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Abstract

Pocket computers are beginning to emerge that provide
sufficient processing capability and memory capacity to
run traditional desktop applications and operating sys-
tems on them. The increasing demand placed on these
systems by software is competing against the continu-
ing trend in the design of low-power microprocessors to-
wards increasing the amount of computation per unit of
energy. Consequently, in spite of advances in low-power
circuit design, the microprocessor is likely to continue
to account for a significant portion of the overall power
consumption of pocket computers.

This paper investigates clock scaling algorithms on the
Itsy, an experimental pocket computer that runs a com-
plete, functional multitasking operating system (a ver-
sion of Linux 2.0.30). We implemented a number of
clock scaling algorithms that are used to adjust the pro-
cessor speed to reduce the power used by the proces-
sor. After testing these algorithms, we conclude that cur-
rently proposed algorithms consistently fail to achieve
their goal of saving power while not causing user appli-
cations to change their interactive behavior.

1 Introduction

Dynamic clock frequency scaling and voltage scaling are
two mechanisms that can reduce the power consumed by
a computer. Both voltage scaling and frequency scaling
are important; the power consumed by a component im-
plemented in CMOS varies linearly with frequency and
quadratically with voltage.

To evaluate the relative importance and the situations in

which either is useful, it is necessary to consider energy,
the integral of power over time. By reducing the fre-
quency at which a component operates, a specific oper-
ation will consume less power but may take longer to
complete. Although reducing the frequency alone will
reduce the average power used by a processor over that
period of time, it may not deliver a reduction in energy
consumption overall, because the power savings are lin-
early dependent on the increased time. While greater
energy reductions can be obtained with slower clocks
and lower voltages, operations take longer; this exposes
a fundamental tradeoff between energy and delay.

Many systems allow the processor clock to be varied.
More recently, there are a number of processors that
allow the processor voltage to be changed. For exam-
ple, the StrongARM SA-2 processor, currently being
designed by Intel, is estimated to dissipate 500mW at
600MHz, but only 40mW when running at 150MHz –
a 12-fold energy reduction for a 4-fold performance re-
duction [1]. Likewise, the Pentium-III processor with
SpeedStep technology dissipates 9W at 500MHz but
22W at 650MHz [2], AMD has added clock and voltage
scaling to the AMD Mobile K6 Plus processor family
and Transmeta has also developed processors with volt-
age scaling. Because of this tradeoff in speed vs. power,
the decision of when to change the frequency or the volt-
age and frequency of such processors must be made ju-
diciously while taking into account application demand
and quality of user experience.

We believe that the decision to change processor speed
and voltage must be controlled by the operating system.
The operating system or similar system software is the
only entity with a global view of resource usage and de-
mand. Although it is clear that the operating system
should control the scheduling mechanism, it is not clear
what inputs are necessary to formulate the scheduling



policy. There are two possible sources of information for
policies. The application can estimate activity, providing
information to the operating system about computation
rates or deadlines, or the operating system can attempt to
infer some policy for the applications from their behav-
ior. These can be used separately or in concert to control
voltage and processor speed.

A number of studies have investigated policies to auto-
matically infer computation demands and adjust the pro-
cessor accordingly. We have implemented those previ-
ously described algorithms; this paper describes our ex-
perience.

In the next section, we present some background mate-
rial. We discuss related work in Section 3. In Section 4
we describe the schedulers we examine, our workload
and our measurement methodology. We then discuss our
results in Section 5.

2 Background

To better understand the importance of voltage and clock
scheduling, we begin by reviewing energy-consumption
concepts, then present an overview of scheduling algo-
rithms. Lastly, we give an overview of our test platform,
the Itsy Pocket Computer.

2.1 Energy

The energy E, measured in Joules (J), consumed by
a computer over T seconds is equal to the integral of
the instantaneous power, measured in Watts (W). The
instantaneous power consumed by components imple-
mented in CMOS, such as microprocessors and DRAM,
is proportional to V 2

�F , where V is the voltage supply-
ing the component, and F is the frequency of the clock
driving the component. Thus, the power consumed by
a computer to, say, search an electronic phone book,
may be reduced by reducing V , F , or both. However,
for tasks that require a fixed amount of work, reducing
the frequency may result in the system taking more time
to complete the work. Thus, little or no energy will be
saved. There are techniques that can result in energy sav-
ings when the processor is idle, typically through clock
gating, which avoids powering unused devices.

In normal usage pocket computers run on batteries,
which contain a limited supply of energy. However, as

discussed in [3], in practice, the amount of energy a bat-
tery can deliver (i.e., its capacity) is reduced with in-
creased power consumption. As an illustration of this
effect, consider the Itsy pocket computer that was used
in this study (described in Section 2.3). When the sys-
tem is idle, the integrated power manager disables the
processor core but the devices remain active. If the sys-
tem clock is 206 MHz, a typical pair of alkaline batteries
will power the system for about 2 hours; if the system
clock is set to 59 MHz, those same batteries will last for
about 18 hours. Although the battery lifetime increased
by a factor of 9, the processor speed was only decreased
by a factor of 3.5. The capacity of the battery can also
be increased by interspacing periods of high power de-
mand with much longer periods of low power demand
resulting in a “pulsed power” system [4]. The extent to
which these two non-ideal properties can be exploited
is highly dependent on the chemical properties and the
construction of a battery as well as the conditions un-
der which the battery is used. In general, the former ef-
fect (minimizing peak demand) is more important than
the latter for the domain of pocket computers because
pulsed power systems need a significant period of time
to recharge the battery, and most computer applications
place a more constant demand on the battery.

