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Abstract
This paper proposes a new sensornet protocol design goal:

visibility. Visibility into behaviors at the network level will
simplify debugging and ease the development process. We
argue that increasing visibility is the responsibility of the net-
work protocols themselves, and not solely the responsibility
of existing debugging tools. We describe a quantitative visi-
bility metric to evaluate and compare protocols, where visi-
bility is defined as the energy cost of diagnosing the cause of
a behavior in a protocol. The design and evaluation of Pull
Collection Protocol, a novel multi-hop collection protocol, is
an example of how to design for visibility without sacrificing
throughput or node-level fairness. We also describe our op-
timizations for an existing protocol, Deluge, to increase its
visibility and efficiency.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance

of Systems; C.2 [Computer Systems Organization]:
Computer-Communication Networks

General Terms
Measurement, Performance, Design

Keywords
visibility, metrics, sensor networks

1 Introduction

Traditional metrics for sensornet protocol design focus di-
rectly on performance. Developers often design for high fair-
ness, low latency, and high throughput. However, real world
sensornet deployments often fail to meet these goals, even
after extensive simulation and testbed experiments.

In order to gain a better understanding of the difficulties
faced by sensornet developers, we surveyed the literature on
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existing sensornet deployments to identify the leading causes
of sensornet failure. Overwhelmingly, the authors could not
concretely identify the causes of failure in real-world deploy-
ments. Developers need greater visibility into the causes of
behaviors in network protocols, in order to isolate the causes
of failure and address them. If we could trace all packet
transmissions and receptions and internal memory state, it
would be easy to identify the causes and fix them. How-
ever, providing visibility is tough for sensornets due to lim-
ited storage and energy on nodes. Limited storage limits the
amount of state we can store locally at nodes. Limited en-
ergy at nodes restricts nodes’ computation and communica-
tion. Many tools and methods have been developed to ad-
dress this need, which we survey in Section 2. These tools
are extremely useful and we do not wish to discourage their
use. However, these tools generally require extracting infor-
mation from the network, requiring energy. We argue that
it is the job of the protocols themselves to help these tools
without adding layers to an obfuscated network. The proto-
cols should provide high visibility at a low cost.

We propose a new design metric for sensornet protocols.
The idea behind this visibility metric is that protocols should
aim to

“Minimize the energy cost of diagnosing the
cause of a failure or behavior.”

Since we argue that protocols should be designed for high
visibility, we must define a quantifiable metric for the vis-
ibility of a protocol. Section 3 derives an equation for the
visibility cost of a protocol. This equation requires an esti-
mate of the probability distribution of failures, which may
vary with many factors. We describe one way of measur-
ing the probability distribution in a controlled environment
to get an initial idea, and explain how this can be extended
to a real-world deployment. With this metric, protocol de-
signers can make design choices based on the effect on the
visibility of their protocol.

One way to improve the visibility of a protocol is to iden-
tify and eliminate possible causes of failure. A reconsider-
ation of common protocol practices reveals that their design
introduces causes of failure that are not inherent to their pur-
pose. For example, a collection tree protocol may drop pack-
ets after a fixed number of retransmissions, though all pack-
ets have the same destination. At the root, this adds an ad-
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ditional cause of packet loss that may be hard to distinguish
from other causes. In Section 4, we reconsider the assump-
tions in a collection tree protocol and design a new collection
protocol, Pull Collection Protocol (PCP). PCP uses a novel
technique to eliminate ingress drops and collect data fairly
from the nodes in the network without maintaining per-child
state. PCP is designed for high visibility, yet it shows that
that visibility is not always orthogonal to high performance,
as it achieves high throughput and node-level fairness.

Visibility comes at a cost. An extreme example is when
we design a collection protocol that sends no packets. While
such a protocol has very high visibility because we know
that the failure was because no packets were sent, it has zero
throughput. Surprisingly, in the examples we show in later
sections, improving visibility can also lead to an improve-
ment in performance. In Section 5, we describe how a dis-
semination protocol, Deluge [9], achieves better efficiency
and lower latency by a consideration of its visibility.

Section 6 describes future directions for our work and
concludes.

2 Prior Work

Sensornet deployments often perform much worse than
expected, even after extensive simulation. To deal with this
issue, many tools have been designed to provide information
about what is happening in a sensor network. To gain a bet-
ter understanding the causes of real-world network failures,
we reviewed the literature on existing deployments and sur-
veyed sensornet developers to understand the difficulties and
failures encountered in deploying a successful sensornet.

2.1 Real-World Deployments

The LOFAR-agro deployment [13] encountered failures
on many levels. One main cause of failure was the conflict-
ing goals of protocols that were used. MintRoute [27] ex-
pected the nodes to be in a promiscuous mode so that link
qualities could be available for routing, while T-MAC [23]
avoided snooping to save energy. The developers also re-
ported that a malfunctioning Deluge [9] quickly exhausted
the batteries on the motes. A system level failure prevented
logging of data, so many other causes were unidentifiable as
very little data was logged. The authors reported an overall
data yield of only 2%.

A surveillance application [1], “A Line In The Sand”, also
showed the detrimental effects of misbehaving nodes. A
few nodes that constantly detected false events were a se-
rious problem, as they affected the entire network. As a
result, their batteries were also exhausted sooner than ex-
pected. Sensor desensitization and extreme environmental
conditions also led to problems with their network.

In “Unwired Wine”, a vineyard monitoring applica-
tion [2], the authors identified the failure of the backbone
network as the cause of most of the packet losses. This fail-
ure was due to unknown causes. While their lab deployment
had 92% data yield the actual deployment, even with 5x re-
dundancy, had only 77% data yield.

In an industrial monitoring deployment in the North
Sea [12], the authors found the failures to be highly spatially
correlated and attributed the failures to a node with a hard-
ware problem.

In the Great Duck Island deployment [20] the developers
were able to analyze the data collected from their applica-
tion to diagnose some causes of packet loss. By using the
sequence numbers of the received packets, the authors were
able to determine that clock drift caused their nodes to be-
come unsynchronized. As a result, nodes tried to transmit
at the same time and a lot of packets were lost to collisions.
They also correlated humidity readings with node failures –
another cause of packet loss. They could not identify any
other causes for packet failure.

Although the developers from the above deployments
were able to identify some causes of failure, they could not
identify all of them with certainty. While other deployments
we surveyed [3, 7, 11, 19, 22, 24, 26] found similar causes of
failure as above, many developers reported the causes of fail-
ure of their deployment to be unknown or hypothetical. This
leads us to the need for visibility into sensornet systems.

2.2 Visibility Tools

Visibility at the system level is not a new concept, and the
operating systems field has addressed it well. Dtrace [4] is
a tool designed to dynamically troubleshoot applications and
the operating system on which they run. This dynamic tool
provides real-time, system-level visibility on demand.

There are also numerous efforts to improve visibility for
sensor network systems. EmStar [6] is designed to pro-
vide visibility on a single node by using user-level device
callbacks to interact between different modules in a system.
This allows the same code to be run in simulation or in em-
ulation, and gives the user read/write access to the state of
the emulated network. EmStar assumes a back-channel so
that all states of a node can be reliably sent to a centralized
node. Thus, EmStar provides visibility into the workings of
a software system, similar to DTrace. Marionette [26] allows
user-friendly lightweight RPC in a multihop network. Users
can peek and poke all variables on motes as well as execute
functions remotely.

