
Robust, low-cost, auditable random number generation
for embedded system security

Ben Lampert?◦
lampert.b@gmail.com

Riad S. Wahby?
rsw@cs.stanford.edu

Shane Leonard?
shanel@stanford.edu

Philip Levis?
pal@cs.stanford.edu

?Stanford University ◦NAUTO, Inc.

Abstract
This paper presents an architecture for a discrete, high-
entropy hardware random number generator. Because it is
constructed out of simple hardware components, its operation
is transparent and auditable. Using avalanche noise, a non-
deterministic physical phenomenon, the circuit is inherently
probabilistic and resists adversarial control. Furthermore,
because it compares the outputs from two matched noise
sources, it rejects environmental disturbances like RF energy
and power supply ripple. The resulting hardware produces
more than 0.98 bits of entropy per sample, is inexpensive,
has a small footprint, and can be disabled to conserve power
when not in use.

1. Introduction
Random numbers are fundamental to cryptography and

computer security. Virtually every cryptographic primitive
(symmetric ciphers, public key cryptography, signatures, cer-
tificates) depends on random bits. Poor random number gen-
eration leaves systems and applications open to attack [11].

Embedded systems, including sensor networks and the
Internet of Things, are increasingly reliant on cryptography.
While early sensor networks depended on link-layer encryp-
tion and used pre-installed keys [27], modern best practices
require devices to use randomness, e.g., for periodic key ro-
tation and per-session keys [35]. Because these devices are
deployed for years (even decades) and difficult to patch, a
vulnerability can be especially disastrous; thus, following best
practices is vitally important in the embedded setting.

In secure systems, an important metric is entropy, infor-
mally, the number of bits of information not known to an
adversary. Given sufficient entropy, a device can generate
an unpredictable sequence using a deterministic algorithm
called a pseudorandom number generator (§2.1). However, if
entropy is limited, an adversary might be able to predict the
algorithm’s output after searching only a small space.

A conservative approach employed in many systems is to
combine entropy from many different sources. In the non-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Sensys ’16, November 14–16, 2016, Stanford, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4263-6.

DOI: http://dx.doi.org/10.1145/2994551.2994568

embedded context, systems often run on complex hardware
with many peripherals. In these systems, disk seeks, network
packet arrivals, and keyboard interrupts can all contribute
entropy. Unfortunately, the constraints of embedded devices
make this approach challenging: many embedded systems
are simple, low-power devices with few entropy sources.1

Another approach to entropy gathering is to use a purpose-
built hardware random number generator. These on-chip
random number generators, which are commonly included
on modern processors and high-end microcontrollers, use a
physical process such as thermal noise [19, Ch. 11] to generate
random bits. But integrated random number generators pose
two problems when building a trustworthy, secure system.
First, in most cases there is no description or specification
of their operation, and thus no way to know how much
entropy they provide or how to use them safely. Second, even
in cases where the circuit’s design is documented (as with
Intel’s RDRAND and RDSEED [20]), verifying that a chip
uses the documented design is prohibitively expensive [6, 53],
and bugs that subtly alter the circuit’s operation are easy
to introduce and extremely difficult to detect [5]. As Linux
kernel developer Ted Ts’o comments, “Relying solely on
the hardware random number generator which is using an
implementation sealed inside a chip which is impossible to
audit is a BAD idea” [58].

As an alternative to using an on-chip generator, an em-
bedded system designer might build her own circuit.2 This
approach has the advantage that the circuit’s implementa-
tion and operation can be examined and tested. Further,
there are many such circuits to choose from, both paper and
real. However, many of these designs do not respond to the
unique constraints of embedded systems with regard to size
or power consumption. Others are inadequately specified
or tested and might fail, for example, when deployed in a
cold environment. We leave a detailed discussion of these
limitations to Section 2.2.

This paper presents the Lampert circuit, an entropy gener-
ator designed for embedded systems. Section 3 explains how a
Lampert circuit uses avalanche noise as its source of entropy.
Avalanche noise is caused by the behavior of electrons in a
reverse biased diode (§3.1) and is therefore fundamentally
random. However, turning avalanche noise into a high-quality

1While there are techniques for extracting randomness from
low-entropy sources [29, 55], the cost of this extraction is
prohibitive in resource-constrained embedded environments.
2We assume that building an integrated circuit is out of
scope for many embedded systems designers, and thus limit
our focus to discrete circuits.

http://dx.doi.org/10.1145/2994551.2994568

entropy source in an embedded device involves several tech-
nical challenges. First, the design must quantize the analog
noise into a stream of random bits. Existing designs compare
the noise source’s output to a reference voltage, which can
result in sensitivity to environmental conditions. A key in-
sight, described in Section 3.3, is that comparing the outputs
from two matched noise sources greatly reduces sensitivity
to external disturbances.

Another challenge is that generating avalanche noise re-
quires a high voltage (12–18 V). Power converter circuits for
generating this voltage from the 1.8–3.3 V typical on em-
bedded devices introduce strong disturbances that influence
the circuit’s output, reducing entropy. Section 3.4 describes
how the Lampert circuit carefully times the operation of the
power converter to eliminate these disturbances.

A Lampert circuit is small: it occupies less than 1.5 cm2 of
board area. It is inexpensive: its components cost less than
$1.50 at reasonable scale. It is simple and therefore simple
to test and audit: each component has very well-defined
behavior. In Section 7 we evaluate the entropy of its output
and find that it generates > 0.98 bits per sample, with little
sensitivity to environmental effects such as temperature. We
also find that a device using a Lampert circuit can generate
more than 1000 bits of entropy in 25 ms at boot, seeding a
pseudorandom number generator for its entire lifetime.

This paper makes three contributions:

• a new circuit design for generating entropy in an embed-
ded device, based on the comparison of two balanced
sources of avalanche noise,

• an end-to-end analysis of the tolerances and issues in
incorporating the circuit into practical designs, and

• a careful evaluation of the circuit, showing that it pro-
duces > 0.98 bits of entropy per sample and is insensi-
tive to temperature.

2. Background
In this section, we describe the role of random numbers

in computer security (§2.1), study the design space of hard-
ware entropy generation by briefly surveying existing de-
signs (§2.2), and distill our findings into requirements for ran-
dom number generator suitable for embedded systems (§2.3).

2.1 Randomness and computer security
Because the role of entropy in random number generation

for computer security is often misunderstood, we provide a
brief overview of the principles. Interested readers may refer
to Corrigan-Gibbs et al. [11] for a more detailed discussion.

A crucial property of secure random number generation is
unpredictability: an adversary has negligible probability of
guessing the output of a secure random number generator.
This is a stronger requirement than, for example, uniformity.
The additive feedback generator used in GNU libc’s rand

illustrates the difference: its output is close to uniform, but
an adversary observing about 30 outputs in sequence can
trivially predict future outputs [46].

Other, more sophisticated statistical tests might reveal
the weakness of rand, but they still provide no guarantees
about unpredictability. As an example, π is hypothesized to
be a normal number [36], meaning that its digits will pass
statistical tests for self-correlation, periodicity, and bias. But

an adversary who knows that a system’s “random number
generator” just computes digits of π will have no trouble
predicting future PRNG outputs.

