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Abstract
This paper discusses our experience in designing and de-

ploying a 994-node sensor network to measure the social
contact network of a high school over one typical day. The
system aims to capture interactions of human subjects for the
study of infectious disease spread. We describe unique chal-
lenges posed by a large-scale network that is heavily affected
by humans. We present techniques to address challenges
such as frequent node reboots and global timestamps. The
end result of the deployment is a dataset of 792 traces which
can be used to calculate the school population’s contact net-
work and the rough location where interactions occurred.
1 Introduction

Epidemiology studies the spread and control of infectious
diseases. Many airborne diseases, such as the flu, spread
through social contact. Therefore, contact network epidemi-
ology studies the properties of social graphs and their impli-
cations for disease transmission.

The traditional method for gathering contact data is ask-
ing subjects to report with whom they have had proximity
contact. This approach does not result in a high fidelity con-
tact graph, but rather in a rough estimate of the graph’s gen-
eral properties, such as degree distribution. Furthermore, the
methodology has many problems, such as cognitive bias to-
wards more recent events and random population sampling.

Instead of a pen-and-paper approach, this work presents a
sensor network deployment to measure a high school contact
network. We use 824 TelosB motes, one per participant, to
detect proximity between subjects by measuring the signal
strength of periodic beacon packets. In addition, we deploy
170 nodes in fixed locations throughout the school campus.

The deployment monitored all students, faculty, and staff
for a typical school day, between 7am and 4 pm. After
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collecting the motes, we downloaded a total of 3 million
records of contacts between participants and another 3 mil-
lion records indicating locations. These records provide a
complete, fine-grained data set of social contacts, which can
be used to compute the contact network of the high school
population. This is the first data set of such precision and
magnitude, therefore computing and analyzing the contact
graph is a separate research problem that we plan to present
in an epidemiology publication in the near future.

This paper discusses our experiences in designing and de-
ploying a sensor network heavily affected by human subjects
and the unique challenges it introduces. The work makes the
following contributions. We investigate how received sig-
nal strength (RSSI) can be used to define a contact between
two people. We also describe the necessary post-deployment
data processing so that data are usable. The main problem
we encounter is a high number of node reboots – 1500 over
500 nodes, with some nodes having as many as 45 reboots.
We propose several techniques for reconstructing the local
node time at which beacons were received. Lastly, we use
local times to synchronize all data traces to a relative global
clock in order to place all events on a common timeline.

2 Contact Networks
The spread of an infectious disease in a host population

is a diffusion process in a network. The network consist
of hosts (the nodes of the network) and their interactions
through which a disease can be transmitted (the edges of the
network). Defining what constitutes an edge in the contact
network is important because diseases spread through differ-
ent routes, for example through airborne droplets (influenza),
sexual contacts (HIV), or insect vectors (malaria.)

In this deployment, we were interested in measuring the
contact network relevant for the spread of influenza-like dis-
eases such as seasonal influenza, H1N1, and the common
cold. Such diseases are thought to be transmitted mainly
through airborne droplets exhaled by an infected subject
sneezing or coughing in proximity to a healthy one. Our
goal was to capture contacts between all students, teachers
and staff who were within 9 feet of each other. The structure
of a contact network has been shown to have a strong effect
on diffusion processes, and knowing this structure will help
make better predictions for the dynamics of disease spread.
In addition, data on contact networks can inform mathemati-



Figure 1: Each participant in the deployment received a TelosB mote inside
a white pouch. Subjects wore the motes around their necks using a lanyard.

cal models designed to determine the best intervention strate-
gies for controlling disease spread. The rest of this paper
uses contact graph and contact network interchangeably.

3 Deployment Overview
The goal of the deployment is to measure the contact

graph of an entire school and to collect information about
participants’ locations throughout a school day. Localization
is key in testing the hypothesis that frequently visited places,
such as bathrooms, have an effect on disease spread.

The entire school population consists of about 850 stu-
dents, teachers, and staff. Participation was voluntary and
participants’ nodes were given out randomly. We agreed to
keep the name of the school and any other sensitive infor-
mation confidential. Analysis of the campus map suggested
the use of an additional 170 nodes for location information.
We purchased 1000 Crossbow TelosB motes; the first 850
of them were placed in pouches and attached on lanyards
so people could carry them around their necks (Figure 1.)
The remaining 150 motes, plus an additional 20, were locator
motes. Again, location node IDs were eassigned randomly.

The deployment proceeded in two stages. First, we placed
170 stationary motes in the five high school buildings and
a few auxiliary structures (a bookstore and locker rooms).
These were put in place the night before the data collection
day. We covered all classrooms and bathrooms, the dining
hall and common spaces such as open study areas. For pri-
vacy reasons, we do not include a map of the deployment.
The second stage of the deployment took place between the
hours of 7 am and 4 pm the next day. Each person received a
mote with one battery inserted, a pouch and lanyard, a loose
battery, and an assent form. After completing the form, par-
ticipants started the motes by inserting the second battery
and noted down the start time in hours and minutes.