While EmStar is in general a pre-deployment debug-
ging tool, Sympathy [17] and SNMS [21] are pre/post-
deployment tools. They do not require a wired back-channel
to operate. SNMS is a management system for sensornets
which runs in parallel with, and independent of, an applica-
tion. It requires the nodes to passively store state and then
actively communicate only when queried. Sympathy’s de-
sign reduces the amount of states a node has to store com-
pared to SNMS. Sympathy identifies and localizes failures
by making the sink actively and passively collect statistics.
A Sympathy module is present at the sink and at all nodes
that interact with local components. The statistics thus col-
lected are reported to the sink Sympathy module which per-
forms diagnostics for the cause of failure, if any. The sink
Sympathy module performs this diagnosis using a decision
tree approach, an approach we adopt in our methodology.
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Q1: cost = 0

Cause A Q2: cost = 1

Cause B Q3: cost = 1

Cause C Cause D

Figure 1. Example decision tree for calculating visibility

Dtrace and EmStar provide system-level visibility. How-
ever, when failures occur in a network of systems, it is impor-
tant to know which system to examine to identify the cause
of failure. Such network visibility may be achieved by with a
tool like Sympathy, which has a root node that collects statis-
tics from the network and diagnoses the cause. In this paper,
however, we discuss how to design protocols such that they
enhance network visibility. Such a design does not preclude
the use of a tool like Sympathy, though protocols designed
for visibility can make Sympathy-like tools much simpler,
more accurate, and less expensive to use in terms of energy.
In the next section, we describe a metric for determining how
visible a protocol is.

3 Quantifying Visibility

In order to compare how well protocols follow the visibil-
ity principle, we must have a quantifiable metric. The metric
will define the energy cost of diagnosing the cause of a be-
havior. In this section we derive an equation for the visibility
cost of a protocol, then calculate the visibility of an actual
protocol, MultihopLQI.

3.1 The Visibility Metric

To calculate incurred energy for visibility, we apply Sym-
pathy’s decision tree approach: energy for diagnosing the
cause of a behavior of interest can be quantified by measur-
ing the energy cost of traversing the decision tree for that
behavior. Any diagnosis tool may be used in addition to the
protocol to send diagnostic queries and responses. At each
node of the decision tree, the diagnosis tool must answer a
question, where each question may incur a different energy
cost. We define the cost of traversing the decision tree as the
sum of the cost of answering each question q, weighted by
the probability that q will have to be answered.

Figure 1 shows an example decision tree. In the example,
the questions have arbitrary costs. In actuality, these costs
are due to energy required to transmit or store bits of infor-
mation to allow traversal of the tree. The energy required for
answering a question is a factor of many variables: which
node the question is about, how many bits are involved in an-
swering the question, and how many radio transmissions are
required to get those bits to a diagnosing node. Additionally,
some questions may be answered with queries, while others
may be answered by piggybacking information on data pack-

ets to the root. For simplicity, we assume only queries, and
divide questions into those that can be answered locally at a
diagnosing node, and those that require queries or additional
information. We use C to represent the cost of answering a
question that requires transmissions external to the protocol.

This gives us a very simple equation for the energy re-
quired to answer a question q:

QuestionEnergyq = C · Iq (1)

Iq is an indicator function that is 0 when the question q can
be answered in the diagnosing node and 1 when it requires
queries into the network.

Since Equation 1 gives the energy for answering a ques-
tion q, the energy for diagnosing a specific cause k can be
given as:

DiagnosisEnergyk = C ∑
qth question

IqQqk (2)

Qqk is an indicator of whether question q must be asked to
diagnose cause k. In calculating the final visibility cost, we
should weight the energy required to diagnose each cause
by the cause’s likelihood. Ideally, this would incorporate a
probability distribution of causes for each node in the net-
work. This is difficult, as the probability distribution would
differ depending on the location of a node; for example, in a
tree protocol, a node close to the root will experience more
ingress drops (incoming packet drops due to queue overflow)
than leaf nodes, who will experience no ingress drops. How-
ever, if we calculate the probability distribution as an average
over the entire network, then using a single value of pk for
all nodes i is a reasonable simplification.

The final visibility cost would be given by the sum of the
cost of diagnosing each cause weighted by its probability, as
in Equation 3:

VisibilityCost = C ∑
kthcause

(pk ∑
qthquestion

IqQqk) (3)

Equation 3 is equivalent to summing the cost of answering
each question, weighted by the probability that the question
will need to be answered.

To minimize the visibility cost, it is desirable to create an
optimal decision tree, based on the energy cost of the ques-
tions and the probability of the causes. We would like to rule
out likely causes before spending energy diagnosing unlikely
causes. While by no means a trivial problem, the construc-
tion of decision trees is a well-studied problem [16].

As a simple example, consider the decision tree in Fig-
ure 1. The four causes (A, B, C, and D), are equally proba-
ble. Distinguishing cause A has no cost, while distinguish-
ing each other cause requires a query into the network. The
cost of traversing this tree is C((0.25)0+(0.25)1+(0.25)2+
(0.25)2), or 1.25C.

As time passes, the probability distribution of causes will
most likely change. Thus, it is possible for the visibility of
a protocol to vary over time, just as other sensornet metrics
vary with time and network configuration.

Equation 3 gives insights into how to increase visibility.
The terms which vary across protocols are Iq and pk. In other
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words, the probability distribution of causes that can not be
diagnosed locally determines the visibility of protocols. If
a protocol designer tries to minimize these types of causes,
they will increase their protocol visibility. The following sec-
tion describes ways to calculate these metrics in the design
phase of a protocol.

3.2 Measuring Visibility

The previous section explained that we need to know the
causes of failure in a protocol. In addition, having knowl-
edge about the probability distribution of those failures can
help us shape the decision tree in an optimal way. For exam-
ple, we would prefer to ask inexpensive questions that rule
out the most likely causes before pursuing less likely causes.
In this section, we calculate the visibility of a multihop pro-
tocol. We explain the intermediate steps required to get an
estimation of the probability distribution.

3.2.1 Experiment with Back-channels

The first step in calculating the visibility metric is to find
a probability distribution of causes of a behavior. In a real
world deployment, this may not be possible, as getting this
information from the network may be as hard as getting data
from the network. Thus, the probability distribution is a good
thing to measure in simulation and in testbeds, where wired
back-channels are available. Of course, the probability dis-
tribution will vary with the environment and over time. How-
ever, this methodology gives an estimate for visibility when
designing protocols.

To get as clear a view as possible into the network, we
used a wired back-channel to log network events such as
packet reception and transmission, as well as possible failure
causes such as ingress and egress drops. We wrote a sim-
ple analysis program to process the collected information to
account for every missing packet. The data collected over
the UART may itself have been lossy, so the analysis tool
inferred the missing information from what it did receive.

We ran MultihopLQI, an updated version of the
MintRoute protocol [27] on the Motelab testbed at the Har-
vard University [25]. MultihopLQI is a component library
in TinyOS 2.x [8]. We programmed 31 motes to periodically
generate packets. The payload of the packet is a 4-byte in-
ternal sequence number, which is different from the network
level sequence number. The network level sequence num-
ber can wrap around, but our analysis tool requires that two
packets be uniquely distinguishable. Each mote sends notifi-
cation messages for the events listed in Table 1. We repeated
the test with different packet generation rates to study the
effect of sending rates on the distribution of causes.