The requirement for unpredictability has driven the devel-
opment of cryptographically secure pseudorandom number
generators (CSPRNGs, or just PRNGs). Informally, a PRNG
is a deterministic algorithm that produces a sequence whose
future outputs cannot be predicted by any efficient algorithm
given access to past outputs. As with other cryptographic
primitives, an adversary is assumed to have access to the
algorithm, but not to a secret key, called the seed. Thus,
given an ideal PRNG, the seed’s entropy—the number of
bits of the seed that the adversary does not know—measures
the difficulty of guessing the PRNG’s future outputs.

In practice, secure systems gather entropy from their en-
vironment, for example, by measuring the timing of unpre-
dictable events or the evolution of physical processes. This
raises the question: why not gather fresh entropy each time
a random number is needed? The answer is that gathering
entropy is often slow and energetically costly compared to
computing the next output of a PRNG.

Finally, we note that secure stream ciphers (including block
ciphers in counter mode) are suitable PRNGs. For example,
given a 128-bit seed k, encrypting the sequence {0, 1, 2, . . .}
under k using AES-128 is a secure PRNG, under standard
cryptographic assumptions. Further, frequent re-seeding is
unnecessary: given current notions of AES-128’s security, a
conservative estimate is that this arrangement can be used
to generate 260 bytes without re-seeding.

2.2 Related work
There is a large body of commercial and academic work on

hardware RNGs. We decompose this work into four categories:
circuits integrated on processors and systems-on-chip (SoCs),
commercial RNG peripheral devices, designs for FPGAs, and
discrete designs.

At a high level, all of these circuits extract randomness
from an underlying physical process. These include circuit
noise phenomena (thermal noise, shot noise, flicker noise,
Zener noise, or avalanche noise) [19, Ch. 11], and quantum
phenomena (photon beam splitting [33], photoelectric ef-
fect [47, Ch. 40], or radioactive decay [47, Ch. 44]). The
physical process drives nondeterministic circuit behavior,
which is measured and converted to bits.

Processors and SoCs. Some CPUs and SoCs include built-
in RNG circuits. Intel’s Ivy Bridge random number generator
uses a latch which is repeatedly driven to metastability [39],
then allowed to settle to a logic value [20]. The noise source
here is implicit in the circuit components comprising the
metastable latch; it is likely dominated by flicker and thermal
noise. Several SoCs, including products from Broadcom [4]
and TI [1], also integrate RNGs; to our knowledge, none
of the underlying circuit designs are documented. Chips
with integrated RNGs are convenient; on the other hand,
manufacturers do not provide entropy guarantees for these
designs, and the lack of design details or access to circuit
internals makes effective auditing and monitoring impossible.

Commercial devices. A number of commercial devices
are available, relying on a range of noise sources including
circuit noise [2, 7, 10, 28, 32, 49, 52, 56, 59] and quantum
phenomena [25, 38]. A few devices are available in form
factors suitable for use in an embedded system [32, 56], but

most are intended to act as entropy sources for personal
computers or servers. Thus, almost all are optimized for very
high bit rates. In addition, these designs resist auditing and
monitoring (because their designs are proprietary, and they
often incorporate black-box integrated circuits); many are
not designed with an eye to energy efficiency; and most cost
tens or hundreds of dollars.

FPGA-based designs. Several recent works have focused
on purely digital designs suitable for implementation on
FPGAs [43]. These circuits use either metastability [34] or
oscillator jitter [44, 51]. As with the Intel RNG described
above, these circuits implicitly measure the noise of their
constituent transistors, which are presumably dominated
by thermal and flicker noise. While these circuits are not
black-box (since the FPGA designer has control over their
implementation), they are still difficult to audit or monitor.
This is because, first, all of the critical nodes are internal
to the FPGA (and thus not observable), and second, the
noise sources are implicit (and therefore cannot be measured
separately from the rest of the circuit, even if internal nodes
could be measured). Moreover, instantiating these circuits
requires that the embedded system use an FPGA.

Discrete designs. Several discrete RNG designs have been
proposed, based on diode breakdown noise [21–23, 37, 41, 60],
noisy amplifiers [12, 17, 40], incident RF noise [37, 57], and
even chaotic attractors [13, 61].

Because the behavior of a chaotic system is determined by
its initial conditions, chaos circuits are only nondeterministic
to the extent that their initial conditions are influenced
by circuit noise. Circuits based on RF noise are similarly
problematic, because their input can be influenced by a
remote adversary.

Noisy amplifier–based circuits employ some mix of circuit
noise processes which depends on which amplifier a given
design uses. (This is because the noise characteristic of a
given amplifier is peculiar to its design.) Since the noise
source cannot be separated from the rest of the circuit, these
designs make auditing and monitoring difficult.

Diodes in reverse breakdown are strong, self-contained
noise sources, but existing circuits have a range of practical
issues, including operating point instability and susceptibility
to power supply noise. We discuss further in Sections 3.2–3.3.

2.3 Assumptions and requirements

Assumptions. We assume that an adversary has only a
limited ability to manipulate the circuit using targeted RF
energy, for three reasons. First, high attenuation RF shield-
ing is inexpensive and easy to incorporate. Second, if the
circuit is physically small, it is an antenna only for very high
frequencies and will pick up only a small amount of energy.
Finally, targeted RF attacks are coarse-grained, and will
therefore affect all parts of the circuit in an approximately
uniform way. We discuss such disturbances in Section 3.3.

We also make standard cryptographic assumptions. Under
these assumptions, a software system does not need to use
a hardware random number generator every time it needs
a random number. Instead, it can generate a single random
seed and use a PRNG [11], as we discuss in Section 2.1.

Finally, we assume that the embedded circuit is physically
secure against an adversary when it is operating. This rules
out, for example, an adversary who can remove or replace

circuit components, or place leads on circuit traces. This also
means that the embedded processor is physically secure: an
adversary cannot (say) attach a debugger and retrieve the
seed or other state from the processor’s memory.

Requirements. NIST sets forth guidelines for designing ran-
dom number generators [14, 15]. These include using a noise
source whose behavior results from fundamentally probabilis-
tic behavior; protecting the noise source from adversarial
observation and influence; and various documentation and
testing requirements. Beyond these requirements, embedded
applications impose limitations on energy, cost, and size.

Our survey of existing work (§2.2) reveals that existing
non-proprietary designs do not meet these guidelines. Several
commercial designs claim to, but they cost far too much to
incorporate into tiny embedded devices. As a result, our goal
is to design a hardware random number generator that meets
the following requirements:

1. Simple to audit and monitor. A designer implementing
the circuit should be able to inspect the state of critical
nodes in the circuit. This includes the output of the
noise source, any nodes that hold state, and all power
supply and reference voltages. Further, these nodes
should be compatible with continuous monitoring in
the case of security-critical designs.