We set up a help desk in one of the buildings. Throughout
the day, students and staff came with questions and concerns.
For example, several stationary motes had fallen and the bat-
teries had come out. Some people were seeking explanation
on how exactly the data collection worked, while others were
more creative, asking what happens if you rub two motes to-
gether or swing them around on the lanyards.

Towards the end of the school day at 3:30 pm, we started
receiving motes back. Participants had been instructed to
take one battery out to stop the program from executing. Af-
ter collecting all motes, we made another round through the
school, removing all locator motes. At about 8pm, after 13
hours at the school, the deployment was completed.

The total number of participants was 824, which excluded
a few students and teachers who were not at school that day.

From the 824 motes 2 were lost, 792 collected data, and 30
had empty flash logs. We suspect that while some people
did sign the assent form and picked up a mote, they opted
out of the experiment by never starting the motes. This, to-
gether with several nodes that had the batteries inserted the
wrong way, accounted for the 30 empty motes. Therefore,
the deployment yielded 792 individual data traces.

4 Design Considerations
This section describes in more detail the code running on

the participants’ and locator motes, our choice of parameters,
and the reasoning behind these design considerations.
4.1 Code Description

Participants’ Motes. Each participant’s node was pro-
grammed to broadcast beacons at -16.9 dBm (power level
6 on the CC2420 chip) at a regular 20-second interval; the
packet includes the senders local sequence number. Upon
receiving a beacon, a node checks the RSSI value of the
packet. If the signal strength is lower than -80 dBm, the
packet is discarded. Otherwise, the receiver creates a con-
tact entry consisting of the sender’s ID and beacon sequence
number, as well as the local node’s sequence number and
the RSSI value of the packet. The contact entries are stored
in a twenty-entry buffer in volatile memory, and once the
buffer is full, it is written to flash. Participants’ motes also
receive beacons from locator motes whose IDs are greater
than 10000; these beacons are not subject to RSSI filtering.

Locator Motes. The code on these motes has the
sole purpose of sending a beacon every 20 seconds. These
beacons were used for identifying participants’ locations
throughout the high school campus. Since the stationary
nodes were deployed around the school the night before the
experiment, the code included a 12-hour timer after which
nodes would begin beaconing. It is worth noting that since
batteries were inserted anywhere between 4:15 and 4:30
pm the previous day, locator motes were not synchronized.
Packets originating from these nodes were sent at -11 dBm.
4.2 Design Choices

A number of program parameters were consciously cho-
sen during the code development process. The transmission
and signal strength threshold were key to whether a contact
would be recorded when two people came within a 9-foot
distance of each other. We defer the discussion on these two
parameters to Section 5.

The beaconing interval we chose had to accommodate
several constraints. First, all contact and location entries re-
ceived over the 9-hour duration had to fit in the 1 MB flash
memory. Though the size of each entry was fixed at 7-bytes,
we were not certain what the density of neighbors would
be. The team was unanimous that we would rather overesti-
mate the number of neighboring motes than cause data to be
lost due to full memory. Calculations showed that with 20-
second beacons we could support about 60 neighbors at all
times. We decided that 20 seconds was conservative enough
on the storage-side, while still providing high data granular-
ity. Furthermore, from an epidemiological perspective, the
sampling rate was fast enough.

To validate the choice of beaconing interval, we analyzed
the amount of flash memory that was used by each node dur-
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Figure 2: A CDF of used flash memory shows that about half of all partic-
ipants’ nodes used under 60 kB. Future deployments measuring a similar
environment could sample faster, gathering even more fine-grained data.

ing the deployment. Figure 2 show a CDF with size of the
flash log on the x-axis. The amount of data each node col-
lected was much less than what our original calculations as-
sumed, and the longest data trace was a little under 130 KB.
If we were to repeat the deployment, we would allow for
faster beaconing and longer packet sizes if necessary.
4.3 The Human Factor

By far, human participation had the largest effect on the
code development and the deployment outcome. A major
concern from the beginning was the ability for subjects to
opt out of the project due to regulations from the Institutional
Review Board. From a technical standpoint, we considered
two options: suspending participation by taking out one bat-
tery or by pressing the user button on the TelosB mote.

The original application design took advantage of the user
button. While the mote was active, it sent, received, and
logged beacons, and a green LED indicated its active state.
Pressing the user button turned off the LED light and dis-
abled both sending and receiving on the mote, rendering it
inactive. We chose to set the default state as inactive; we
could then insert the batteries the night before and ask par-
ticipants to press the button to start them up in the morning.