3.2.2 MultihopLQI Visibility

Figure 2 shows a sample of the output of the analysis
tool for MultihopLQI running at different data generation
rates. At low data rates (Figure 2(a)), most nodes transmit
their packets successfully, but node 90 suffers from many

Message Type Reason For Sending
Packet generated A source generates a packet and sub-

mits it to the network successfully.
Packet forwarded and acked A mote forwards a packet which is

acked
Packet forwarded and not-acked A mote forwards a packet and hears no

ack
Reboot A mote reboots
Duplicate suppression There is duplicate suppression due to

a match in the forwarding queue or
cache

Ingress drop An incoming packet is dropped be-
cause a queue is full

Egress drop The retransmit threshold is reached.

Table 1. Messages sent by motes in experiments de-
signed to measure the probability distribution of causes
of packet loss in MultihopLQI.

(a) Packet Generation Rate = 0.5 pps

(b) Packet Generation Rate = 20 pps

Figure 2. An example of causes of packet loss Multi-
hopLQI protocol during a 40-node testbed experiment.
Each row corresponds to a node in the network, and each
column corresponds to a packet in the sequence. The
reasons for packet loss vary as the sending rate increases
from 0.5 pps (a) to 20 pps (b).
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Receive No Packets?

Disconnect/
Failure

Seq. No is zero?

Reboot Egress Drop?

Has Parent?

Duplicate Suppressed?

Duplicate Suppressed Ingress Drop?

MAC Failure

Link Layer FailureIngress Drop

Bad Link

Figure 3. MultihopLQI Decision Tree, optimized with
knowledge of the probability distribution

Cause 0.5 pps 1 pps 2 pps 10 pps 20 pps
Disconnected 0.154 0.135 0.138 0.114 0.082

Reboot 0 0 0 0 0
Egress Drop 0.523 0.596 0.512 0.587 0.634
Ingress Drop 0 0 0 0.011 0.008

Duplicate Suppression 0 0 0.005 0.003 0
Bad Link 0.308 0.269 0.276 0.227 0.164

Lower Level Failure 0.015 0 0.069 0.061 0.112

Table 2. MultihopLQI Decision Tree Probability Distri-
bution for experiments with different packet generation
rates

egress drops. When we stress the network with a higher data
rate (Figure 2(b)), we observe more ingress and egress drops.

The analysis program could not identify the cause of
about 1% of the packet drops (depending on the sending
rate). A possible cause in such cases was lower-level fail-
ures. For example, we observed that a sender received an ack
from a receiver, but the receiver did not confirm the reception
of the packet at its network layer. It is possible that the ra-
dio received the packet and sent an ack, but the operating
system discarded the packet because the receive buffer was
corrupted. In addition, UART messages could be dropped or
corrupted at high data rates.

Table 2 shows the probability distributions of failure
causes for different packet generation rates. Figure 3 shows
a diagnosis tree for determining the cause of packet loss.
The back-channel experiments enable the identification of
most causes, but we cannot distinguish among collision, self-
interference, and interference from external sources, which
we classify as MAC-layer failures. In the decision tree in
Figure 3, the first two questions each require no queries into
the network (Iq is zero). The remainder of the questions re-
quire a query into the network (Iq is one). From Equation 3,
the probabilities in Table 2, and the decision tree in Figure 3,
the visibility energy cost for MultihopLQI sending at 2pps is
1.355C. In the following section we will compare these val-
ues with a collection protocol designed for visibility, namely,
Pull Collection Protocol.

Disconnection Temporarily or permanently broken link.
Destruction Depleted batteries or permanent hardware failure.
Reboot Software failure loses packets in RAM.
Egress drop Retransmit threshold is reached.
Ingress drop A packet is received when the queue is full.
Suppression Temporary loops cause nodes to mistake looped pack-

ets as duplicates and drop them.
Link Layer Failure A packet is thought to be transmitted successfully by

the link layer but it is not.

Table 3. Causes of packet loss for collection tree proto-
cols. Temporary disconnections can introduce huge la-
tencies, which may or may not actually drop packets. For
example, if a disconnected node thinks it has no parents,
it will not encounter egress drops, but if it erroneously
thinks it has parents, it will.

Receive No packets?

Disconnection/Death Seq. # is zero?

Reboot Duplicate Suppression?

Duplicate Suppression

Ingress Drop

Above Max Tx?

Ingress Drop?Egress Drop

Link Layer Failure

(a) Traditional Routing Protocol Decision Tree

Receive No packets?

Disconnection/Death Seq. # is zero?

Reboot Jump in THLs?

Duplicate Suppression Link Layer Failure

(b) PCP Decision Tree

Figure 4. Decision trees for identifying causes of packet
loss.

4 Visibility as a First Principle

In this section, we examine how one might design a pro-
tocol based on the visibility principle. As an example, we
consider the most common type of sensornet protocol: tree-
based collection. We examine the possible failures for a tree-
based collection protocol and see that many are not inherent
and can be eliminated. With this idea, we describe the design
of Pull Collection Protocol (PCP), a collection tree protocol
designed for visibility from the beginning. We evaluate the
resulting protocol in terms of visibility, as well as through-
put, reliability, and node-level fairness, and compare it with
protocols optimized for both throughput and fairness.

4.1 Pull Collection Protocol

As discussed in section 3, a key question for designers
of collection tree protocols is why the network drops pack-
ets. Table 3 lists common causes of packet drop for tradi-
tional collection protocols. We can construct a decision tree
to identify the cause of a lost packet, shown in Figure 4(a).

Our goal is to minimize the cost of traversing this deci-
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(a) (b) (c)

Figure 5. Traditional Push-Based Method for Rate Lim-
iting: a) Children send data to parent at high rate. b)
Parent sends rate-limiting information. c) Children send
data to parent at reduced rate.

(a) (b) (c) (d)

Figure 6. Pull-Based Method for Rate Limiting: a) Par-
ent sends grant-to-send to one child. b) Child sends a
burst of packets to the parent. c) Parent sends grant-to-
send to another child. d) Child sends a burst of packets
to the parent.

sion tree. In designing a new collection protocol, PCP, we
want to eliminate or efficiently diagnose the causes of packet
drops. Our design eliminates or diagnoses the causes listed
in Table 3 as follows:

Ingress drops: Ingress drops occur when parents receive
and acknowledge packets, but have no buffer space to store
the packets. This is a direct result of child nodes sending at
a higher aggregate rate than the parent can drain its buffers.
PCP uses a novel approach to limit ingress drops. Traditional
push-based protocols (Figure 5) push data from sources up
towards the sink. Rate-limiting information must be propa-
gated to the children from parents before they can limit their
rate. For example, IFRC [18] sends information about queue
lengths and sending rates to children and potential interfer-
ers. PCP takes a different approach, where sinks pull data
from the network (Figure 6). When parents have space in
their buffers, they send a request to a specific child for a
burst of packets. Children, in turn, keep their buffers full by
requesting from their own descendants. This pulling mecha-
nism is described in detail in Section 4.2.2.