2. Discrete circuit. A discrete circuit (i.e., a circuit built
of individual components, as opposed to an integrated
circuit) is simple to construct, and is compatible with
our requirement that the circuit should be auditable.
Further, a discrete circuit can be incorporated into
existing embedded system designs.

3. Low cost. The total price for all components should be
low when produced at moderate scale (say, thousands
of devices).

4. Small size. Because space is at a premium in embedded
systems, the circuit should be as small as possible. In
particular, it should occupy minimal printed circuit
board area.

5. Sufficiently high output rate. Randomness is critical
for security, so an embedded system should not enter
normal operation until it has gathered sufficient entropy.
We therefore require the circuit to produce entropy fast
enough that the embedded system’s boot sequence is
not unduly delayed. Concretely, we aim to gather about
one thousand bits in a few tens of milliseconds.

6. Energy efficient. Power consumption is critical in many
embedded applications, so the energy cost per bit
should be minimal, and the circuit should draw lit-
tle or no power when not in use.

7. Robust, practical noise source. The noise source should
practical, that is, a device that is easy to obtain and in-
corporate into a wide range of designs. It should also be
robust, meaning several things. First, the noise source
should have high immunity to environmental factors, in-
cluding varying temperature and radio frequency (RF)
interference. Second, the noise source should be an ex-
plicit device in the circuit such that its output can be
inspected directly. Third, the noise source should be
as strong as possible, and in particular should need no

Power Supply
(3.4)

Noise Source
(3.1, 3.2)

Noise Source
(3.1, 3.2)

Comparator
(3.3)

Random 
bits

Figure 1: Block diagram of the Lampert circuit. Ran-
dom bits are sampled from the comparison between
two noise sources.

amplification before being converted to bits. This both
reduces circuit complexity (by eliminating components)
and relaxes the specifications for the conversion circuit
(because a strong signal is less susceptible to being
corrupted by nonideal circuit components).

3. Design
This section describes the Lampert circuit design, building

up from a single noise source to the full final circuit. At each
step, it describes the issues that arise, with measurements as
needed, and the approach the design takes to address them.
Figure 1 shows the circuit’s block diagram, noting which
subsection discusses each component.

At a high level, the goal of a hardware random number
generator is to produce a high-entropy bitstream. Roughly
speaking, such circuits comprise two blocks: a noise source,
whose output is a nondeterministic signal; and a conversion
circuit, which captures, amplifies, and conditions the output
of the noise source to produce bits. Sections 3.1–3.2 discuss
the Lampert circuit’s noise source; 3.3 discusses the conver-
sion circuit; and 3.4–3.5 discuss practical considerations.

3.1 Choosing a noise source
Every random number generator requires a source of en-

tropy. Section 2.2 mentions several options. In designing the
Lampert circuit, we choose avalanche noise because:

1. it is internally generated (unlike RF energy) and cannot
be manipulated by an adversary;

2. it is from a cheap, commodity part (unlike radioactive
noise) and can be easily incorporated into any design;

3. it provides a very strong signal (unlike thermal noise
or RF energy) which requires no amplification and is
robust to circuit nonidealities;

4. it is insensitive to temperature and other effects (unlike
thermal noise or RF energy) and so once characterized
can be used in wide range of environments; and

5. its generating process, avalanche breakdown, can be
safely relied upon as it is fundamentally probabilistic
and well characterized.

The rest of this subsection explains, at a high level, what
causes avalanche noise and why this leads to the above
five properties. Readers familiar with avalanche diodes can

skip to the experimental characterization at the end of this
subsection; for more detail refer to Zeghbroeck [63].

A diode is a semiconductor device with a directional
current-voltage relationship. In one direction (the forward
direction), a diode conducts current freely. In the other direc-
tion (reverse), the diode does not conduct until the applied
voltage exceeds the diode’s reverse breakdown threshold.

Several types of diodes with controlled reverse breakdown
characteristics are widely available. They are commonly used,
for example, to protect other circuit components from ex-
cessive voltage. One type of diode with controlled reverse
breakdown is the avalanche diode; its reverse breakdown is
the result of a physical process called avalanche breakdown.3

Under avalanche breakdown conditions, these diodes exhibit
random behavior called avalanche noise.

Avalanche breakdown is the result of electron collisions in
the crystalline lattice of a semiconducting material. In brief,
each electron in a semiconductor is associated with one of
several discrete bands of energy levels. Electrons occupying
energy levels in the valence band are tightly bound to atoms
in the material’s crystalline structure; thus, they cannot
move and do not conduct current. Highly energetic electrons
occupy energy levels in the conduction band; these electrons
are loosely bound to the crystalline structure, and are free to
move, conducting electricity. In a semiconducting material
at room temperature, a tiny fraction of electrons are in the
conduction band as a result of thermal excitation.

An electron in the conduction band is accelerated by an
incident electric field (i.e., an applied voltage). When this
field is small, the resulting current is negligible. However, for
an electric field of sufficient magnitude, electrons in the con-
duction band are strongly accelerated, gaining kinetic energy.
These electrons become so energetic that, upon colliding
with an electron in the valence band, the latter is “knocked
loose” into the conduction band. The electric field can then
accelerate this second electron, which will transfer energy
to other valence electrons through similar collisions. In this
manner, a single electron can create an “avalanche” of charge
carriers. The resulting avalanche current is probabilistic due
to the randomness of electron collisions; the variability of
avalanche current is avalanche noise.

Figure 2 shows a test circuit built with the avalanche diode
referenced in Section 6, and Figure 3 shows its noise at a
microsecond scale with Vcc set to 12.16 V. This results in an
160 mV average at Vnoise, with ±60 mV deviation from mean.
This noise voltage is orders of magnitude larger than other
sources of noise in the circuit, and so these other sources can
be ignored. Figure 4 shows a histogram of Vnoise deviation
from 160 mV for 500 000 samples taken at 1 ns intervals.

3.2 Setting the operating point
Figures 2–4 show a test in which Vcc is carefully adjusted to

produce the desired operating point, i.e., the average voltage

3Diodes exhibit another reverse breakdown phenomenon
called Zener breakdown. Reverse breakdown results from
a combination of Zener and avalanche behavior, but Zener
current dominates below 5.6 V, while avalanche current dom-
inates above [50]. We measured reverse breakdown diodes
with voltages ranging from 2.7 V to 18 V, and found that
avalanche-dominated devices generated significantly more
noise than Zener-dominated devices. In our tests, a 12 V
avalanche diode generated noise power sufficient to obviate
amplification, consistent with our requirements (§2.3).

R1
10 KΩ

Vnoise

Vcc

Figure 2: Avalanche noise test circuit.

0 0.5 1 1.5 2 2.5 3
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

V
no

is
e, v

ol
ts

time, µs

Figure 3: Vnoise vs. time for Figure 2, Vcc = 12.16 V.