If a system allows the voltage to be reduced when clock
speed is reduced (i.e. it supports voltage scaling), it
is better to reduce the clock speed to the minimum
needed rather than running at peak speed and then being
idle. For example, consider a computation that normally
takes 600 million instructions to complete. That appli-
cation would take one second on a StrongARM SA-2 at
600MHz and would consume 500 mJoules. At 150MHz,
the application would take four seconds to complete,
but would only consume 160 mJoules, a four-fold sav-
ings assuming that an idle computer consumes no en-
ergy. There is obviously a significant benefit to running
slower when the application can tolerate additional de-
lay. Pering [5] used the term voltage scheduling to mean
scheduling policies that seek to adjust both clock speed
and energy. The goal of voltage scheduling is to reduce
the clock speed such that all work on the processor can
be completed “on time” and then reduce the voltage to
the minimum needed to insure stability at that frequency.

2.2 Clock Scheduling Algorithms

In scheduling the voltage at which a system operates and
the frequency at which it runs, a scheduler faces two
tasks: to predict what the future system load will be
(given past behavior) and to scale the voltage and clock



frequency accordingly. These two tasks are referred to as
prediction and speed-setting [6]. We consider one sched-
uler better than another if it meets the same deadlines (or
has the same behavior) as another policy but reduces the
clock speed for longer periods of time.

The schedulers we implemented are interval schedulers,
so called because the prediction and scaling tasks are
performed at fixed intervals as the system runs [7]. At
each interval, the processor utilization for the interval is
predicted, using the utilization of the processor over one
or more preceding intervals. We consider two predic-
tion algorithms originally proposed by Weiser et al. [7]:
PAST and AVGN. Under PAST, the current interval is
predicted to be as busy as the immediately preceding in-
terval, while under AVG, an exponential moving average
with decay N of the previous intervals is used. That is,
at each interval, we compute a “weighted utilization” at
time t, Wt, as a function of the utilization of the previ-
ous interval Ut�1 and the previous weighted utilization
Wt�1. The AVGN policy sets Wt =

N�Wt�1+Ut�1

N+1
. The

PAST policy is simply the AVG0 policy, and assumes the
current interval will have the same resource demands as
the previous interval.

The decision of whether to scale the clock and/or voltage
is determined by a pair of boundary values used to pro-
vide hysteresis to the scheduling policy. If the utilization
drops below the lower value, the clock is scaled down;
similarly, if the utilization rises above the higher value,
the clock is scaled up. Pering et al. [8] set these values at
50% and 70%. We used those values as a starting point
but, as we discuss in Section 5.3, we found that the spe-
cific values are very sensitive to application behavior.

Deciding how much to scale the processor clock is sep-
arate from the decision of when to scale the clock up
(or down). The SA-1100 processor used in the Itsy sup-
ports 11 different clock rates or “clock steps”. Thus, our
algorithms must select one of the discrete clock steps.
We use three algorithms for scaling: one, double, and
peg. The one policy increments (or decrements) the
clock value by one step. The peg policy sets the clock
to the highest (or lowest) value. The double policy
tries to double (or halve) the clock step. Since the low-
est clock step on the Itsy is zero, we increment the clock
index value before doubling it. Separate policies may be
used for scaling upwards and downwards.

Figure 1: Equipment setups used to measure power.

2.3 The Itsy Pocket Computer

The Itsy Pocket Computer is a flexible research plat-
form, developed to enable hardware and software re-
search in pocket computing. It is a small, low-power,
high-performance handheld device with a highly flexible
interface, designed to encourage the development of in-
novative research projects, such as novel user interfaces,
new applications, power management techniques, and
hardware extensions. There are several versions of the
basic Itsy design, with varying amount of RAM, flash
memory and I/O devices. We used several units for this
study that were modified by Compaq Computer Corpo-
ration’s Western Research Lab to include instrumenta-
tion leads for power measurement. Figure 1 shows the
units along with the measurement equipment we used.
We investigate the energy and power consumption of
the Itsy Pocket Computer when it is run at between
59 MHz and 206 MHz, and when its StrongARM SA-
1100 [9, 10] processor is powered at two different volt-
age levels.

All versions of the Itsy are based on the low-power
StrongARM SA-1100 microprocessor. All versions
have a small, high-resolution display, which offers 320�
200 pixels on a 0.18mm pixel pitch, and 15 levels of
greyscale. All versions also include a touchscreen, a mi-
crophone, a speaker, and serial and IrDA communica-
tion ports. The Itsy architecture can support up to 128
Mbytes both of DRAM and flash memory. The flash
memory provides persistent storage for the operating
system, the root file system, and other file systems and
data. Finally, the Itsy also provides a “daughter card”
interface that allows the base hardware to be easily ex-
tended. The Itsy uses two voltage supplies powered by
the same power source. The processor core is driven by a
1.5 V supply while the peripherals are driven by a 3.3 V
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Figure 2: Itsy System Architecture

supply. Both power supplies are driven by a single 3:1V
supply connected to the electrical mains.

The Itsy version 1.5 units used as the basis for this work
have 64 Mbytes of DRAM and 32 Mbytes of flash mem-
ory. These units were modified to allow us to run the
StrongARM SA-1100 at either 1.5 V or 1.23 V. Al-
though 1.23 V is below the manufacturer’s specifica-
tion, it can be safely used at moderate clock speeds and
our measurements indicate the voltage reduction yields
about a 15% reduction in the power consumed by the
processor; the percentage of power reduction for the sys-
tem may be less than this (depending on workload) be-
cause voltage scaling only reduces the power used by the
processor. The Itsy can be powered either by an external
supply or by two size AAA batteries. Figure 2 shows a
schematic of the Itsy architecture.