Egress Drops: Egress drops occur when a node attempts
to transmit a packet too many times, and drops it in order
to transmit another. This makes sense in routing protocols
where packets may have many destinations, as a subset of
destinations may be unreachable, but others are not. How-
ever, in a collection tree protocol, all packets have the same
destination: the parent in the tree. Therefore, there is no rea-
son to penalize one packet in favor of another. Because of
this, PCP allows infinite retransmissions of a packet, thereby
eliminating egress drops as a cause of packet loss. Low-
quality links will no longer cause the protocol to drop pack-
ets, rather, the packets will only be delayed.

Reboot: PCP packets have a sequence number used by the
protocol itself to identify and suppress duplicates. This se-
quence number is set to zero on reboot. Thus, if we unex-
pectedly start receiving packets from a node with sequence
numbers starting at zero, we can identify that the node has
been rebooted. Any time-correlated packet loss was likely
due to the node dropping the packets stored in its buffers.
This sequence number does wrap, so a sequence number of
0 indicates a reboot only when it was unexpected.

Disconnection/Death: If we receive no packets from a node,
we can deduce that the node is dead or disconnected. The
two differ only in that a disconnected node may eventually
become connected as conditions change.

False Duplicate Suppression: Collection protocols often
attempt to suppress duplicates, in order to prevent exponen-
tial growth of the number of packets in the network. To
do this, they often use an origin-sequence number pair to
identify packets. If a packet arrives with the same origin-
sequence pair as one in a node’s send cache, the node will
drop the packet. This is problematic if a temporary routing
loop occurs and a packet is legitimately sent to a node mul-
tiple times. To prevent this, we include a Time-Has-Lived
field in the packet header. Thus, each packet is identified by
a origin-sequence number-THL tuple. For the most part, this
is enough to prevent false duplicate suppression, but the THL
field may wrap around if a loop is long-lived. In that case,
we will still observe packet loss. This loss will be accompa-
nied by unusually high THL values in packets that have been
around the loop many times, so we can identify this cause of
loss at the root.

Thus, PCP shortens the decision tree into the one shown
in Figure 4(b). PCP is able to traverse this tree without send-
ing additional queries into the network.

The key concept for increasing visibility in PCP is the
elimination of ingress drops. In the following section, we
describe in detail the implementation of its pulling mecha-
nism for eliminating ingress drops.

4.2 PCP Design

Figure 6 shows a simple example of pulling in a situation
when a parent has two children, with no descendants. In re-
ality, PCP nodes seek to pull fairly from their children based
on their subtree size. This section describes the mechanisms
PCP uses to do this.

4.2.1 Counting Descendants

Maintaining counts of subtree size is crucial to achieving
fairness. For example, a child with no descendants should be
asked to send less data than a child with many descendants.
However, achieving accurate counts also requires per-node
state which might be problematic. Instead of keeping ac-
curate counts, PCP nodes use synopsis diffusion [15, 5] to
approximate the size of their subtrees.

Each node maintains its own synopsis and a synopsis ver-
sion number. The synopses are piggybacked on non-data
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Figure 7. Component diagram of PCP and its control
and data flows. Each node can act concurrently as a par-
ent and a child, using the forwarding queue as a shared
resource.

packets and propagate quickly. It is important to consider
only one synopsis from each node. To ensure this, packets
also include a synopsis version number. When a node hears
a synopsis from its child with the correct version number, it
includes it in its synopsis calculation. Periodically, the nodes
increment the version number and create a new synopsis.
Nodes which hear a higher version number create a new syn-
opsis and update their own version number, synchronizing
to the highest. In our implementation of PCP, each subtree
count is determined from seven 8-bit synopsis values. Nodes
update their synopsis version number once per minute.

4.2.2 Pulling Mechanism

Earlier we explained how PCP can use a pull-based ap-
proach to eliminate ingress drops as a cause of packet loss.
However, Figure 6 is an overly simple depiction of this tech-
nique. It shows the parent nodes sending a request for a burst
of packets to one specific child. This implies that the parent
knows of all its children and can decide which child to pull
from next. This in turn implies that the parent is storing and
updating state for each of its children. However, the number
of children may exceed the allocated space for the state. This
will cause unexpected behavior which can cause the proto-
col to fail. Furthermore, maintaining state requires memory
and also requires constant monitoring of topology changes.
Thus, PCP adds an additional step to the pulling mechanism
shown in Figure 6. This step populates a pulling queue that
stores node IDs to indicate which node the parent should pull
from next. The process of populating this pulling queue is
central to PCP’s operation and is described in detail below.

Figure 7 shows the data flow of PCP. PCP maintains two
queues: the forwarding queue and the pulling queue. The
forwarding queue contains data packets waiting to be sent
up the tree. The pulling queue is used to store the node IDs
of children to which requests for packets will be sent. There
are four types of packets involved in the data flow:

Candidate Request (Parent → Broadcast) The parent
sends out a request on the broadcast address, requesting in-

formation about nodes which may wish to send it packets.

Candidate Response (Children → Parent) Children who
receive the Candidate Request who have packets to send may
send a candidate response to the parent. The parent uses the
Candidate Responses to populate its pulling queue.

Data Request (Parent → Child) The parent takes the next
node ID off its pulling queue and sends a data request to
the corresponding child. In the request, it indicates both the
maximum number of packets which it can hold in its buffer,
and a time limit in which the child has to send them.

Data Response (Child → Parent) The child sends a burst
of packets to the parent. Note that this burst is extremely
efficient, as the child is not expecting the parent to retransmit
the packets immediately. Thus, it does not need to allow time
for the packets to clear the interference range, and can send
the next immediately.

The size of the pulling queue has direct impact on the per-
formance of PCP. When the size is 1, PCP works as 4-way
handshake data transmission because it must issue a candi-
date request before any data requests. When the size is large,
the data transmission approaches the two-way mechanism
shown in Figure 6. Since each entry in the pulling queue
is only a two-byte node ID, we can set the size to be large.
In our implementation, the pulling queue has 20 entries.

The first step in pulling is to decide which children to pull
from, and how much data to pull from each. This is done
with a candidate request and response handshake.

When there is space in the pulling queue, the parent
broadcasts a candidate request packet. The candidate request
packet contains the quantity of the parent’s immediate chil-
dren and a response probability. Children first examine their
forwarding queue to see if they have enough packets to send
a burst. If so, they flip a coin using the probability embedded
in the candidate request packet to decide whether to respond
or to be silent. If they decide to respond, they introduce a ran-
dom jitter first to avoid the broadcast storm problem. Since
the number of candidate responses can be estimated from the
number of immediate children and the response probability,
nodes control the range of the jitter accordingly.

Ignoring link quality for the moment, the parent receives
the candidate responses with equal probability across its chil-
dren. Therefore, upon receiving the candidate responses, the
parent should control the admission to the pulling queue to
fairly distribute the bandwidth. The ideal bandwidth for each
child is proportional to the subtree size of the child. All
nodes, however deep in the tree, should receive the same
share. This proportional bandwidth is not trivial to achieve.
Section 4.2.3 explains the details of the fairness algorithm.

Since the range of the jitter is also known to the parent, the
parent sets a timer waiting for candidate responses. When
this timer fires, it examines the size of the pulling queue.
If there is still a lot of space in the queue it increases the
response probability. When the pulling queue becomes too
full, the parent decreases the response probability. Thus the
parent adaptively maintains a reasonable number of candi-
date responses for the amount of space it has to store them.