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

1

2

3

4

5

6

7

8

9

V
noise

 deviation from 160 mV, volts

fr
eq

ue
nc

y,
 p

er
ce

nt
 o

f s
am

pl
es

Figure 4: Histogram of deviation of Vnoise from
160 mV for the test setup in Figure 2, Vcc = 12.16 V,
for 500 000 samples taken at 1 ns intervals.

at Vnoise. This test makes two simplifying assumptions. First,
it assumes that the required supply voltage, Vcc, is fixed.
In practice, the circuit’s operating point will change with
time, temperature, and other factors: at another time, the
circuit might need a different value of Vcc to establish the
desired operating point. Second, the test assumes that there
are no external disturbances in the system that affect Vnoise.
We address the first assumption immediately below, and the
second in the next subsection.

−

+
Vref

R1
10 KΩ

Vnoise

Figure 5: Bias circuit for an avalanche diode.

Figure 6: Block diagram of a system that uses a sin-
gle noise source to generate bits.

A standard means of counteracting operating point vari-
ability is to use negative feedback [19, Ch. 8]. The Lampert
circuit uses negative feedback to set the average value of the
Vnoise with an operational amplifier (op-amp), as depicted in
Figure 5. In this configuration, the function of the op-amp
is to drive the average value of Vnoise to be equal to the
value of Vref .

4 The result is that this circuit corrects for
manufacturing variability among avalanche diodes, variation
of a given diode over time due to the effects of temperature
and aging, and variation due to changing Vcc values.

3.3 Rejecting disturbances
Figure 6 shows one approach to generating bits from the

circuit of Figure 5 using a comparator, a circuit that indicates
if the difference between its inputs is positive or negative.
Since the op-amp causes the average voltage at Vnoise to be
equal to Vref , the comparator’s output will be 0 and 1 with
equal probability. However, this arrangement is susceptible
to disturbances from nearby signals in the system.

To see how, consider what happens if Vnoise is affected by
another signal in the circuit in such a way that its average
value equals Vref , but its instantaneous value depends on
the disturbing signal. First, note that the op-amp will not
reject this disturbance, since the average value of Vnoise is not
disturbed. On the other hand, the probability that the noise
value is (say) greater than the reference value at any instant
depends on both the noise source and the disturbance; as a
result, the probability distribution of the comparator’s output
value also depends on the disturbance. If the disturbance is
strong and predictable, it will overwhelm the influence of
the noise source on the comparator’s output and cause the
output bits to be predictable.

4This equality is not perfect because op-amps do not behave
ideally; in our implementation (§6) we are careful to choose
an op-amp with sufficient precision for this task.

M1

L1
10 µH

Vin

Cout

10 µF

D1 Vout

Controller
en

Figure 7: A boost converter takes a DC input volt-
age, Vin, and produces a higher DC output voltage,
Vout (§3.4). The circuit is enabled via the logic-level
en input. In our implementation (§6) the switch (M1)
and the controller are integrated into a single chip.

In practical systems, one strong source of disturbances
that matches the above description is the power supply.
Concretely, for the circuit of Figure 5, it is extremely difficult
to ensure that Vcc has no effect on either Vref or Vnoise. In
fact, since a comparator measures the difference between its
two inputs, merely ensuring that Vcc had identical effect on
Vref and Vnoise would suffice (since adding the same value
to two numbers does not affect their difference)—but this,
too, is extremely difficult to achieve in practice.

The Lampert circuit addresses this problem by instantiat-
ing a second copy of the circuit from Figure 5, resulting in a
circuit with two noise sources (as depicted in Figure 1). This
approach (an example of a differential circuit) is effective
because the influence of the power supply on the two noise
circuits is nearly identical. Indeed, nearly any external influ-
ence on the circuit of Figure 1 will have identical effects on
the two copies of the noise source; meanwhile, because the
comparator measures only the difference between the two
circuits, such effects have little influence on the output bits.

3.4 Power supply design
One final issue is generating the supply voltage. The Lam-

pert circuit needs a supply voltage greater than 12 V, but
most embedded systems have power supplies in the range
of 1.8–3.3 V. This is a common problem, for example, for
LED drivers and displays. The standard approach is to use
a boost converter, a circuit that produces an output voltage
whose value is greater than its input voltage [16]. Figure 7
illustrates a boost converter.

A significant challenge to using a boost converter in the
Lampert circuit is that converters produce very strong dis-
turbances in the circuit. Indeed, despite the fact that the
Lampert circuit uses a differential noise source (§3.3), we
found that the boost converter’s disturbances were strong
enough to affect the comparator output, substantially de-
grading the entropy of the resulting bitstream.

To overcome this issue, the Lampert circuit uses two inter-
leaved phases of operation, controlled by a microcontroller.
In the first phase, the boost converter circuit is enabled,
charging an output capacitor, Cout. Once the voltage across
Cout reaches 18 V, the first phase ends. In the second phase,
the boost converter is disabled and thus produces no distur-

Figure 8: Waveforms showing boost and compara-
tor operation. The blue line is the boost converter’s
output, which takes 13 ms to charge to 18 V, and
20 ms to discharge to 12 V. The yellow line is the in-
put current to the boost converter. While the boost
converter runs, its input current changes rapidly.
After the boost converter’s output reaches 18 V
(t = −5 ms), the converter is disabled and its input
current goes to zero. The green line is the compara-
tor’s output (at this time scale, individual logic lev-
els are not visible). Once the boost converter output
(blue) drops below 12 V, the comparator no longer
switches because the noise source stops operating.

bance. Now the comparator’s output is sampled. Once the
voltage across Cout reaches 12 V, the second phase ends and
the first phase begins again.

The duration of the first phase depends on the particulars
of the boost converter. The duration of the second phase is
given by the current consumption of the Lampert circuit and
the size of Cout. For example, if the Lampert circuit draws
5 mA and Cout = 10 µF, then the second phase lasts for

(18 V − 12 V) · 10 µF

5 mA
= 12 ms

Figure 8 shows the waveforms for both phases. The green
signal shows the random bit stream operating for 17.5ms
after power is turned off, slightly more than estimated.

3.5 Putting it together
Figure 9 shows a full Lampert circuit. Once the output

of the boost converter (details in Fig. 7) reaches 18 V, the
boost converter is disabled and its output capacitor (Cout,
Fig. 7) powers the circuit. Op-amp 1 and Op-amp 2 set the
operating point (§3.2) for the two avalanche diodes, D2 and
D3 (§3.3). The noise signals generated by D2 and D3 are fed
to a comparator, whose output is simply a measure of which
of these two random variables is higher.

As long as it is sampled below its bandwidth (§7.1), this
circuit produces very nearly 1 bit of entropy per sample.
It cannot produce exactly 1 bit because comparators have
limited precision. If the two inputs are within some tiny ε,
then the output is undefined and may be biased.

The next two sections discuss how to integrate the Lampert
circuit into an embedded system and how to test that it is
working properly.

R1
10 kΩ

D1

Vhigh

Vref

Cf

0.47 µF

Op-amp 1

−

+

Vhigh

R2
10 kΩ

D2
Vnoise,1

Op-amp 2

−

+

Vhigh

R3
10 kΩ

D3

Vnoise,2

Comparator

−

+

3.3 V

Vout

Boost converter

Vin
Vout

3.3 V
Vhigh

en enable

Figure 9: The Lampert circuit. The boost converter
is shown in Figure 7. A microcontroller controls the
boost converter and samples bits from Vout (§3.5).

