bare
CSMA is unfair to protocol B. This is because it is more
likely that a node transmitting protocol A will win CSMA
than the node transmitting protocol B. FWP restores fairness
between protocols by applying the algorithm by Vaidya et
al. for providing MAC-level fairness [30]. FWP handicaps
protocols which have occupied the channel recently by intro-
ducing delay before submitting their packets to CSMA. This
raises the chances of winning CSMA for protocols which
have not transmitted recently. A larger range of delay values
increases fairness at the expense of throughput.

FWP leaves choosing grant-to-send durations to network
protocols, based on their requirements and traffic patterns.
For example, single-hop protocols such as Trickle [18] may
specify quiet times of 0, while routing protocols such as
ARC [33] may specify quiet times that ensure no one trans-
mits before a packet leaves the local interference range. Sec-
tion 4 describes one way that grant-to-send can be used to ob-
tain high bandwidth transmissions. Link quality and topol-
ogy also affect the necessary duration of grants, so network
protocols should have adaptive mechanisms to find the best
grant-to-send durations.

FWP is not a perfect protocol. CSMA race conditions pre-
clude providing perfect isolation, and introducing suppres-
sion and delay can theoretically reduce network capacity;
however, experimental results show that the isolation ben-
efits of choosing good quiet times can outweigh these costs.

Because FWP is a protocol rather than a programming
abstraction [21], it is OS and platform-independent. While
our current implementation is for the CC2420 radio under
TinyOS 2.0, we do not foresee challenges porting it to other
OSes or CSMA layers.

Our experimental testing with CTP shows how FWP can
support and improve existing protocols, by providing isola-
tion and network-wide rate-limiting. The next section de-
scribes a new protocol which is designed with FWP in mind,
and explains how we can leverage the properties of the un-
derlying network to create a more visible system.

Disconnection Temporarily or permanently broken link.
Destruction Depleted batteries or permanent hardware failure.
Reboot Software failure loses packets in RAM.
Egress drop Retransmit threshold is reached.
Ingress drop Receiving a packet when the queue is full.
Suppression Temporary loops cause nodes to mistake looped pack-

ets as duplicates and drop them.

Table 1. Causes of packet loss for collection tree protocols. Tempo-
rary disconnections can introduce huge latencies, which may or may
not actually drop packets. For example, if a disconnected node thinks it
has no parents, it will not encounter egress drops, but if it erroneously
thinks it has parents, it will.

Receive No Packets?

Disconnect/
Failure

Seq. No is zero?

Reboot Jump in THLs?

Duplicate
Suppression

Below Max Tx?

Ingress DropCollisions?

Collisions Interference

Y

N

N

N

N

N

Y

Y

Y

Y

(a) Traditional Routing Protocol Decision Tree

Receive No Packets?

Disconnect/
Failure

Seq. No is zero?

Reboot
Duplicate

Suppression

Y

N

N

Y

(b) PCP Decision Tree

Figure 4. Decision trees for identifying causes of data loss.

4 PCP: A Design Example
To demonstrate the implications of this network architec-

ture, we present the design of a tree collection protocol, Pull
Collection Protocol (PCP), which runs over FWP and fol-
lows the visibility principle. In a collection protocol, a major
behavior of interest is why packets are not received from a
source. Table 1 lists the conditions that prevent traditional
routing protocols, such as MintRoute [34] or ARC [33], from
delivering packets.

Following the visibility principle, we want to minimize
the energy required to diagnose the cause of packet losses.
This corresponds to the energy required to traverse the de-
cision tree shown in Figure 4(a). We can minimize the cost
both by removing leaves from the tree, and by minimizing
the number of additional queries or updates required to tra-
verse the remaining portion.

To reduce the number of leaves in the tree, PCP elimi-
nates causes of packet loss. PCP uses a novel approach to
limit ingress drops. Unlike traditional push-based protocols
(Figure 5), in PCP, sinks pull data from the network (Fig-
ure 6). Parents use FWP’s grant-to-send mechanism to re-
quest a burst of packets from a child. The same grant-to-
send ensures that there is no interference from other proto-
cols while the child transmits. Children keep their buffers
full by requesting packets from their children. This is simi-
lar to 802.11e’s PCF protocol; however, grant-to-send allows
PCP to work over wireless hops while PCF requires a wired



(a) (b) (c)

Figure 5. Traditional Push-Based Method for Rate Limiting: a) Chil-
dren send data to parent at high rate. b) Parent sends rate-limiting
information. c) Children send data to parent at reduced rate.

(a) (b) (c) (d)

Figure 6. Pull-Based Method for Rate Limiting: a) Parent sends
grant-to-send to one child. b) Child sends a burst of packets to the
parent. c) Parent sends grant-to-send to another child. d) Child sends
a burst of packets to the parent.

backchannel.
PCP’s design requires that packets be sent in bursts from

the child. This is because experimental results have shown
that it can be advantageous to send packets in bursts, be-
cause links remain stable and link estimations are more reli-
able [26]. The use of FWP, with its limits on channel usage
and enforcement of fairness between protocols, seems in op-
position to this goal. Actually, FWP can facilitate bursts,
because it can guarantee that the channel will be clear for
a node to send many packets for an arbitrarily long time.
The isolation property ensures that another protocol will not
disturb the stream of packets until the transmitter’s grant-to-
send expires.