When the pulling queue has an entry and the forwarding
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queue has enough space for a burst of packets, the parent
unicast a request packet to the first child node in the pulling
queue. The request packet indicates a granted time for the
child during which the child can send a burst of data pack-
ets. During this time, the parent cannot send another data
request since multiple bursts would result in heavy collisions
around the parent. Child nodes are allowed to transmit data
packets only at this time to prevent ingress drops at the par-
ent. The grant time is calculated from the number of packets
in a burst and the packet time. Note that the packet time is
not a constant value, due to the probabilistic CSMA back-
off. Thus, fixing the grant time alone does not control the
number of data packets in a burst. Instead, nodes are only al-
lowed to send up to the predefined number of packets per re-
quest. This may cause a portion of grant times to be wasted,
but setting the packet time conservatively can minimize the
wasted grant times. In our implementation, the burst size
is 10 packets. To prevent egress drops, there is no limit on
retransmissions of data packets.

When the pulling queue has enough free space, the par-
ent broadcasts candidate request packets to repopulate the
queue. The depletion of the queue results in throughput loss,
thus maintaining an appropriate level is important.

4.2.3 Fairness in Pulling

The policy of admission to the pulling queue determines
the node-level fairness of the protocol. PCP uses a central-
ized fairness measure, where parents have the control, rather
than distributive, where children have the control. A dis-
tributive algorithm would have children control their own
response probability according to their subtree size. How-
ever, children cannot calculate the optimal response proba-
bility without the knowledge of the subtree sizes of the other
children. For PCP, the pulling mechanism is inherently cen-
tralized. Thus we can benefit from a centralized fairness
measure without penalty.

Since each candidate response contains the child’s es-
timated size of its subtree, perfect node fairness can be
achieved if the each entry of the pulling queue is populated
with probability N(s)/N(S), where N(s) is the subtree count
for the child s and N(S) is the count for the parent S. There-
fore, upon receiving the candidate response from node s,
the parent flips a coin with probability N(s)/N(S) Q times,
where Q is the number of available pulling queue entries.
The parent then allocates pulling queue entries to the child
according to the number of successful coin flips. To neutral-
ize the effect of the order of responses, the parent notes Q
when the candidate request is sent, and flips the coin for the
same number of times for all incoming responses.

The above algorithm assumes identical link quality. If
one of the children has a worse link than others, the child
will hear the candidate request less often, the parent will hear
its candidate responses less often. This node will have less
of a chance of being admitted to the pulling queue. Also,
since the data transmission time per request is fixed instead
of number of successful packets, the child with bad link will
not be able to send as many data packets as other children.
Therefore, a compensation measure is required for nodes

with bad links. When children send candidate responses,
they embed a compensation value on the packet which is
given as the reciprocal of (Candidate Response Success Ra-
tio × Data Realization Ratio). To calculate the Candidate
Response Success Ratio, the candidate request packets con-
tain a sequence number field, which enables the children
to keep track of the number of candidate requests which
are successfully received. Even if a candidate request is
successfully received, it is counted as a failure if the cor-
responding candidate response is not acknowledged. The
Data Realization Ratio is the ratio of the number of success-
fully transmitted data packets to the number of packets re-
quested by the parent. The queue entry probability is given
by Compensation×N(s)/N(S).

This compensation makes the queue entry probability
greater than one. Since this penalizes nodes whose responses
arrive late, parents multiply the pulling queue entry proba-
bility by a scaling factor. The role of the scaling factor is to
maintain the pulling queue size at the desired level. When an
entry cannot enter the pulling queue the parent decreases the
scaling factor, and when the pulling queue is not too empty
after a candidate request the parent increases the scaling fac-
tor. The response probability serves the same purpose as the
scaling factor. However, adjusting the response probability
does not perform well for few children. The scaling factor
helps finely adjust the number of entries in the pulling queue.

In summary, the probability of the coin flip on node S for
each pulling queue entry for a child s is as follows:

P(s) =
N(s)
N(S)

×Compensation×ScalingFactor, (4)

where N(x) is the subtree size of node x.
Finally, nodes must generate their own packets at the ap-

propriate rate. Since a node knows its subtree size, it adds
its own packets to the forwarding queue only when it has
forwarded enough packets from its children.

4.2.4 Link Estimation

PCP uses MultihopLQI’s link estimation to form a tree
topology with a single root. It uses the Link Quality Indi-
cator (LQI) given by the CC2420 radio hardware to choose
good links. Using LQI, rather than the expected number of
transmissions to the root (ETX), has several benefits. First, it
requires only one packet to estimate the link quality, reduc-
ing the control overhead. Second, unlike ETX, LQI does not
fluctuate much, so the topology is more stable. Finally, LQI
does not depend on data transmissions for estimation.

PCP changes MultihopLQI’s routing algorithm slightly.
When a node is disconnected from the network, Multiho-
pLQI sets its parent to be NULL to prevent meaningless
transmissions. However, PCP requires a parent’s request to
transmit. Thus, PCP does nothing when the node is discon-
nected and hopes it reconnects. Also, the threshold values
are set higher so that PCP nodes change their parents less of-
ten. MultihopLQI aims to send to the best parent whenever
possible, but frequent parent changes in PCP make it difficult
to pull fairly from each child.
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Figure 8. Motelab Topology for PCP and MultihopLQI
Experiments. This is a representative snapshot, as the
topology was not fixed in the experiments.

Figure 9. Comparison of PCP, MultihopLQI, and IFRC
in terms of throughput and reliability on the Motelab
testbed with 52 nodes. MultihopLQI is shown at two
packet generation rates: one packet/800ms/node and one
packet/1300ms/node. The first has the same reliability as
PCP, the second rate has the same goodput as PCP.

4.3 Experimental Setup

We tested PCP on the Motelab testbed with 52 motes, and
also ran MultihopLQI on the same network for comparison.
A snapshot of the network topology is shown in Figure 8 For
PCP, nodes generated messages at a much higher rate than
the network could handle, and buffered them at the origin
node. This is to simulate a situation in which nodes wish
to send data as fast as possible. For MultihopLQI, we ex-
perimented with various sending rates since it does not have
a rate-limiting mechanism. We evaluate PCP against Mul-
tihopLQI in terms of visibility, delivery reliability, through-
put, and node-level fairness. We also compare against IFRC,
which is optimized for fairness. Since IFRC required pa-
rameters tuning, the IFRC results are from a 40-node testbed
experiment described in [18].

4.4 Results

Figure 9 shows the goodput and the end-to-end delivery
reliability for the protocols. Since PCP eliminates causes of
packet loss, it is optimized for delivery reliability. PCP lost
only 0.6% of the generated packets, where all losses were
due to link-layer failures. Since the link-layer CRC check is
not a perfect measure, packets can be acknowledged by the
hardware and discarded in higher layers. More dominantly,
we observed many false acknowledgments. False acknowl-
edgments are a known problem with current radio scheme,
where the sender thinks the packet is acknowledged but the
receiver has not received the packet. Of all data packets, the
link-layer failure rate per transmission was 0.16%.