4. Using the Lampert circuit
This section describes how to integrate the Lampert circuit

into an embedded design and how software should use it.
The circuit should be as dense and symmetric as possible.

For example, the traces around the two noise sources should
be parallel, close, of the same length, and separated by a
co-planar waveguide to minimize coupling. This is to ensure
that any RF interference affects them equally and they do
not affect each other. The circuit should be placed away from
strong signals; for example, it should be isolated from power
converters (other than its own) and any RF circuits.

The software random number subsystem requires three
components: a way to read the output of the circuit (e.g.
a GPIO line) a cryptographic hash function, and a pseudo-
random number generator. When the software boots, and
before operations that require randomness can commence,
software should sample the circuit’s output to gather a
string of high-entropy bits. According to NIST recommenda-
tions [15, 45], the required number of bits required is 512/e,
where e is the entropy per bit. Based on our evaluation (§7),
we assume that the entropy of each bit is e ≥ 0.9. Thus, the
system should sample at least 570 bits; we recommend using
768 bits, which provides at least 690 bits of entropy.

Once these 768 bits have been gathered, software should
pass them through a cryptographic hash function. We recom-
mend using SHA256. This mixes the ≥ 690 bits of entropy
into 256 bits, providing a full-entropy, 256-bit seed.5

The PRNG’s state comprises a key and a counter whose
width is the AES block size (128 bits). If the system has
an efficient (e.g., hardware) AES-256 implementation, the
output of the hash from the previous step should be used

5It is not necessary to apply other whitening or de-biasing
techniques, e.g., von Neumann’s procedure [62]; under com-
mon assumptions, a cryptographic hash function suffices for
randomness extraction [29].

as the AES key, and the counter should be initialized to
zero. If only AES-128 is supported, 128 bits of the hash
output should be used as the AES key, and the other 128
bits should be used to initialize the counter. Each time the
system needs to generate a random number, the generator
encrypts the current value of the counter under the PRNG
key, increments the counter, and returns the AES output,
truncated as necessary (e.g., return the least significant 32
bits for a 32-bit random number).

5. Testing and monitoring
As we argue in Sections 1 and 2, a trustworthy source

of high-entropy bits must allow for acceptance testing after
manufacture and auditing during operation. In this section,
we discuss how to test and audit the Lampert circuit for
proper operation.

Acceptance testing. After assembling an embedded system
containing a Lampert circuit, the circuit should be thoroughly
tested. This testing is designed to detect both manufacturing
flaws in the circuit components, and assembly defects at the
circuit board level. Note that, because they are designed to
be performed once at manufacture, we allow these tests to
use external test equipment, e.g., oscilloscopes and power
supplies. The following tests should be performed (all node
names refer to Figs. 7 and 9).

1. Operating point test. Using an external power supply,
apply a range of voltages from 12 V to 18 V to Vhigh in
0.5 V steps; the en input should be de-asserted. Ensure
that the circuit draws an appropriate level of quiescent
current (approximately 5 mA); that Vref , Vnoise,1 and
Vnoise,2 have average values within 1 mV of one another.

This test establishes proper connection and gross op-
eration of the op-amps, Vref circuit, and avalanche
diodes (§3.2).

2. Avalanche noise. As above, use an external power
source to supply a range of voltages at Vhigh. For
each setting of Vhigh, sample the values on Vnoise,1

and Vnoise,2, ensuring that these voltages have stan-
dard deviation of at least 10 mV when sampled over a
100 MHz bandwidth. Compute the Fourier transform of
the voltages at each node, ensuring that the spectrum
is flat (and, in particular, has no tones).

This test establishes that the avalanche diodes are
generating the expected level of noise, and that this
noise has the proper spectrum.

3. Entropy testing. As above, use an external power source
to supply a range of voltages at Vhigh. For each setting
of Vhigh, sample Vout at the sample rate used by the
embedded system (§7.1), ensuring that the density of
ones in the resulting bit stream is 50%±0.5%. Compute
the Shannon entropy of this bit stream; the result
should be > 0.98.

This test establishes the Lampert circuit’s core func-
tionality across power supply range.

4. Power supply operation. Apply 3.3 V to the circuit and
assert en. Measure the time for Vhigh to reach 18 V,
ensuring that it is approximately 20 ms. De-assert en

Figure 10: Standalone RNG board. On the left is
final design over a US quarter; on the right is the
printed circuit board layout with dimensions in mm.

and ensure that the time for Vhigh’s value to reach 12 V
is close to 12 ms.

This test establishes that the boost converter is working
properly.

5. End-to-end testing. To test the embedded system’s end-
to-end functionality, we recommend creating testing
software that repeatedly exercises the seed generation
functionality (§4), saving the high-entropy bit string
generated in each run. These strings should be tested
with the statistical test suites described above.

This test establishes that the embedded system’s ran-
dom number subsystem will be properly seeded in op-
eration.

As with all acceptance testing, data for all boards should be
carefully logged such that outliers can be identified. An ideal
test suite should include multiple temperatures (cold, room
temperature, and hot, as determined by the temperature
grade of the embedded system), but in practice, industrial
testing regimes often phase out multi-temperature testing
once a design has been thoroughly vetted and strong correla-
tion across temperature can be established from historical
data.

Online auditing. In addition to acceptance testing, an
embedded system can audit the Lampert circuit online to
ensure that it has not failed. The following three tests can
help to detect a failed RNG:

1. Operating point test. In this test, the system measures
the average value of the Vref node and the Vnoise nodes.
Note that this test does not require a high-performance
ADC, since the average value is slowly varying.

This test establishes that the reference and operating
point circuits are working properly.

2. Boost converter test. This test is essentially the same
as test #4, above. During operation, the embedded
system measures the amount of time for Vhigh to reach
18 V with the converter active, and the amount of time
to reach 12 V with the converter inactive.

This test establishes that the boost converter is working
properly.

Figure 11: imix circuit board. The Lampert circuit
is instantiated in the top right corner.

3. Bit string health test. In this test, the system computes a
simple statistical measure of the output of the Lampert
circuit. Specifically, it counts the occurrence of a set of
bit patterns, and discards bit strings that fail to fall
within bounds. We recommend testing in the same way
as Intel’s Ivy Bridge RNG [20].

This test establishes that the system has not failed in
a mode that results in a continuous stream of 0 or 1,
or a simple alternating pattern.

We note that these tests may not be necessary in all appli-
cations. However, as they are relatively simple to implement,
we recommend that an embedded system incorporating the
Lampert circuit implement these tests, and use them to
sanity check its operation.

6. Implementation
We built two implementations of the Lampert circuit. Both

implement the design of Figure 9, where the boost converter
is a single-chip solution based on the TPS61041 [54]. In
total, this circuit has 22 components, including additional
decoupling capacitors [24] on power supply and reference
nodes. We list the bill of materials and corresponding costs
in Table 1. Note that we do not include the cost of the printed
circuit board, as this will vary by application.