PCP removes another leaf from the decision tree by elimi-
nating ingress drops. It does this by allowing infinite retrans-
missions of a packet. Because all data packets have the same
destination, there is no reason to penalize one packet in favor
of another. Because PCP is isolated from other protocols, we
can expect that the losses due to collisions and interference
from other protocols are minimal. Thus, PCP shortens the
decision tree into the one shown in Figure 4(b).

PCP’s design allows the traversal of the remainder of the
tree without additional queries. The source node fills in
the sequence number of the packet and sets the Time-Has-
Lived(THL) to 0. The THL field is incremented at each hop
the packet takes. If no packets are received from a node af-
ter many requests, it is dead or disconnected. The sequence
number field of the packet, which is used by the protocol it-
self for duplicate suppression, can indicate if a node rebooted
if the sequence number returns to 0. Observing this can ex-
plain correlated packet loss from a subtree.

The open research question for PCP is how to avoid main-
taining too much per-child state. We are experimenting with
probabilistic methods of counting and voting [19] to allow

balanced pulling from children without maintaining state.

5 Extensions and Limitations
Increasing visibility has a cost. Fairness and isolation in-

troduce delay, thereby increasing latencies. Our results for
CTP suggest that delay can improve network performance
under heavy load by preventing collisions. When load is
very light, protocols can use quiet times of zero, reverting
to a standard CSMA network with fair queueing. Exploring
quiet time selection algorithms is a clear area of future work:
we plan to revisit a range of protocols from the literature and
investigate how they could be optimized within the MNet ar-
chitecture.

5.1 Low Power
Our goal is to start with a simple, flexible architecture

which allows optimization later, as has been the case in suc-
cessful abstractions such as files, threads, and TCP. Reduc-
ing power consumption is one such critical optimization, and
instances of the MNet architecture can use many different
approaches.

One way to save power is to use low power listening with
packet bursts. Prior work [26] showed packet bursts can re-
quire fewer retransmissions. Packet bursts also work well
with low power listening, as a single long preamble can be
amortized over many packets. Grant-to-send interferes with
this approach when bursts are transmitter-driven, as a trans-
mitter must keep quiet after transmitting a single packet with
a nonzero grant-to-send. However, PCP showed a way in
which receiver-driven grant-to-send can be used to request
an uninterrupted burst of packets.

5.2 Security
Designing a new network architecture from scratch al-

lows us to incorporate security from the beginning. FWP
raises several open questions such as snooping encrypted
MAC frames and detecting cheaters or colluding suppres-
sors. Fairness provides simple mechanisms to detect egre-
gious cheaters – they aren’t fair – and we are currently study-
ing how to take advantage of FWP’s isolation and fairness to
introduce security into the narrow waist.

5.3 Isolation and Fairness
The need for network isolation affects system implemen-

tation. For example, if an operating system does not allocate
packet buffers fairly to protocols, then it is possible they will
not be able to offer equal loads, thereby compromising fair-
ness. Similarly, if an OS does not isolate the software of the
protocols from one another, then a failure in one can cascade,
increasing the size of the diagnosis decision tree. With inter-
protocol isolation, a network monitoring protocol can work
even when others malfunction.

FWP provides fairness between protocols, but not within
them. For example, IFRC [23] and ARC [33] protocols pro-
vide node fairness, in that they seek to give each node in a
collection tree an equal share of the bandwidth to the collec-
tion sink. FWP provides fairness at the level of single-hop
communication: protocols built on top of it (such as IFRC
and ARC) can provide higher levels of fairness as needed,



with the knowledge that FWP will give them a fair share of
local bandwidth.

Acknowledgements
We would like to thank Rodrigo Fonseca and Sukun

Kim, whose rate control research provided the inspiration
for FWP. This work was supported by generous gifts from
the Intel Corporation and DoCoMo Capital, scholarships
from the Samsung Lee Kun Hee Scholarship Foundation and
the Korea Foundation for Advanced Studies, the National
Science Foundation under grant #0615308 (“CSR-EHS”), a
Stanford Graduate Fellowship, and a Stanford Terman Fel-
lowship.

6 References
[1] TEP 123: Collection Tree Protocol. http://www.tinyos.net/tinyos-2.x/doc/.

[2] TinyOS 2.0. http://www.tinyos.net/tinyos-2.x/.

[3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Aru-
mugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: A
wireless sensor network for target detection. Computer Networks (Elsevier), 46,
2004.

[4] R. Beckwith, D. Teibel, and P. Bowen. Unwired wine: Sensor networks in vine-
yards. In Proceedings of IEEE Sensors, 2004.

[5] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden. Task: Sensor
network in a box. In Proceedings of the Second European Workshop on Wireless
Sensor Networks (EWSN), 2005.

[6] J. I. Choi and P. Levis. Grant to send: Fairness and isolation in low-power
wireless. Technical Report SING-06-01, Stanford Information Networks Group,
2006.