Figure 10. Comparison of PCP, MultihopLQI, and IFRC
in terms of node-level fairness on Motelab testbed with 52
nodes. IFRC results are from a 40-node testbed in [18].
PCP provides less fairness than MultihopLQI at lower
sending rates, due to its approximated subtree sizes.

MultihopLQI achieves the same goodput as PCP when
each node generates a packet every 800ms, meaning the net-
work generates 63.75 pps. The delivery reliability for this
case was 90.4% due to ingress drops and egress drops. The
loss decreases as the traffic load decreases, achieving 99.0%
at 1300ms generation interval, or network generation rate of
39.2 pps. For IFRC, since IFRC is optimized for node-level
fairness, it achieves throughput of 8.8 pps with a delivery
reliability of 92%.

PCP performs better than MultihopLQI in terms of good-
put and delivery reliability due to the rate-limiting nature of
the pulling mechanism. For PCP, only one child per parent
can transmit at a time, reducing the probability of collision
at the parent. Limiting the number of transmitting nodes is
more powerful than limiting the transmissions of each node,
since the hidden terminal problem is avoided more effec-
tively. An experiment showed MultihopLQI requires an av-
erage of 0.66 retransmissions per successful transmission,
and while PCP requires only 0.16. Considering that retrans-
missions can occur even if only acknowledgment packets are
lost, the low retransmissions for PCP indicates the reliabil-
ity gain comes more from the pulling mechanism rather than
infinite retransmissions. In contrast, MultihopLQI lacks a
rate-limiting mechanism. Thus, when the same traffic load
as PCP was used for MultihopLQI, it achieved 66.0 pps
throughput but its delivery reliability was only 13.0%.

Figure 10 shows the node-level fairness in JFI [10]. For
MultihopLQI, since the generation rate was identical for all
nodes, it achieves perfect fairness when all packets are deliv-
ered. Thus MultihopLQI with a 1300ms generation interval
achieves a very high fairness of 0.996. When the genera-
tion interval decreases to 800ms, the fairness drops to 0.97.
When the traffic load increases further, nodes adjacent to the
root cannot receive packets due to channel saturation, dis-
connecting the route for nodes that are deeper in the tree.
When each node generates a packet every 20ms, the fairness
drops to 0.089. Meanwhile, IFRC, although the reliability
and the goodput are not favorable, is optimized for fairness
thus achieving near perfect fairness of 0.9994 regardless of
the traffic load.

PCP achieves a fairness of 0.905. This is relatively high
considering the traffic load was at maximum, but it is lower
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MultihopLQI PCP
pk Energyk(C) pk Energyk(C)

Disconnection 0 0 0 0
Death 0 0 0 0

Reboot 0 1 0 0
Ingress Drop 0.134 4 0 1
Egress Drop 0.795 1 0 1

False Duplicate Suppression 0 3 0 0
Bad Link 0 2 0 0

Unknown (Link Layer Error) 0.071 4 1.0 0

∑kth cause Energyk pk 1.615 0

Table 4. Visibility calculation for MultihopLQI and PCP
in a controlled testbed environment. Energyk is calcu-
lated using equation 2.

than MultihopLQI with the same goodput. The main reason
for PCP’s reduced fairnes is inaccurate estimates of the sub-
tree size. As we mentioned in Section 4.2.3, the size of the
subtree is the main metric which decides how frequently the
parent pulls from each child. While synopsis diffusion en-
ables fixed-state estimates, its inaccuracy directly affects the
fairness for PCP. In addition, when a child changes its par-
ent, it takes the parent time to realize the change in subtree
size since the estimates are calculated periodically.

4.5 Evaluation of PCP’s Visibility

Although in designing PCP we considered node-level
fairness as well as reasonable throughput, our key design
point was to make it easier to diagnose packet losses. We
wish to use equation 3 to calculate the visibility of PCP com-
pared with MultihopLQI. This requires knowing the pk and
Iq terms for PCP. In our experiments, we used the method-
ology described in Section 3 to gather the probability distri-
bution of packet losses for both protocols. We set Multiho-
pLQI’s sending rate so that its throughput would be compa-
rable with PCP’s, which meant sending packets at an 800ms
interval from each node. As mentioned earlier, all PCP’s
packet losses were due to link layer errors. We determined
the Energyk terms by considering the decision tree shown in
Figure 4(b) for PCP and Figure 3 for MultihopLQI. With our
measured distributions, we are able to calculate the visibility
cost of each protocol as shown in Table 4. In this environ-
ment, at this sending rate, MultihopLQI has a visibility cost
of 1.615C and PCP has a cost of 0. In this deployment the
probability distribution for MultihopLQI would lead us to re-
optimize the decision tree, by considering ingress drops ear-
lier. This would reduce the visibility cost of MultihopLQI
slightly, to 1.34C.

The above analysis indicated PCP has a visibility cost of
0. However, eliminating ingress drops required additional
control packets, in the form of candidate request/responses
and data requests. In order to determine whether this actu-
ally reduced the cost of the protocol, we consider the energy
overhead as well. In our implementation, the burst size is 10
packets. In order to send these 10 packets, there must be a
candidate request, a candidate response, and a data request.
This would imply that PCP incurs roughly a 30% control
overhead (ignoring link quality estimation, which is identi-

cal to MultihopLQI). If we also consider retransmissions, our
experiments show that at similar throughputs, PCP requires
1.6 retransmissions per 10 packets, while MultihopLQI re-
quires 6.6 retransmissions per 10 packets. This means that
PCP has a 46% overhead, while MultihopLQI has a 66%
overhead. Therefore, even though PCP adds control over-
head, the reduction in collisions outweighs this cost. PCP
can further reduce the control overhead by increasing the
data burst size.

Another serious question to consider in evaluating PCP’s
visibility is whether we have simply changed the question. It
is easy to diagnose why PCP does not drop packets, but it is
more difficult to diagnose why a node never sends any pack-
ets. It may not be hearing candidate requests, or its parent
may not be receiving its candidate responses. It may miscal-
culate its subtree size and send only from its children, or its
sibling in may erroneously claim to have a massive subtree.
In designing PCP we attempted to deal with each of these
failure causes, by adding redundancy to the synopses and
considering link quality when populating the pulling queue.
However, we acknowledge that PCP may not be as visible
when nodes are expected to send at a pre-specified rate.

In its entirety, PCP is 29.3 KB of program memory. The
forwarding engine, which handles all sending and receiving
of data and pull control packets, requires 6.3K of program
memory. The pulling queue requires 40 bytes of state, and
each node needs 27 bytes of data for fairness. Each node
maintains 22 bytes of synopsis information. The size of the
forwarding queue is 25 packets (MultihopLQI’s forwarding
queue was increased for fair comparison).

5 Improving Existing Protocols

Although designing visible protocols from the scratch is
powerful, it is neither always possible nor efficient. In this
section, we walk through a procedure to improve visibility
with existing network protocols. In particular, we chose Del-
uge [9], a dissemination protocol for large-sized binaries, to
complement our visible collection protocol. We briefly in-
troduce Deluge and its current causes of failure, and discuss
ways to eliminate them. We describe V-Deluge, our ver-
sion of Deluge which is augmented for greater visibility. We
compare V-Deluge to the original in terms of efficiency and
throughput, as well as visibility.