The system software of the Itsy includes a monitor and
a port of version 2.0.30 of the Linux operating sys-
tem. The Linux system was configured to provide sup-
port for networking, file systems and multi-user manage-
ment. Applications can be developed using a number of
programming environments, including C, X-Windows,
SmallTalk and Java. Applications can also take advan-
tage of available speech synthesis and speech recogni-
tion libraries.

3 Related Work

We believe that our evaluation of dynamic speed and
voltage setting algorithms to be the first such empirical
evaluation – to our knowledge, all previous work from
different groups has relied on simulators [7, 6, 5, 11, 12];
none modeled a complete pocket computer or the work-

load likely to be run on it.

Weiser et al. [7] proposed three algorithms, OPT,
FUTURE, and PAST and evaluated them using traces
gathered from UNIX-based workstations running engi-
neering applications. These algorithms use an interval-
based approach that determines the clock frequency for
each interval. Of the algorithms they propose, only
PAST is feasible because it does not make decisions us-
ing future information that would not be available to an
actual implementation. Even so, the actual version of
PAST proposed by by Weiser et al. is not implementable
because it requires that the scheduler know the amount
of work that had to be performed in the preceding in-
tervals. This information was used by the scheduler to
choose a clock speed that allows this delayed work to be
completed in the next interval, if possible. For example,
suppose post-processing of a trace revealed that the pro-
cessor was busy 80% of the cycles while running at full
speed. If, during re-play of the trace, the scheduler opted
to run the processor at 50% speed for the interval, then
30% of the work could not be completed in that interval.
Consequently, in the next interval, the scheduler would
adjust the speed in an effort to at least complete the 30%
“unfinished” work. Without additional information from
the application, the scheduler can simply observe that
the application executed until the end of the scheduling
quanta, and does not know the amount of “unfinished”
computing left. Because most pocket computer applica-
tions do not provide a means for the processor to know
how much work should be done in a given interval, the
PAST algorithm is not tractable for such systems.

The early work of Weiser et al. has been extended by
several groups, including [6, 12]. Both of these groups
employed the same assumptions and the same traces
used by Weiser. Govil et al. [6] considered a large num-
ber of algorithms, while Martin [12] revised Weiser’s
PAST algorithm to account for the non-ideal properties
of batteries and the non-linear relationship between sys-
tem power and clock frequency. Martin argues that the
lower bound on clock frequency should be chosen such
that the number of computations per battery lifetime is
maximized. While Martin correctly assumed a non-zero
energy cost for idling the processor and changing clock
speed, neither Govil nor Weiser did.

Both our work and that of Pering et al. [5, 11] ad-
dresses some of the limitations of the above noted ear-
lier work. In particular, we both evaluate implementable
algorithms using workloads that are representative of
those that might be run on pocket computers. We as-
sess the success of our algorithms under the assumption
that our applications have inelastic performance con-



straints and that the user should see no visible changes
induced by the scheduling algorithms. By comparison,
Pering et al. assume that frames of an MPEG video,
for instance, can be dropped and present results which
combine a combination of energy savings vs. frame
rates. Our goal was to understand the performance of
the different scheduling algorithms without introducing
the complexity of comparing multi-dimensional perfor-
mance metrics such as the percentage of dropped frames
vs. power savings.

Pering et al. use intervals of 10-50ms for their schedul-
ing calculations. In comparison to the earlier approaches
presented in [7, 6, 12] in which work was considered
overdue if it was not completed within an interval, both
Pering et al. and our study consider an event to have
occurred on time if delaying its completion did not ad-
versely affect the user. However, a number of impor-
tant differences exist between our work and Pering et
al.. First, Pering et al. model only the power consumed
by the microprocessor and the memory, thus ignoring
other system components whose power is not reduced
by changes in clock frequency. Second, by virtue of
our work using an actual implementation, we are able
to evaluate longer running applications and more com-
plex applications (e.g., Java). By virtue of their size,
our applications exhibit more significant memory behav-
ior, and thus, expose the non-linear relationship between
power and clock speed noted by Martin. Lastly, by us-
ing an actual system, our scheduling implementations
were exposed to periodic behaviors that are captured
by traces; for example, the Java implementation uses a
30ms polling loop to check for I/O events. This periodic
polling adds additional variation to the clock setting al-
gorithms, inducing the sort of instability we will explain
in x5.3.

4 Methodology

Before describing the implementation of the clock and
voltage scheduling algorithms we used, it is important to
understand how we did our measurements. Section 4.1
describes how we measure power and energy. We then
describe the implementation of the schedulers and the
workloads we used to assess their performance.

4.1 Measuring Power and Total Energy

To measure the instantaneous power consumed by the
Itsy, we use a data acquisition (DAQ) system to record
the current drawn by the Itsy as it is connected to an ex-
ternal voltage supply, and the voltage provided by this
supply. Figure 1 presents a picture of our setup along
with the wires connected to the Itsy to facilitate mea-
suring the supply current1 and voltage. We configured
the DAQ system to read the voltage 5000 times per sec-
ond, and convert these readings to 16-bit values. These
values were then forwarded to a host computer, which
stored them for subsequent analysis. From these mea-
surements, we can compute a time profile of the power
used by an application as it runs on the Itsy.