Standalone implementation. The first implementation is
a standalone test board, depicted in Figure 10. We designed
printed circuit boards in CadSoft EAGLE [9]. These were
manufactured by OSH Park on a 2-layer, 2 oz. copper board.
Boards were hand assembled. The standalone printed circuit
board measures 1.42× 1.9 cm, for a total area of 1.45 cm2.
Our standalone design is freely available [31].

Description Value Circuit component Unit cost # Total cost

Capacitor 10 µF C1 (Fig. 7) $0.05075 1 $0.05075
Comparator TLV3201 Comparator (Fig. 9) $0.45000 1 $0.45000
Dual op-amp LM358 Op-Amp 1, 2 (Fig. 9) $0.07650 1 $0.07650
Boost converter TPS61041 Controller, M1 (Fig. 7) $0.65520 1 $0.65520
Inductor 10 µH L1 (Fig. 7) $0.03230 1 $0.03230
Diode MBR0530 D1 (Figs. 7 and 9) $0.04505 2 $0.09100
Avalanche diode 1N759 (12 V) D2, D3 (Fig. 9) $0.01780 2 $0.03560
Miscellaneous passive components (capacitors and resistors) $0.05000
Total $1.44000

Table 1: Bill of materials for Lampert circuit implementation (§6). Costs are per-unit, quoted at quantity
10 000. We do not include the incremental cost of printed circuit board area because it will vary by application.

To control this board as described in Sections 3.4 and 4,
we connected it to an Arduino microcontroller [3]. After
assembly, we followed the acceptance test flow described in
Section 5.

Embedded system integration. We have also integrated
the Lampert circuit into a multi-radio ARM Cortex-M4–
based platform called imix, whose design and software are
open [26]. This board is shown in Figure 11. We designed
these boards in CadSoft EAGLE. Sierra Circuits manufac-
tured them in 4 layers of 1 oz. copper, and assembled our
engineering prototypes. The Lampert circuit implementation
on the imix board occupies approximately the same area as
the standalone board.

7. Experimental results
This section evaluates the Lampert circuit with respect

to the requirements set forth in Section 2.3. Specifically, we
evaluate output rate, energy efficiency, and the robustness
of the Lampert circuit’s entropy generation. We evaluate in
three steps. First, we establish a conservative rate at which
to sample the output (§7.1). Next, using this sample rate,
we run a battery of statistical tests on the raw output of the
Lampert circuit taken over several days (§7.2) and across
temperature conditions (§7.3). We also measure the average
time to gather sufficient entropy for seeding a PRNG (§2.1,
§4), and the energy that this entails (§7.4).

We find that the Lampert circuit requires relatively little
energy to seed a PRNG, that it produces a high-entropy seed
quickly, and that the entropy is insensitive to temperature
and stable over time.

Metrics. In Sections 7.1–7.3, we evaluate the output of the
Lampert circuit using the ent test suite [30], which estimates
the entropy and serial correlation of the raw bitstream. In
contrast, other randomness test suites [8, 42] are designed for
processed bitstreams. As we discuss in Section 2.1, producing
a high-entropy seed (i.e., one that cannot be guessed by an
adversary) is sufficient to ensure security.

7.1 Establishing sample rate
In this subsection, we measure the effect of sample rate on

the quality of the Lampert circuit’s output, and establish a
conservative sample rate.

Method. Using the standalone Lampert circuit implementa-
tion (§6), we collected several sequences of 500,000 samples of
the raw bitstream at sampling rates of 100 kHz, 10 MHz, and

500 MHz, using an oscilloscope. We then subsampled these
data at intervals of 1× to 100× to produce collections of raw
bits. Finally, we computed entropy and serial correlation for
the unbiased bitstream using ent.

Results. The subsampled bitstreams cover sample rates
from 1 kHz to 500 MHz. The results from running the ent
tests are shown in Figures 12 and 13.

We measure the average transition rate at Vout (Fig. 9) to
be roughly 6MHz, which roughly corresponds to the maxi-
mum frequency at which the system’s state can change. This
is consistent with the results showing strong serial correlation
for sample rates at and above 6 MHz: at these frequencies,
each sample captures essentially the same state of the system
as the prior sample. On the other hand, at sample rates well
below the transition rate (say, 400 kHz and lower), the serial
correlation is negligible.

From these data we make the conservative choice to use
a 128 kHz sample rate for gathering bits. This decision
represents a tradeoff between serial correlation and time
to gather a random seed. Sampling 1024 raw bits at 128 kHz
requires 8 ms, and can therefore be done with a single boost-
discharge cycle (§3.4).

7.2 Long-term testing
In this subsection, we evaluate the quality of the Lampert

circuit’s output versus time with statistical testing.

Method. To evaluate the performance of the Lampert cir-
cuit versus time, we gathered data over approximately 10
days using the standalone implementation (§6). Once per
minute, we ran 1000 on/off cycles (§4), gathering 512 bits
per cycle. For each data point, we also recorded the ambient
temperature. We used ent to compute the entropy and serial
correlation of each set of 51 200 bits.

Results. Figure 14 shows the results. Over the course of
the test, entropy varied about 1%. We confirmed with the
temperature readings that the periodicity in the entropy was
the result of normal temperature fluctuations; in the next
subsection we look at temperature further. The data show
several outlier events during which entropy dropped as low
as 0.986. We do not yet know the cause of these outliers. We
note that the minimum entropy is well above 0.9, the value
we assumed in Section 4.

Serial correlation is consistently low: generally it is below
1%, and it is strictly less than 2%. This is in line with the
results of Section 7.1.

Sampling Frequency (Hz)
103 104 105 106 107 108

E
nt

ro
py

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1
Entropy vs Sampling Frequency

Figure 12: Entropy vs. sample rate (§7.1).

Sampling Frequency (Hz)
103 104 105 106 107 108

S
er

ia
l C

or
re

la
tio

n

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Serial Correlation vs Sampling Frequency

Figure 13: Serial correlation vs. sample rate (§7.1).

We ran similar statistical tests against the imix platform’s
Lampert circuit implementation (§6) with similar results.

7.3 Temperature testing
In this subsection, we evaluate the quality of the Lampert

circuit’s output versus temperature with statistical testing.

Method. To evaluate the performance of the Lampert cir-
cuit versus temperature, we gathered data over a range of
temperatures from –11 ◦C to 56 ◦C. We sealed a standalone
board, a microcontroller, and a temperature probe in an
airtight container and placed this container in a temperature-
controlled environment. For each temperature point, we ran
1000 on/off cycles, gathering 512 bits per cycle. We used ent
to evaluate each set of 51 200 bits.

Results. Figure 15 shows the results. The difference in en-
tropy between the lowest and highest temperatures is about
1%. This is expected, for two reasons: first, the avalanche
phenomenon has a very weak but nonzero temperature de-

0 1 2 3 4 5 6 7 8 9 10
0.985

0.99

0.995

1

E
nt

ro
py

(c
lo

se
r

to
 1

 is
 b

et
te

r)

Long Term Entropy

days

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0

0.01

0.02

S
er

ia
l C

or
re

la
tio

n
(c

lo
se

r
to

 0
 is

 b
et

te
r)

Long Term Serial Correlation

days

Figure 14: Statistical tests vs. time (§7.2).