We first conducted a test deployment with 20 students and
teachers. The data were collected over a school day in De-
cember and resulted in very few log entries of proximity con-
tacts. We discovered that many data traces had been cut short
because of mote reboots or user button presses. The possible
causes for reboots included loose batteries, pushed reset but-
ton, or a sudden shock (some students banged motes against
hard surfaces.) Since the motes were in solid white pouches,
it took students some time to realize that the LED light was
off and the motes were inactive.

This experience indicated that the mote state should be
active by default, so a mote could quickly recover from un-
expected resets. More importantly, we decided that the user
button was not a good solution given that there was no way
to recover from an accidental opt-out, unless the participant
looked at the mote and detected that the light was off. We
proceeded to use battery removal as an opt-out mechanism.

The problem of multiple unexpected reboots remained in
the final deployment. In anticipation of this, we logged the
local sequence number associated with every logged beacon
entry. Section 6 describes on what we observed during the
deployment day as well as how the data traces were pro-
cessed to restore sequence numbers where resets occurred.

100 90 80 70 60 50
Signal Strength (dBm)

0

250

500

750

1000

Be
ac

on
s 

(t
ho

us
an

ds
)

Participants' Motes
Stationary Motes

100 90 80 70 60 50
Signal Strength (dBm)

0

250

500

750

1000

Be
ac

on
s 

(t
ho

us
an

ds
)

Participants' Motes
Stationary Motes

Figure 3: Data collected during the school deployment exhibit a range of
RSSI values. For participants’ nodes, most values are close to the threshold
of -80 dBm we selected.

5 Transmission Power and RSSI Cutoff
Many sensor network applications and deployments are

configured to transmit at the highest power in order to have
larger coverage and higher delivery rates. From an epi-
demiological standpoint, communications within the contact
distance of 7 to 9 feet are most important. Therefore, we
chose a power level that was lower but did not compromise
the packet reception rate. Additionally, we chose a signal
strength threshold that would filter faraway packets given a
known transmission power.

To select these two parameters, we conducted an experi-
ment with two students, each wearing a mote. The indepen-
dent variables were transmission power, distance, and rel-
ative position of the nodes; we measured packet reception
ratio (PRR) and received signal strength (RSSI). The exper-
iment was not limited to face-to-face orientation of the two
motes, because obstacles and body effect attenuate the wire-
less signal [2], affecting PRR. Rather, we had the two sub-
jects face in the same direction and also change the relative
degree between each other. For each 3-tuple of (power, dis-
tance, orientation) one mote sent 900 packets at 50 millisec-
ond intervals, while the other logged received packets’ RSSI.

Our experiments verified the results of previous work [2,
3], indicating that both RSSI and PRR decrease as distance
increases, depend on the orientation of the two transceivers,
and are affected by the body effect. For example, the RSSI
difference between 3 and 13 feet was more than 10 dBm on
average if two motes were not completely blocked by bodies.

After examining the PRR data we decided that transmis-
sion power of -16.9 dBm was enough to provide over 95%
reception of packets over contact distances and different ori-
entations, without unnecessarily extending the range of the
beacons. The stationary motes used to provide location iden-
tifiers were programmed to beacon at the higher transmission
power of -11 dBm to cover larger spaces.

We chose -80 dBm as the threshold beyond which bea-
cons would be discarded. This decision was based on the
experimental data showing that when subjects were facing
each other, packets within 9 feet had RSSI of roughly -80 or
above. Packets sent when one subject was facing the other
persons back had a lower RSSI. While signal strength mea-
surements are not a perfect indicator of distance, the prop-
agation of the wireless signal is similar to that of airborne
diseases in that it weakens with distance and obstacles, and
has an uncertain behavior.
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Figure 4: Loose batteries or a participant’s opt out caused reset sequence
numbers and gaps in the data. Using two beacons from the same sender as
a reference, we could determine the length of the gap and restore the trace.

Figure 3 shows the distribution of actual RSSI values as
logged by the participants’ motes during the deployment day.
Most packets coming from neighboring participants have
RSSI values between -80 and -70 dBm, indicating that we
chose a reasonable threshold.

6 Node Reboots
After data were retrieved from the participants’ motes, we

discovered that many nodes experienced reboots. We identi-
fied reboots by checking the logs for entries in which the lo-
cal sequence number was not monotonically increasing. We
found two reasons that caused these reboots – hardware re-
sets, causing the node to quickly turn off and then back on,
and loss of power, when one or two of the batteries were
disconnected for an unidentified period of time.