5.1 Deluge As It Is

Deluge is a dissemination protocol which uses
Trickle [14] to politely spread the latest binary using
advertisement packets. Deluge defines a dynamic trickle
period, in which a node sends a single advertisement packet
unless it hears another node transmitting the same version.
When the network is stable, nodes increase their trickle
periods exponentially to reduce transmissions. When a node
hears advertisements with a different version, it resets its
trickle period to the minimum to expedite the process of
updating its code. Out-of-date nodes send requests for data
transmissions to nodes sending newer advertisements.
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Nodes that have out-of-date code do not send a request
packet immediately after an advertisement. Instead, they de-
crease their trickle timer to the minimum and wait for four
trickle periods. During these periods, they record the RSSI
values of advertisements that they hear. After this period, the
requester unicasts a request packet to the node with the high-
est RSSI to minimize packet losses. It uses hard timeouts
after requests to send another request to different nodes if it
does not hear data packets with the version that it needs.

In response to the request packet, the destination node be-
comes a transmitter and initiates a burst of data transmission.
Deluge is a protocol intended to disseminate a large amount
of data, thus a unit of a burst is a page size of the flash mem-
ory, a few tens of packets with the default TinyOS packet
size. When nodes are exchanging data packets, they cannot
initiate another data transmission. Therefore, when a node
is transmitting or receiving data packets, it defers sending
advertisement packets.

5.2 Possible Failures in Deluge

In a collection protocol, the key question to answer is
why the network loses packets. In a dissemination proto-
col, nodes keep a copy of the disseminated binary, so lost
data is not an issue. In addition, Deluge is a single-hop pro-
tocol, thus it is rare that it takes infinite time for a node to ac-
quire the correct binary unless it is disconnected. However,
it may take a long time for some nodes to have the correct
binary, and the deployment developer may wish to diagnose
the causes for this behavior. Thus, for dissemination, the
question that we would like to be able to answer easily is,
“Why does a node still have an out-of-date binary?”

One possible answer to this question is suppression.
To reduce network traffic, Deluge suppresses transmissions
when it overhears similar packets. Nodes suppress their ad-
vertisements if they overhear an identical advertisement in a
trickle period. Similarly, they cancel their request packets if
they overhear an identical request. Data transmitters cancel
their transmission when they hear a data transmission of a
older version.

While suppression enhances the scalability and efficiency
of the protocol, it can be a cause of failures. If a faulty node
sends continuous advertisement packets, the neighbors can-
not send advertisements although they can hear advertise-
ments with the older version. Similarly, if a node sends con-
tinuous request or data packets, Deluge grinds to a halt.

While suppression can prevent dissemination, collision
can delay it. Although transmitters will cancel their trans-
missions if they overhear another, multiple hidden terminals
can become transmitters, destroying an entire packet burst
at the receiver. More generally, any traffic from neighbors
will collide with the data packet burst. When a data packet is
corrupted by collision, nodes must restart their request pro-
cess. For this reason, collision can be a significant source of
dissemination delay.

In the next section, we describe the visibility of Deluge
as it is currently implemented, and describe how one would
identify why a node still has an out-of-date binary.

Recently Rebooted?

Reboot

N Y

Trickle Timer 
Settled?

No Neighbors
With Newer Version?

Y

N

N

Receive Data?

Sent Req?

Req
Suppression

N

N
Ask Dest : 
RX Req?

Y

Bad Link

N

Data RX / Req
Low?

Y

Normal

N Y

Collision /
Bad Link

Adv
Suppression

Ascendents’
Problem

Y

Y
Data

Suppression

Disconnected?

Disconnected

N Y

Figure 11. Decision trees for Deluge to answer the ques-
tion, “Why does a node still have an out-of-date binary?”
Some questions cannot be answered from local informa-
tion. This decision tree cannot distinguish between colli-
sions and a bad link.
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Figure 12. Decision trees for V-Deluge to answer the same
question as Figure 11. All questions are local and colli-
sion is minimized.

5.3 Deluge Visibility

In addition to the causes that we identify in Section 5.2,
Deluge has inherent causes of failure such as disconnection,
reboot, or bad links. It is also possible that the question is
simply asked too soon when Deluge is normally disseminat-
ing binaries, or that the delayed dissemination is caused by
ascendants. The decision tree shown in Figure 11 diagnoses
which cause is responsible for the delay in dissemination.

If the root cannot communicate with the node in ques-
tion at all, it implies that the node is disconnected. If we
can communicate with the node, we can diagnose reboot by
adding a simple timer that starts at boot-up. We can examine
the trickle timer period to see if the timer has settled. If it
has, then it has not heard the advertisements for the newer
version. This means that either its neighbors do not have
the new version either, or they are unable to send advertise-
ments. If the neighbors do have the new version, then their
advertisements are being suppressed by a faulty node.

If, on the other hand, the trickle timer has not settled, it
means that the node is hearing advertisements for the new bi-
nary. If the node is receiving large amounts of data for each
request it sends, then Deluge is operating normally, and the
question has simply been asked too soon. If the node is not
receiving much data for each request it sends, then the delay
is due to packet loss. We do not currently have a good way
to distinguish collisions from bad links, thus the cause of de-
lay is uncertain. If the node is receiving no data at all, yet
we know it is not disconnected, then the remaining possibil-
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pk Energyk(C)

Disconnection 0.13 0
Reboot 0.27 0

Advertisement Suppression 0.01 1
Ascendant’s Problem 0 1
Request Suppression 0.01 0

Bad Link (Inhibiting Rx of Requests) 0.20 1
Data Suppression 0.01 1

Normal (Question asked too early) 0 0
Bad Link (Inhibiting Rx of Data) 0.37 0

∑kth cause Energyk pk 0.02

Table 5. Visibility calculation for Deluge in a hypotheti-
cal environment. Note that the calculations assumes that
the out-of-date node is diagnosing itself. An additional C
term should be included to query the out-of-date node.

ities are loss of request packets or request / data suppression.
It may be that the requester is being suppressed by a faulty
node, or the request may not be received at all.

The problem with the current decision tree is that some
questions are not local. In order to answer them, we must
query neighboring nodes to determine if they have sent or re-
ceived packets. These questions increase the cost of travers-
ing the energy tree significantly, because they require send-
ing additional queries or updates.

We now show an example of calculating the visibility
metric for Deluge. First, for fair comparison, we assume
that the question is not asked too soon or to irrelevant nodes.
With a testbed experiment, we could not verify nodes with
suppression failures, which is natural because it would typi-
cally happen when operating on battery power, when nodes
can begin to behave erratically. Here, since we don’t have
prior knowledge, we conjecture the actual probability of sup-
pression failure to be 1% each (for data, request, and adver-
tisement suppression) for the purposes of this example. For
disconnection and reboot, we assume that 27% of failures are
due to reboot and 13% are due to disconnection. This leaves
the probability of a bad link as 57%. Since a testbed experi-
ment had 1.88 times more data packets than request packets,
the probability for the bad link inhibiting data reception is
estimated to be 20% and bad link preventing request recep-
tion to be 37%. In calculating the visibility for Deluge, we
consider C as the energy required to query the out-of-date
node. If the node cannot diagnose itself, it must query its
neighbors. In our example this will incur an additional cost
of 0.02C. So the visibility cost of Deluge is 1.02C.