To determine the relevant part of the power-usage pro-
file of a workload, we measure the time required to ex-
ecute the workload and then select the relevant set of
measurements from the data collected by the DAQ sys-
tem. For each benchmark, we used the gettimeof-
day system call to time its execution; this interface uses
the 3.6 MHz clock available on the processor to provide
accurate timing information. To synchronize the collec-
tion of the voltages with the start of execution of a work-
load, as the workload begins executing, we toggle one
of the SA1100’s general-purpose input-output (GPIO)
pins. This pin is connected to the external trigger of the
DAQ system; toggling the GPIO causes the DAQ system
to begin recording measurements. As our measurement
technique is very similar to that which we used in [13],
we refer the reader to this reference for a more in-depth
description.

Once the relevant part of the profile has been deter-
mined, we use it to calculate the average power and
the total energy consumed by the Itsy during the cor-
responding time interval. To compute the energy, we
make the assumption that the power measured at time
t represents the average power of the Itsy for the inter-
val t to t + 0:0002 seconds, where 0.0002 seconds is
the time between each successive power measurement.
Thus, the energy E is equal to

P
n

i=1 pi(t) � 0:0002,
where p1(t); : : : ; pn(t) are the n power readings of in-
terest.

In making our power measurements, we used a simi-
lar approach as the one used in [13] to reduce a num-
ber of sources of possible measurement error. We mea-

1The supply current was measured by measuring the voltage drop
across a high precision small-valued resistor of a known resistance
(0:02
). The current was then calculated by dividing the voltage by
the resistance.



sured multiple runs of each workload; in general, we
found the 95% confidence interval of the energy to be
less than 0.7% of the mean energy. This implies that the
runs were very repeatable, despite the possible variation
that would arise from interactions between application
threads, other processes and system daemons.

4.2 Workload

We used a varied workload to assess the performance
of the different clock scaling algorithms. Since it’s not
clear what applications will be common on pocket com-
puters, we used some obvious applications (web brows-
ing, text reading) and other less obvious applications
(chess, mpeg video and audio). The applications ran
either directly on top of the Linux operating system or
within a Java virtual machine [14]. To capture repeat-
able behavior for the interactive applications, we used
a tracing mechanism that recorded timestamped input
events and then allowed us to replay those events with
millisecond accuracy. We did not trace the mpeg play-
back because there is no user interaction, and we found
little inter-run variance. We used the following applica-
tions:

MPEG: We played a 320x200 color MPEG-1 video
and audio clip at 15 frames a second. The mpeg
video was rendered as a greyscale image on the
Itsy. Audio was rendered by sending the au-
dio stream as a WAV file to an audio player
which ran as a separate process, forked from the
video player. There is no explicit synchroniza-
tion between the audio and video sequences, but
both are sequenced to remain synchronized at 15
frames/second. The clip is 14 seconds and was
played in a loop to provide 60 seconds of play-
back.

Web: We used a Javabean version of the IceWeb
browser to view content stored on the itsy.
We selected a file containing a stored article
from www.news.com concerning the Itsy. We
scrolled down the page, reading the full article.
We then went back to the root menu and opened a
file containing an HTML version of WRL techni-
cal report TN-56, which has many tables describ-
ing characteristics of power usage in Itsy compo-
nents. The overall trace was 190 seconds of activ-
ity.

Chess: We used a Java interface to version 16.10 of the
Crafty chess playing program. Crafty was run as

a separate process. Crafty uses a play book for
opening moves and then plays for specific periods
of time in later stages of the games and plays the
best move available when time expires. The 218
second trace includes a complete game of Crafty
playing against a novice player (who lost, badly).

TalkingEditor: We used a version of the “mpedit” Java
text editor that had been modified to read text files
aloud using the DECtalk speech synthesis system
(which is run in a separate process). The input
trace records the user selecting a file to be opened
using the file dialogue, (i.e. moving to the direc-
tory of the short text file and selecting the file),
then having it spoken aloud and finally opening
and having another text file read aloud. The trace
took 70 seconds.

The Kaffe Java system [14] uses a JIT, makes extensive
use of dynamic shared libraries and supports a threading
model using setjmp/longjmp. The graphics library used
by Java is a modified version of the publically available
GRX graphics library and uses a polling I/O model to
check for new input every 30 milliseconds. The MPEG
player renders directly to the display.

4.3 Implementing the Scheduling Algorithms

We made two modifications to the Linux kernel to sup-
port our clock scheduling algorithms and data record-
ing. The first modification provides a log of the process
scheduler activity. This component is implemented as
a kernel module with small code modifications to the
scheduler that allow the logging to be turned on and
off. For each scheduling decision, we record the pro-
cess identifier of the process being scheduled, the time
at which it was scheduled (with microsecond resolution)
and the current clock rate.

We also implemented an extensible clock scaling policy
module as a kernel module. We modified the clock in-
terrupt handler to call the clock scheduling mechanism
if it has been installed, and the Linux scheduler to keep
track of CPU utilization. In Linux, the idle process al-
ways uses the zero process identifier. The idle process
enters a low-power “nap” mode that stalls the processor
pipeline until the next scheduling interval. If the previ-
ous process was not the idle process, the kernel adds the
execution time to a running total. On every clock inter-
rupt, this total is examined by the clock scaling module
and then cleared. The CPU utilization can be calculated
by comparing the time spent non-idle to the time length



of a quantum. Our time quantum was set to 10 msec, the
default scheduling period in Linux; Pering et al. [5, 11]
used similar values for their calculations.