−20 −10 0 10 20 30 40 50 60
0.985

0.99

0.995

1

Temperature (°C)

E
nt

ro
py

(c
lo

se
r

to
 1

 is
 b

et
te

r)

Entropy vs. Temperature

−20 −10 0 10 20 30 40 50 60
−0.02

−0.01

0

0.01

0.02

Temperature (°C)

S
er

ia
l C

or
re

la
tio

n
(c

lo
se

r
to

 0
 is

 b
et

te
r)

Serial Correlation vs. Temperature

Figure 15: Statistical tests vs. temperature (§7.3).

pendence [50], and second, at high temperatures the op-amps
and comparator (§3, Fig. 9) contribute a very small amount
of thermal noise. As in the previous subsection, we see an
outlier event where entropy drops to about 0.984. We believe
this outlier was caused by an error in our test setup when
the device was initially placed in the oven. Again, this is well
above 0.9, the value that we assumed in Section 4.

We find that serial correlation is essentially independent
of temperature and shows a similar spread to the previous
two experiments.

7.4 Energy and time costs
The boot process described in Section 4 requires the micro-

controller to pause until the Lampert circuit delivers enough
entropy to seed a PRNG. We now discuss the expected delay
and energy cost of this sequence.

Method. Using the standalone Lampert circuit implementa-
tion (§6), we follow the boot procedure described in Section 4

to gather 1024 bits. We start with the boost converter’s Cout

fully discharged to simulate conditions at boot.

Results. Collecting 1024 raw bits requires 8 ms at 128 kHz.
This is less than the≈ 12 ms that the boost converter’s output
takes to discharge from 18 V to 12 V (§3.4), meaning that
1024 bits can be collected in one cycle. The boost converter’s
output takes ≈ 13 ms to charge from 0 V to 18 V (§3.4,
Fig. 8), meaning that the process of gathering a random bit
string requires ≈ 25 ms.

In charging its output to 18 V, the boost converter requires
≈ 3 mJ. This translates to a cost of < 3 µJ per bit, at an
average power consumption of 120 mW over the period of
gathering bits. To put this number in context, a ZigBee radio
requires about 400 nJ per bit to transmit [48], or about 10×
less than the Lampert circuit.

Since the time and energy cost of generating random bits is
paid only at boot (§4), and can be amortized over the entire
duration of an embedded system’s operation, we conclude
that these costs are reasonable.

8. Discussion and conclusion
Computer security is often an arms race: new attacks

and vulnerabilities emerge, and system designers patch them,
securing systems until the next wave of more complex attacks,
which require correspondingly more complex solutions. This
paper takes a different approach: rather than waiting until
an attack emerges, we argue that low-level primitives like
random number generators should be secure by design.

In the current climate of government surveillance and com-
promised cryptography, security by trust is not security. For
a primitive as fundamental as a random number generator,
one needs to know not just how it is supposed to work, but
also that it actually works that way. Using the Lampert
circuit, one can physically inspect a device to check that it
has the right components in the right configuration. One can
test the output of the circuit as well as the output of each of
its subcomponents (e.g., test that the diodes are producing
the expected noise distribution). One can run open source
software that correctly whitens the circuit output and uses it
to seed a PRNG. One can test and check the entire system,
from end to end. While this is admittedly overkill for many
applications, it sets a bar which any application can easily
reach. And “overkill” is a moving target: transport layer se-
curity (TLS) seemed like overkill for social networking until
Firesheep showed the havoc one could wreak without it [18].

The Lampert circuit satisfies all of the requirements set
forth in Section 2.3: it uses fewer than 25 components, costs
less then $1.50 to build, and requires less then 1.5 cm2 of area.
Still, it can be improved: lower cost, lower power consumption,
and smaller size are all future work. We hope that in the near
future, incorporating a hardware random number generator
with strong entropy guarantees is cheap and easy enough
that every system concerned with security does so.

Acknowledgments
We thank Dan Boneh, Henry Corrigan-Gibbs, Greg Kovacs,
Rishab Mehra, Keith Winstein, and the anonymous reviewers.
This work was supported by Intel/NSF CPS Security grant
#1505728, the Secure Internet of Things Project, and gifts
from VMware and Analog Devices.

Board designs and software are available from
https://github.com/helena-project/imix
https://github.com/lampertb/LampertCircuitRNG

References
[1] AM335x cryptography users guide. http://processors.

wiki.ti.com/index.php/Cryptography Users Guide.

[2] Araneus Alea II TRNG. http://www.araneus.fi/
products/alea2/en/.

[3] Arduino. https://www.arduino.cc/.

[4] BCM2835. https://www.raspberrypi.org/
documentation/hardware/raspberrypi/bcm2835/
README.md.

[5] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson.
Stealthy dopant-level hardware trojans. In CHES, Aug.
2013.

[6] S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan.
Hardware Trojan attacks: threat analysis and counter-
measures. Proceedings of the IEEE, 102(8):1229–1247,
Aug. 2014.

[7] BitBabbler. http://www.bitbabbler.org/.

[8] R. G. Brown. dieharder test suite. http://www.phy.
duke.edu/˜rgb/General/dieharder.php.

[9] Cadsoft EAGLE. http://www.cadsoftusa.com/.

[10] ComScire. https://comscire.com/.

[11] H. Corrigan-Gibbs and S. Jana. Recommendations for
randomness in the operating system: How to keep evil
children out of your pool and other random facts. In
USENIX HotOS, May 2015.

[12] B. Cox. Infinite noise trng (true random number gener-
ator). https://github.com/waywardgeek/infnoise.

[13] M. N. f. Dr. Maysoon M. Aziz. Numerical and chaotic
analysis of chua’s circuit. Journal of Emerging Trends
in Computing and Information Sciences, 3(5):783–791,
may 2012.

[14] J. K. Elaine Barke. Recommendation for random bit
generator (rbg) constructions. DRAFT NIST Special
Publication 800-90C, aug 2012.

[15] J. K. Elaine Barke. Recommendation for the entropy
sources used for random bit generation. NIST Special
Publication 800-90B, jan 2016.

[16] R. W. Erickson and D. Maksimović. Fundamentals of
Power Electronics, chapter 6. Springer, New York, 2001.

[17] FiReBuG. http://apa.hopto.org/firebug/.

[18] Firesheep. https://codebutler.github.io/firesheep/.