[7] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker,
I. Stoica, G. Tolle, and J. Zhao. Towards a sensor network architecture: Lowering
the waistline. In Proceedings of the Tenth Workshop on Hot Topics in Operating
Systems (HotOS-X), 2005.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In Proceedings of the ACM SIGCOMM, 1989.

[9] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the
internet. IEEE/ACM Transactions on Networking, 1999.

[10] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D. Estrin,
R. Govindan, and E. Kohler. The TENET architecture for tiered sensor networks.
In Proceedings of the Fourth ACM Conference On Embedded Networked Sensor
Systems (SenSys), 2006.

[11] R. Gummadi, N. Kothari, R. Govindan, and T. Millstein. Kairos: a macro-
programming system for wireless sensor networks. In Proceedings of the Twen-
tieth ACM symposium on Operating systems principles, 2005.

[12] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet:
An integrated sensor network system for energy-efficient surveillance. ACM
Transactions on Sensor Networks (TOSN), 2006.

[13] S. Kim, R. Fonesca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker, and
I. Stoica. Flush: A reliable bulk transport protocol for multihop wireless net-
works. Technical Report UCB/EECS-2006-169, University of California, Berke-
ley, 2006.

[14] P. Kimelman. personal communication, 2006.

[15] E. Kohler, S. Floyd, and M. Handley. Designing dccp: Congestion control with-
out reliability. In Proceedings of the ACM SIGCOMM, 2006.

[16] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, N. Kushal-
nagar, L. Nachman, and M. Tarvis. Design and deployment of industrial sensor
networks: Experiences from a semiconductor plant and the north sea. In Pro-
ceedings of the Third ACM Conference On Embedded Networked Sensor Systems
(SenSys), 2005.

[17] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: Experiences
from a pilot sensor network deployment in precision agriculture. In the Four-
teenth Int. Workshop on Parallel and Distributed Real-Time Systems (WPDRTS),
2006.

[18] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating algo-
rithm for code maintenance and propagation in wireless sensor networks. In
Proceedings of the First USENIX/ACM Symposium on Network Systems Design
and Implementation (NSDI), 2004.

[19] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion
for robust aggregation in sensor networks. In Proceedings of the Second ACM
Conference On Embedded Networked Sensor Systems (SenSys), 2004.

[20] T. J. Ott, J. H. B. Kemperman, and M. Mathis. The stationary behavior of ideal
tcp congestion avoidance. IEEE/ACM Transactions on Networking, 1999.

[21] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A uni-
fying link abstraction for wireless sensor networks. In Proceedings of the Third
ACM Conference On Embedded Networked Sensor Systems (SenSys), 2005.

[22] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sym-
pathy for the sensor network debugger. In Proceedings of the Third ACM Con-
ference On Embedded Networked Sensor Systems (SenSys), 2005.

[23] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-aware fair
rate control in wireless sensor networks. In Proceedings of the ACM SIGCOMM,
2006.

[24] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by abstract inter-
pretation. ACM Transactions on Embedded Computing Systems (TECS), 2005.

[25] T. Schmid, H. Dubois-Ferriere, and M. Vetterli. Sensorscope: Experiences with
a wireless building monitoring sensor network. In Proceedings of the Workshop
on Real-World Wireless Sensor Networks (REALWSN), 2005.

[26] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Some implications of low-
power wireless to ip routing. In Proceedings of the Fifth Workshop on Hot Topics
in Networks (HotNets-V), 2006.

[27] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. An analysis of a large
scale habitat monitoring application. In Proceedings of the Second ACM Confer-
ence On Embedded Networked Sensor Systems (SenSys), 2004.

[28] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, , and W. Hong. A macroscope in the red-
woods. In Proceedings of the Third ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2005.

[29] V. Turau, C. Renner, M. Venzke, S. Waschik, C. Weyer, and M. Witt. The heath-
land experiment: Results and experiences. In Proceedings of the Workshop on
Real-World Wireless Sensor Networks (REALWSN), 2005.

[30] N. H. Vaidya, P. Bahl, and S. Gupta. Distributed fair scheduling in a wireless
lan. In Proceedings of the Sixth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), 2000.

[31] G. Werner-Allen, K. Lorincz, J. Johnson, J. Leess, and M. Welsh. Monitoring
volcanic eruptions with a wireless sensor network. In Proceedings of the Second
European Workshop on Wireless Sensor Networks (EWSN), 2005.

[32] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P. Dutta,
and D. Culler. Marionette: Using rpc for interactive development and debug-
ging of wireless embedded networks. In Proceedings of the Fifth International
Conference on Information Processing in Sensor Networks: Special Track on
Sensor Platform, Tools, and Design Methods for Network Embedded Systems
(IPSN/SPOTS), 2006.

[33] A. Woo and D. E. Culler. A transmission control scheme for media access in
sensor networks. In Proceedings of the Seventh Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom), 2001.

[34] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of multihop
routing in sensor networks. In Proceedings of the First ACM Conference On
Embedded Networked Sensor Systems (SenSys), Los Angeles, CA, Nov. 2003.