Normally, a process can run for several quanta before the
scheduler is called. The executing process is interrupted
by the 100Hz system clock when the O/S decrements
and examines a counter in the process control block at
each interrupt. When that counter is zero, the scheduler
is called. We set the counter to one each time we sched-
ule a process, forcing the scheduler to be called every
10ms. While this modification adds overhead to the exe-
cution of an application, it allows us to control the clock
scaling more rapidly. We measured the execution over-
head and found it to be very small (about 6 microseconds
for each 10ms interval, or 0.06%).

5 Results

The purpose of our study is to determine if the heuris-
tics developed in prior studies can be practically applied
to actual pocket computers. We examined a number of
policies, most of which are variants of the AVGN policy.
As described in x4.3, we used three different speed set-
ting policies. Our intent was to focus on systems that
could be implemented in an actual O/S and that did not
require modifications to the applications (such as requir-
ing information about deadlines or schedules). We as-
sumed that our workloads had inelastic constraints; in
other words, we assumed the applications had no way to
accommodate “missed deadlines”.

We split the discussion of our results into three parts.
The first section describes aspects of the applications
and how they differ from those used in prior work and
the second section discusses the performance of the dif-
ferent clock scheduling algorithms. Finally, we examine
the benefit of the limited voltage scaling available on the
Itsy and summarize the results.

5.1 Application Characteristics

Figure 3 presents plots of the processor utilization over
time for each of the benchmark applications. This infor-
mation was gathered using the on-line process logging
facility that we added to the kernel. Due to kernel mem-
ory limitations, we could only capture a subset of the
process behavior. Each application was able to run at
132MHz and still meet any user interaction constraints
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Figure 3: Utilization using 10ms Moving Average For
Between 30 to 40 Second Intervals Using 206MHz Fre-
quency Setting



(i.e. the application did not appear to behave any differ-
ently).

The utilization is computed for each 10ms scheduling
quantum. We used the same 10ms interval for logging
that is used for scheduling within Linux. Since most pro-
cesses compute for several quanta before yielding, the
system is usually either completely idle or completely
busy during a given quantum. Some processes execute
for only a short time then yield the processor prior to
the end of their scheduling quanta; for example, the Java
implementation we used has a 30ms I/O polling loop –
thus, when the Java system is “idle,” there is a constant
polling action every 30ms that takes about a millisecond
to complete.

The behavior of the applications is difficult to predict,
even for applications that should have very predictable
behavior and each application appears to run at a dif-
ferent time-scale. The MPEG application renders at 15
frames/sec; there are 450 frames in the 30 second in-
terval shown in Figure 3. Each frame is rendered in
67ms or just under 7 scheduling quanta. Any scheduling
mechanism attempting to use information from a single
frame (as opposed to a single quanta) would need to ex-
amine at least 7 quanta. Other applications have much
coarser behavior. For example, the TalkingEditor appli-
cation consumes varying amount of CPU time until the
text is being loaded for speech synthesis. The bursty
behavior prior to the speech synthesis results from drag-
ging images, JIT’ing applications and opening files. Fol-
lowing this are long bursts of computation as the text
is actually synthesized and send to the OSS-compatible
sound driver. Finally, more cycles are taken by the sound
driver. Thus, this application is bursty at a higher level.

For most applications, patterns in the utilization are eas-
ier to see if you plot the utilization using a 100ms mov-
ing average, as shown in Figure 4. The MPEG appli-
cation, in Figure 4(a), is still very sporadic because of
inter-frame variation; for MPEG, there is even signif-
icant variance in CPU utilization (60-80%) when con-
sidering a 1 second moving average (not shown). The
Chess and TalkingEditor applications show patterns in-
fluenced by user interaction. It’s clear from Figure 4(c)
that utilization is low when the user is thinking or mak-
ing a move and that utilization reaches 100% when
Crafty is planning moves. Likewise, Figure 4(d) shows
the aforementioned pattern of synthesis and sound ren-
dering.
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(b) Web Application
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(c) Chess Application
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(d) TalkingEditor Application

Figure 4: Utilization using 100ms Moving Average For
Between 30 to 40 Second Intervals Using 206MHz Fre-
quency Setting



5.2 Clock Scheduling Comparison

The goal of a clock scheduling algorithm is to try to
predict or recognize a CPU usage pattern and then set
the CPU clock speed sufficiently high to meet the (pre-
dicted) needs of that application. Although patterns in
the utilization are more evident when using a 100ms
sliding average for utilization, we found that averaging
over such a long period of time caused us to miss our
“deadline”. In other words, the MPEG audio and video
became unsynchronized and some others applications
such as the speech synthesis engine had noticeable de-
lays. This occurs because it takes longer for the system
to realize it is becoming busy.

This delay is the reason that the studies of Govil et al. [6]
and Weiser [7] argued that clock adjustment should ex-
amine a 10-50ms interval when predicting future speed
settings. However, as Figure 3 shows, it is difficult to
find any discernible pattern at the smaller time-scales.
Like Govil et al., we also allowed speed setting to occur
at any interval; Weiser et al. did not model having the
scheduler interrupted while an application was running,
but rather deferred clock speed changes to occur only
when a process yielded or began executing in a quanta.

There are a number of possible speed-setting heuristics
we could examine; since we were focusing on imple-
mentable policies, we primarily used the policies ex-
plored by Pering et al. [5]. We also explored other al-
ternatives. One simple policy would determine the num-
ber of “busy” instructions during the previous N 10ms
scheduling quanta and predict that activity in the next
quanta would have the same percentage of busy cycles.
The clock speed would then be set to insure enough busy
cycles.