[19] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer.
Analysis and Design of Analog Integrated Circuits. John
Wiley and Sons, New York, 5th edition, 2009.

https://github.com/helena-project/imix
https://github.com/lampertb/LampertCircuitRNG
http://processors.wiki.ti.com/index.php/Cryptography_Users_Guide
http://processors.wiki.ti.com/index.php/Cryptography_Users_Guide
http://www.araneus.fi/products/alea2/en/
http://www.araneus.fi/products/alea2/en/
https://www.arduino.cc/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
http://www.bitbabbler.org/
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.cadsoftusa.com/
https://comscire.com/
https://github.com/waywardgeek/infnoise
http://apa.hopto.org/firebug/
https://codebutler.github.io/firesheep/

[20] M. Hamburg, P. Kocher, and M. E. Marson. Analysis
of intel’s ivy bridge digital random number generator.
Technical report, Cryptography Research, Mar. 2012.

[21] Hardware random number generator. http://www.
cryogenius.com/hardware/rng/.

[22] Hardware random bit generator. https://web.jfet.org/
hw-rng.html.

[23] A hardware random number generator. http://iank.org/
trng.html.

[24] P. Horowitz and W. Hill. The Art of Electronics. Cam-
bridge University Press, 2015.

[25] ID Quantique. http://www.idquantique.com/.

[26] imix platform design. https://github.com/
helena-project/imix.

[27] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link
layer security architecture for wireless sensor networks.
In ACM SenSys, Nov. 2004.

[28] Kidekin. http://kidekin.nimp.co.uk/.

[29] H. Krawczyk. Cryptographic extraction and key deriva-
tion: The HKDF scheme. In CRYPTO, Aug. 2010.

[30] F. Lab. ENT: A pseudorandom number sequence test
program. http://www.fourmilab.ch/random/.

[31] Lampert rng. https://github.com/lampertb/
LampertCircuitRNG.

[32] LE Tech. http://www.letech.jpn.com/index en.html.

[33] U. Leonhardt. Quantum physics of simple optical in-
struments. Reports on Progress in Physics, 66, June
2003.

[34] M. Majzoobi, F. Koushanfar, and S. Devadas. FPGA-
based true random number generator using circuit
metastability with adaptive feedback control. In CHES,
Sept. 2011.

[35] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography, chapter 12. CRC
Press, Boca Raton, 1996.

[36] Normal number. Encyclopedia of Mathematics.
https://www.encyclopediaofmath.org/index.php/
Normal number.

[37] OneRNG hardware random number generator.
http://onerng.info.

[38] QRBG121. http://qrbg.irb.hr/.

[39] J. M. Rabaey, A. Chandrakasan, and B. Nikolic.
Digital Integrated Circuits. Pearson, 2nd edition, 2003.

[40] Open RNG based on modular entropy multiplication.
https://github.com/alwynallan/redoubler.

[41] RNG version 2. http://robseward.com/misc/RNG2/.

[42] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker,
S. Leigh, M. Levenson, M. Vangel, D. Banks,
A. Heckert, J. Dray, and S. Vo. A statistical test suite
for random and pseudorandom number generators for
cryptographic applications. Technical report, NIST,
2010.

[43] R. Santoro, O. Sentieys, and S. Roy. On-the-fly
evaluation of FPGA-based true random number
generator. In IEEE ISVLSI, May 2009.

[44] D. Schellekens, B. Preneel, and I. Verbauwhede. FPGA
vendor agnostic true random number generator. In
IEEE FPL, Aug. 2006.

[45] Secure hash standard (shs). Federal Information
Processing Standards Publication, aug 2015.

[46] P. Selinger. The GLIBC pseudo-random number
generator.
http://www.mathstat.dal.ca/˜selinger/random/.

[47] R. A. Serway and J. W. Jewett. Physics for Scientists
and Engineers. Brooks Cole, Boston, 9th edition, 2013.

[48] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and
J. Nieminen. How low energy is Bluetooth Low
Energy? comparative measurements with
ZigBee/802.15.4. In IEEE WCNC, Apr. 2012.

[49] Simtec Entropy Key. http://www.entropykey.co.uk/.

[50] P. Somlo. Zener-diode noise generators. Electronics
Letters, 11(14), July 1975.

[51] B. Sunar, W. J. Martin, and D. R. Stinson. A provably
secure true random number generator with built-in
tolerance to active attacks. IEEE Trans. Computers,
56(1), Jan. 2007.

[52] TectroLabs. https://tectrolabs.com/.

[53] M. Tehranipoor and F. Koushanfar. A survey of
hardware Trojan taxonomy and detection. 27(1):10–25,
Jan. 2010.

[54] TPS61041. http://www.ti.com/product/TPS61041.

[55] L. Trevisan. Extractors and pseudorandom generators.
In ACM STOC, May 1999.

[56] TRNG98. http://www.trng98.se/.

[57] True random numbers with RTL-entropy. http://www.
rtl-sdr.com/true-random-numbers-rtl-entropy/.

[58] T. Ts’o. https://plus.google.com/+TheodoreTso/
posts/SDcoemc9V3J, Sept. 2013.

[59] ubld.it TrueRNG. http://www.trng98.se/.

[60] G. Vazzana. Random sequence generator based on
avalanche noise.
http://holdenc.altervista.org/avalanche/.

[61] G. Vazzana. Random sequence generator based on chua
circuit. http://holdenc.altervista.org/chua/.

[62] J. von Neumann. Various techniques used in connection
with random digits. In National Bureau of Standards
Applied Mathematics Series, pages 12:36–38. 1951.

[63] B. V. Zeghbroeck. Principles of Semiconductor Devices.
Bart Van Zeghbroeck, 2011. Ch 4.5.

http://www.cryogenius.com/hardware/rng/
http://www.cryogenius.com/hardware/rng/
https://web.jfet.org/hw-rng.html
https://web.jfet.org/hw-rng.html
http://iank.org/trng.html
http://iank.org/trng.html
http://www.idquantique.com/
https://github.com/helena-project/imix
https://github.com/helena-project/imix
http://kidekin.nimp.co.uk/
http://www.fourmilab.ch/random/
https://github.com/lampertb/LampertCircuitRNG
https://github.com/lampertb/LampertCircuitRNG
http://www.letech.jpn.com/index_en.html
https://www.encyclopediaofmath.org/index.php/Normal_number
https://www.encyclopediaofmath.org/index.php/Normal_number
http://onerng.info
http://qrbg.irb.hr/
https://github.com/alwynallan/redoubler
http://robseward.com/misc/RNG2/
http://www.mathstat.dal.ca/~selinger/random/
http://www.entropykey.co.uk/
https://tectrolabs.com/
http://www.ti.com/product/TPS61041
http://www.trng98.se/
http://www.rtl-sdr.com/true-random-numbers-rtl-entropy/
http://www.rtl-sdr.com/true-random-numbers-rtl-entropy/
https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J
https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J
http://www.trng98.se/
http://holdenc.altervista.org/avalanche/
http://holdenc.altervista.org/chua/

	Introduction
	Background
	Randomness and computer security
	Related work
	Assumptions and requirements

	Design
	Choosing a noise source
	Setting the operating point
	Rejecting disturbances
	Power supply design
	Putting it together

	Using the Lampert circuit
	Testing and monitoring
	Implementation
	Experimental results
	Establishing sample rate
	Long-term testing
	Temperature testing
	Energy and time costs

	Discussion and conclusion