In the next section we describe our modifications to Del-
uge to minimize the amount of non-local querying that is re-
quired to diagnose Deluge’s behavior. We call this modified
version of Deluge V-Deluge.

5.4 Eliminating Causes of Failure

The first cause of failure that we would like to prevent is
suppression of advertisements. In V-Deluge, nodes keep a
few bytes of state to monitor the dominant source of adver-
tisements. A node maintains a counter which it resets to zero
whenever it sends an advertisement. The node increments
the counter whenever it overhears an advertisement from the
currently dominant node. If it hears an advertisement from

Request

Communication Range

(a)

Data

(b)

Figure 13. V-Deluge’s collision avoidance mechanism. a)
A requester unicasts a request packet to a node with a
newer version. The other nodes in the communication
range overhear this packet. b) The overhearing nodes
and requester(in red) cannot send any packets during the
time specified by the request packet. No packets from
nodes with symmetric links will collide at the requester
while it receives its burst of data packets.

a different source, it decrements the counter. If this counter
ever exceeds a threshold, the dominant node is assumed to
be faulty. Its advertisements are ignored and no longer act to
suppress other nodes’ advertisements.

V-Deluge prevents request suppression with the same al-
gorithm, but this algorithm can not be used to prevent sup-
pression of data packets. This is because a node at the edge
of the network may receive all data packets from a single
source. Instead, a node prevents data suppression failures by
counting how many times it repeatedly hears the same page.
If this value exceeds a threshold, the node ignores the data
transmission and allows its own data transmissions.

Collision is mainly an issue when nodes in the vicinity
of a requester interfere with the binary being sent to it. To
prevent this, V-Deluge enforces silence on nodes that over-
hear or send request packets. Only the receiver of the request
packet can transmit. As shown in Figure 13, nodes within
reception range of the requester will remain silent, with the
exception of the node providing the data burst.

This change means that the data burst from the recipi-
ent of a request may be delayed significantly, since the re-
cipient may need to remain silent while a neighbor’s data
burst completes. This means that hard timeouts for responses
to requests no longer make sense. Instead, requesters use
packet acknowledgments to hypothesize whether the desti-
nation node has received its request. Even if the request is
acknowledged, the requester returns to its initial state and
listens for other sources of data. It may decide to send a re-
quest to a different destination. If the previous destination
overhears this second request, it should cancel its pending
data transmission to prevent conflicts at the requester.

Note that this initial solution can actually cause further
failure, if a node continuously sends request packets. In this
case, the neighboring nodes will be silent indefinitely. To
avoid this situation, nodes filter faulty requests by checking
to see if a request packet is sent from a node which should be
silent (because it sent an earlier request packet, suppressing
itself). In this way, V-Deluge limits the collision problem
without introducing additional failures.

These mechanisms do not guarantee that collision will
never occur. However, as we will show in Section 5.5, they
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Figure 14. Performance comparisons between Deluge
and V-Deluge. Both disseminate 200 pages of 30 pack-
ets each on a 61-node testbed. a)Total Number of Packets
sent by the network over time. V-Deluge sends signifi-
cantly fewer packets. b) Percentage of nodes which have
received the full binary over time. V-Deluge disseminates
the binary faster than the original Deluge.

significantly reduce packet collision. Thus, we claim that
collision is no longer one of the major causes of delay.

Figure 12 shows the decision tree once we have intro-
duced suppression and collision avoidance. Now the deci-
sion tree only contains inherent causes of failure. Further-
more, all questions can be answered with only local infor-
mation. Thus, the visibility cost for V-Deluge is C. The
visibility cost saving in the hypothetical example shown in
Table 5 is 0.02C, and the visibility cost for V-Deluge is al-
ways lower than for Deluge. However, this gain in visibility
does not come without costs. The code has additional com-
plexity and state. In V-Deluge, failure prevention required
an additional 2458 bytes of ROM and 116 bytes of RAM on
telosb motes. We evaluate the effect on performance in the
following section.

5.5 Performance Comparison

We compare Deluge and V-Deluge in an experiment using
61 nodes on the Motelab testbed. We disseminate a binary
of 200 pages, 30 packets each, to all of the nodes. Figure 14
shows the latency and the number of transmitted packets un-
til each node receives the full binary. Comparing to Deluge,
V-Deluge requires only 69.2% of the time to distribute the
binary and transmits only 54.4% as many packets. This gain
is due mostly to the collision avoidance mechanisms, which
increase both throughput and efficiency.

Our results show that visibility does not always come at
the expense of performance. Rather, eliminating causes of

failure not only simplifies diagnosis, but helps performance,
because failure affects performance.

6 Discussion and Conclusion

In this paper, we argued that visibility should be a major
consideration when designing a sensornet protocol. We need
more than a network management system such as Sympathy;
the network itself should be more visible. We proposed a
metric to quantify visibility, which translates into the energy
required to diagnose a cause of a behavior of interest.

Since this is the first attempt at quantifying visibility, it al-
lows significant space for future work. First, calculating vis-
ibility requires a priori knowledge of the probability distri-
bution of causes of a behavior. Although we can reasonably
conjecture the distribution, the distribution can vary signifi-
cantly in the real world. Moreover, the distribution changes
with time, which makes it even more difficult to calculate
the visibility of a protocol. Adaptive measures should be
employed to dynamically monitor the distribution of causes.
As the distribution changes, the optimal decision tree should
also change. For example, if disconnection gradually be-
comes the prominent cause of failure, the optimal tree may
first determine whether a behavior is due to disconnection.

In this paper, we calculate visibility assuming all ques-
tions are to be answered by sending queries. However, it
is also possible to piggyback some needed information on
data packets, as part of normal operation. The cost of piggy-
backed data should be included in the visibility cost metric.
As the network is dynamic, the optimal way to get an an-
swer for a question may change between querying and pig-
gybacking. Since the visibility of a protocol should measure
the minimum cost, the trade-off between querying and pig-
gybacking should be explored.

Our analysis in this paper assumes that all sources of fail-
ure are within the protocol itself. This is not true for typi-
cal sensornet systems, which usually contain several network
protocols. Protocols can affect each other and cause failures
in a different network protocol. Thus, for a truly visible sys-
tem, we should ensure that a failure in a protocol is caused
only by itself. This implies the necessity of a mechanism to
provide isolation between network protocols.

Our work on PCP was an exercise in pursuing visibility
above all other metrics. The result was a rather extreme
protocol which introduced significant control overhead, and
early versions of PCP made sending packets even more com-
plicated. When improving visibility for one behavior it is
important to keep in mind how it will affect the visibility
for other behaviors, or introduce new ones. While such ex-
treme approaches to visibility are probably going a bit far,
our work with V-Deluge showed that pursuing visibility can
have additional benefits, like lower latency, without intro-
ducing overheads.

This visibility principle in designing network protocols
is a significant departure from existing ideas. Traditional fig-
ures of merit of network protocols are throughput, efficiency,
or goodput. However, the fact that there has not been a sat-
isfactory large-scale sensornet system deployment even with
a decade of research suggests that we should begin to think
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about new directions. Due to the inherent energy constraints
of sensor networks, visibility is not as easy to achieve as in
traditional systems. We argue that visibility should be con-
sidered as much as other metrics, because visibility will in-
herently speed progress in the others.
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