This policy sounds simple, but it results in exception-
ally poor responsiveness, as illustrated in Figure 5. Fig-
ure 5(a) shows the speed changes that would occur when
the application is moving from period of high CPU uti-
lization to one of low utilization; the speed changes to
59MHz relatively quickly because we are adding in a
large number of idle cycles each quanta. By compar-
ison, when the application moves from an idle period
to a fully utilized period, the simple speed setting pol-
icy makes very slow changes to the processor utilization
and thus the processor speed increases very slowly. This
occurs because the total number of non-idle instructions
across the four scheduling intervals grows very slowly.
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Avg = 206, Speed = 206

206/1 206/1 206/1 206/0

Avg = 154.5, Speed = 162.5
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T
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59/0 59/0 59/0

59/0 59/0 59/0 59/1

59/0 59/0 59/1 59/1

59/0 59/1 59/1 59/1

(a) Going to Idle (b) Speeding up

Figure 5: Simple averaging behavior results in poor poli-
cies. Each box represents a single scheduling interval,
and the scheduling policy averages the number of non-
idle instructions over the four scheduling quanta to select
the minimum processor speed. To simplify the example,
we assume each interval is either fully utilized or idle.
The notation “206/0” means the CPU is set to 206MHz
and the quanta is idle while “206/1” means the CPU is
fully utilized.

5.3 The AVGN Scheduler

We had initially thought that a policy targeting the neces-
sary number of non-idle cycles would result in good be-
havior, but the previous example highlights why we use
the speed-setting policies described in x4.3. We used the
same AVGN scheduler proposed by Govil [6] and Per-
ing [5] and also examined by Pering et al. in [5]; Per-
ings later paper in [11] did not examine scheduler heuris-
tics and only used real-time scheduling with application-
specified scheduling goals.

Our findings indicate that the AVGN algorithm can not
settle on the clock speed that maximizes CPU utilization.
Although a given set of parameters can result in optimal
performance for a single application, these tuned param-
eters will probably not work for other applications, or
even the same application with different input. The vari-
ance inherent in many deadline-based applications pre-
vents an accurate assessment of the computational needs
of an application. The AVGN policy can be easily de-
signed to ensure that very few deadlines will be missed,
but this results in minimal energy savings. We use an
MPEG player as a running example in this section, as
it best exemplifies behavior that illustrates the multitude
of problems in past-based interval algorithms. Our in-
tuition is that if there’s is a single application that il-
lustrates simple, easy-to-predict behavior, it should be



MPEG. Our measurements showed that the MPEG ap-
plication can run at 132MHz without dropping frames
and still maintain synchronization between the audio and
video. An ideal clock scheduling policy would therefore
target a speed of 132MHz.

However, without information from the user level appli-
cation, a kernel cannot accurately determine what dead-
lines an application operates under. First, an application
may have different deadline requirements depending on
its input; for example, an MPEG player displaying a
movie at 30fps has a shorter deadline than one running
at 15fps. Although the deadlines for an application with
a given input may be regular, the computation required
in each deadline interval can vary widely. Again, MPEG
players demonstrate this behavior; I-frames (key or ref-
erence) require much more computation than P-frames
(predicted), and do not necessarily occur at predictable
intervals.

One method of dealing with this variance is to look at
lengthy intervals which will, by averaging, reduce the
variance of the computational observations. Our uti-
lization plots showed that even using 100ms intervals,
significant variance is exhibited. In addition to interval
length, the number of intervals over which we average
(N ) of the AVGN policy can also be manipulated. We
conducted a comprehensive study and varied the value
of N from 0 (the PAST policy) to 10 with each com-
bination of the speed-setting policies (i.e. using “peg”
to set the CPU speed to the highest point, or “one” to
increment or decrement the speed).

Our conclusions from the results with our benchmarks
is that the weighted average has undesirable behavior.
The number of intervals not only represents the length
of interval to be considered; it also represents the lag be-
fore the system responds, much like the simple averag-
ing example described above. Unlike that simple policy,
once AVGN starts responding, it will do so quickly. For
example, consider a system using an AVG9 mechanism
with an upper boundary of 70% utilization and “one” as
the algorithms used to increment or decrement the clock
speed. Starting from an idle state, the clock will not scale
to 206MHz for 120 ms (12 quanta). Once it scales up,
the system will continue to do so (as the average utiliza-
tion will remain above 70%) unless the next quantum is
partially idle. This occurs because the previous history is
still considered with equal weight even when the system
is running at a new clock value.

The boundary conditions used by Pering in [5] result in
a system that scales more rapidly down than up. Table 1
illustrates how this occurs. If the weighted average is

Time(ms) Idle/Active AVG<9> Notes
10 Active 1000
20 Active 1900
30 Active 2710
40 Active 3439
50 Active 4095
60 Active 4685
70 Active 5217
80 Active 5965
90 Active 6125
100 Active 6513
110 Active 6861
120 Active 7175 Scale up
130 Active 7458 Scale up
140 Active 7712 Scale up
150 Active 7941 Scale up
160 Idle 7146 Scale up
170 Idle 6432
180 Idle 5789
190 Idle 5210
200 Idle 4689 Scale down

Table 1: Scheduling Actions for the AVG9 Policy

70%, a fully active quantum will only increase the aver-
age to 73% while a fully idle quantum will reduce it to
63% – thus, there is a tendency to reduce the processor
speed.

The job of the scheduler is made even more difficult by
applications that attempt to make their own scheduling
decisions. For example, the default MPEG player in
the Itsy software distribution uses a heuristic to decide
whether it should sleep before computing the next frame.
If the rendering of a frame completes and the time until
that frame is needed is less than 12ms, the player en-
ters a spin loop; if it is greater than 12ms, the player
relinquishes the processor by sleeping. Therefore, if the
player is well ahead of schedule, it will show significant
idle times; once the clock is scaled close to the optimal
value to complete the necessary work, the work seem-
ingly increases. The kernel has no method of determin-
ing that this is wasteful work.

Furthermore, there is some mathematical justification
for our assertion that AVGN fundamentally exhibits un-
desirable behavior, and will not stabilize on an optimal
clock speed, even for simple and predictable workloads.
Our analysis only examines the “smoothing” portion of
AVGN, not the clock setting policy. Nevertheless, it
works well enough to highlight the instability issues with
AVGN by showing that, even if the system is started out
at the ideal clock speed, AVGN smoothing will still result
in undesirable oscillation.
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Figure 6: Fourier Transform of a Decaying Exponential

A processor workload over time may be treated as a
mathematical function, taking on a value of 1 when the
processor is busy, and 0 when idling. Borrowing tech-
niques from signal processing allows us to characterize
the effect of AVGN on workloads in general as well as
specific instances. AVGN filters its input using a decay-
ing exponential weighting function. For our implemen-
tation, we used a recursive definition in terms of both
the previous actual (Ut�1) and weighted (Wt�1) utiliza-
tions: Wt =

N�Wt�1+Ut�1

N+1
. For the analysis, however,

it is useful to transform this into a less computation-
ally practical representation, purely in terms of earlier
unweighted utilizations. By recursively expanding the
Wt�1 term and performing a bit of algebra, this repre-
sentation emerges: Wt =

1
N+1

P
t�1

k=0(
N

N+1
)
k�(t�1)Uk.

This equation explicitly shows the dependency of each
Wt on all previous Ut, and makes it more evident that
the weighted output may also be expressed as the result
of discretely convolving a decaying exponential func-
tion with the raw input. This allows us to examine spe-
cific types of workloads by artificially generating a rep-
resentative workload and then numerically convolving
the weighting function with it. We can also get a quali-
tative feel for the general effects AVGN has by moving to
continuous space and looking at the Fourier transform of
a decaying exponential, since convolving two functions
in the time domain is equivalent to multiplying their cor-
responding Fourier transforms.

Lets begin by examining the Fourier transform of a de-
caying exponential: x(t) = e��tu(t), where u(t) is the
unit step function, 0 for all t < 0 and 1 for t � 0.
This captures the general shape of the AVGN weight-
ing function, shown in Figure 6. Its Fourier transform is
X(!) = 1

i!+�
. The transform attenuates, but does not

eliminate, higher frequency elements. If the input sig-
nal oscillates, the output will oscillate as well. As � gets
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Figure 7: Result of AVG3 Filtering on a the Processor
Utilization for a Periodic Workload Over Time

smaller the higher frequencies are attenuated to a greater
degree, but this corresponds to picking a larger value for
N in AVGN and comes at the expense of greater lag in
response to changing processor load.

For a specific workload example, we’ll use a simple re-
peating rectangle wave, busy for 9 cycles, and then idle
for 1 cycle. This is an idealized version of our MPEG
player running roughly at an optimal speed, i.e. just idle
enough to indicate that the system isn’t saturated. Ide-
ally, a policy should be stable when it has the system run-
ning at an optimal speed. This implies that the weighted
utilization should remain in a range that would prevent
the processor speed from changing. However, as was
fore-shadowed by our initial qualitative discussion, this
is not the case. A rectangular wave has many high fre-
quency components, and these result in a processor uti-
lization as shown in Figure 7. This figure shows the os-
cillation for this example, and shows that oscillation oc-
curs over a surprisingly wide range of the processor uti-
lization. As discussed earlier, our experimental results
with the MPEG player on the Itsy also exhibit this os-
cillation because that application exhibits the same step-
function resource demands exhibited by our example.

We also simulated interval-based averaging policies that
used a pure average rather than an exponentially de-
caying weighting function, but our simulations indi-
cated that that policy would perform no better than the
weighted averaging policy. Simple averaging suffers
from the same problems experienced by the weighted
averaging if you do not average the appropriate period.



5.4 Summary of Results

We are omitting a detailed exposition on the scheduling
behavior of each scheduling policy primarily because
most of them resulted in equivalent (and poor) behavior.
Recall that the best possible scheduling goal for MPEG
would be to switch to a 132MHz speed and continue to
render all the frames at that speed. No heuristic policy
that we examined achieved this goal. Figure 8 shows
the clock setting behavior of the best policy we found.
That policy uses the PAST heuristic (i.e. AVG0) and
“pegs” the CPU speed either to 206MHz or 59MHz de-
pending on the weight metric. The bounds on the hys-
teresis where that a CPU utilization greater than 98%
would cause the CPU to increase the clock speed and a
CPU utilization less than 93% would decrease the clock
speed.

This policy is “best” because it never misses any dead-
line (across all the applications) and it also saves a small
but significant amount of energy. This last point is il-
lustrated in Table 2. This table shows the 95% confi-
dence interval for the average energy needed to run the
MPEG application. The reduction in energy between
206MHz and 132MHz occurs because the application
wastes fewer cycles in the application idle loop used to
meet the frame delays for the MPEG clip. A � 8% en-
ergy reduction occurs when we drop the processor volt-
age to 1.23V – this is less than the 15% maximum reduc-
tion we measured because the application uses resources
(e.g. audio) that are not affected by voltage scaling.
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Figure 8: Clock frequency for the MPEG application us-
ing the best scheduling policy from our empirical study
– the scheduling policy only select 59Mhz or 206MHz
clock settings and changes clock settings frequently.
This scheduling policy results in suboptimal energy sav-
ings but avoids noticeable application slowdown.

The PAST policy we described results in a small but sta-
tistically significant reduction in energy for the MPEG
application. Allowing the processor to scale the voltage
when the clock speed drops below 162.2MHz results in
no statistical decrease.

We initially surmised that there is no improvement be-
cause the cost of voltage and clock scaling on our plat-
form out-weighs any gains. We measured the cost of
clock and voltage scaling using the DAQ. To measure
clock scaling, we coded a tight loop that switched the
processor clock as quickly as possible.

Before each clock change, we inverted the state of a spe-
cific GPIO and used the DAQ to measure the interval
with high precision. We took measurements when the
clock changed across many different clock settings ( e.g.
from 59 to 206MHz, from 191 to 206MHz and so on).

Clock scaling took approximately 200microseconds, in-
dependent of the starting or target speed. During that
time, the processor can not execute instructions. Thus,
frequency changing varies between 11; 200 clock peri-
ods at 59MHz and 40; 000 clock periods at 200MHz.

We measured the time for the voltage to settle follow-
ing a voltage change. It takes � 250 microseconds to
reduce voltage from 1:5V to 1:23V ; in fact, the volt-
age slowly reduces, drops below 1:23V and then rapidly
settles on 1:23V . Voltage increases were effectively in-
stantaneous. We suspect the slow decay occurs because
of capacitance; many processors use external decoupling
capacitors to provide sufficient current sourcing for pro-
cessors that have widely varying current demands.

These measurements indicate that the time needed for
clock and voltage changes are less than 2% of the
scheduling interval; thus, we would be able to change
the clock or voltage on every scheduling decision with
less than 2% overhead. The fact that we see little energy
reduction is related to the limited energy savings possi-
ble with the voltage scaling available on this platform
and the efficacy of the policies we explored.

6 Conclusions and Future Work

Our implementation results were disappointing to us –
we had hoped to be able to identify a prediction heuris-
tic that resulted in significant energy savings, and we
thought that the claims made by previous studies would
be born out by experimentation. Although we have



Algorithm Energy

Constant Speed @ 206.4 MHz, 1.5 Volts 85.59 - 86.49
Constant Speed @ 132.7 MHz, 1.5 Volts 79.59 - 80.94
Constant Speed @ 132.7 MHz, 1.23 Volts 73.76 - 74.41
PAST, Peg - Peg, Thresholds: > 98% scales up, <
93% scales down, 1.5 Volts

85.03 - 85.47

PAST, Peg - Peg, Thresholds: > 98% scales up, <
93% scales down, Voltage Scaling @ 162.2 MHz

84.60 - 85.45

Table 2: Summary of Performance of Best Clock Scaling Algorithms
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Figure 9: Non-linear change in Utilization with Clock
Frequency (in MHz)

Processor Cycles/Mem. Cycles / Cache
Freq. Reference Reference
59.0 11 39
73.7 11 39
88.5 11 39

103.2 11 39
118.0 13 41
132.7 14 42
147.5 14 49
162.2 15 50
176.9 18 60
191.7 19 61
206.4 20 69

Table 3: Memory access time in cycles for reading indi-
vidual words as well as full cache lines.

found a policy that saves some energy, that policy leaves
much to be desired. The policy causes many voltage and
clock changes, which may incurr unnecessary overhead;
this will be less of a problem as processors are better
designed to accommodate those changes. However, the
policy did result in both the most responsive system be-
havior and most significant energy reduction of all the
policies we examined.

As with all empirical studies, there are anomalies in our
system that we can not explain and that may have influ-
enced our results. We found that the processor utiliza-
tion does not always vary linearly with clock frequency.
Figure 9 shows the processor utilization vs. clock fre-
quency for the MPEG benchmark. There is a distinct
“plateau” between 162MHz and 176.9MHz. We believe
that this delay may be induced by the varying number
of clock cycles needed for memory accesses as the pro-
cessor frequency changes, as shown in Table 3. That
table shows the memory access time for EDODRAM
for reading individual words or a full cache line; there
is an obvious non-linear increase between 162MHz and
176.9MHz. The potential speed mismatch between pro-
cessor and memory has been noted by others [12], but
we have not devised a way to verify that this is the only
factor causing the non-linear behavior we noted.

This paper is the first step on an effort to provide ro-
bust support for voltage and clock scheduling within the
Linux operating system. Although our initial results are
disappointing, we feel that they serve to stop us from at-
tempting to devise clever heuristics that could be used
for clock scheduling. It may well be that Pering [11]
reached a similar conclusion since their later publica-
tions discontinued the use of hueristics, but their publi-
cations don’t describe the implementation of their oper-
ating system design or the rational behind the policies
used. Furthermore, they don’t describe how deadlines
are to be “synthesized” for applications such as Web,
TalkingEditor and Web where there is no clear “dead-
line”.



Our immediate future work is to provide “deadline”
mechanisms in Linux. These deadlines are not precisely
the same mechanism needed in a true real-time O/S –
in a RTOS, the application does not care if the deadline
is reached early, while energy scheduling would prefer
for the deadline to be met as late as possible. A further
challenge we face will be to find a way to automatically
synthesize those deadlines for complex applications.
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