Hardware resets were caused either by a subject pressing
the reset button on the TelosB or shaking/hitting the mote,
causing a loose connection. Both of these actions could have
occurred accidentally or intentionally. In at least two cases,
students acknowledged that they were playing with the re-
set button. Batteries could also have been disconnected with
or without the knowledge of participants. Some participants
willingly opted out by temporarily taking a battery out, while
in other cases the batteries came loose.

The raw data retrieved after the deployment included 272
traces from nodes that did not experience reboots. The re-
maining 520 nodes had anywhere between one and 45 re-
boots, for a total of over 1500. It was important to restore
accurate sequence numbers because they were acting as a lo-
cal clock for each mote. Section 7 shows how these local
timestamps were later used to create a global time that all
logged contacts were relative to.

Hardware Resets. This type of node reboot did not
create gaps in the data because resets were instantaneous;
they simply caused the local sequence number to revert to
zero. We identified these cases by finding two consecutive
beacons from the same sender logged right before and after
the local sequence number was reset to zero.

We reconstructed the data by incrementing the last valid
local sequence number by one and replacing the zero with
it. This technique recovered the sequence numbers up to the
next reset. Applying it iteratively, fixed all hardware reset,
yielding a total of 701 data traces with uniformly increasing
local time, second row of Table 1.

Multiple beacon gaps. The remaining 71 motes expe-
rienced battery disconnections that left the motes turned off
for an unknown period of time before rebooting. This caused
nodes to potentially miss multiple beacons.
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Figure 5: Some data traces did not have two beacons to use as reference
points. We used the start times of motes to obtain information about the real
time elapsed between the beginning of the experiment and the reset.

We extended the technique for fixing hardware resets to
traces with gaps in the sequence number. Instead of looking
at the beacons immediately before and after the sequence re-
set to zero, we scanned the entire trace before the reset and
after it for a reference node. Knowing how much time had
elapsed between two beacons from the same sender and com-
paring that with the time elapsed on the local clock let us
calculate the length of a gap during which the mote was off.

Figure 4 shows an example application of this approach.
The local node received beacon 150 from the reference node
when its own sequence number was 120, and then received
beacon 330 when the local sequence number was 60, after
the reset. This information, together with the last known se-
quence number before the reset, are enough to compute the
gap. In the example in the Figure 4 the gap was 40 sequence
number; from that is is easy to translate the reset 0 to 340
and adjust all following sequence numbers by this offset.

This technique relied on using information from a node’s
neighbor, the reference node, so we could only use neighbors
that never experienced a reset themselves. Otherwise, there
would be no guarantee that the ticks counted between two
received beacons from the same sender are accurate. When
processing the data, we only used one of the 271 ‘safe’ motes
that originally had no reboots or the locator motes.

Table 1 shows that the processing step left only 25 data
traces with incorrect sequence numbers. These traces had no
matching beacons from safe nodes, so it was impossible to
know how long the node was turned off.

Start Time Offset. To fix the the remaining data traces
we had to create a second point of reference in the data. We
used the mote start time as denoted on the assent forms. For
each trace, we searched the entries after the sequence number
reset. Once a beacon from a ‘safe’ mote was found, we used
its sequence number and the start time of both the sender and
receiver to calibrate the receiver’s sequence number.

For example, Figure 5 shows two nodes that started 5 min-
utes or 15 beacons apart. When the reference node sent bea-
con 215, the local node should have had a local sequence
number of 200. Instead, its sequence number increased from
0 to 100, then there was a gap in the data, and then it started
increasing again from 0 to 60. As with the previous ap-
proach, this data is enough to calculate the gap length, 40,
and recover all sequence numbers with an offset of 140.

The accuracy of this technique is lower than that of the
previous approaches because it relies on wall-clock times
provided by the participants. However, it did help recon-
struct another 19 data traces, as shown in Table 1.



Processing Usable Remaining
Stage Traces Resets

Raw data 34.4%(272) 1559
Hardware reset, no gap 88.5%(701) 214
Multiple beacon gap 97.0%(768) 119
Start time offset 99.4%(787) 34
Global time offset 100%(792) 0

Table 1: Reconstructing local sequence numbers was necessary due to the
high number of mote resets. By applying several data processing techniques
we were able to create consistent data traces.

The last five traces did not have enough data after the re-
boot to fix the local sequence number. This was the case
for traces which had no entries from ‘safe’ motes, as well as
traces which only had location beacons.
7 Global Time

Reconstructing the full contact network measured dur-
ing the deployment required a global timestamp, relative to
which all human interactions happened. We could not use
time synchronization techniques because nodes in the net-
work were mobile and often disconnected. Since the local
sequence numbers in each data trace acted as clocks, we de-
cided to treat them as offsets from one node – the master
clock providing global time.

The location motes did not suffer any node reboots, so
the sequence numbers in the beacons were reliable. In ad-
dition, the beacons were transmitted at a higher power and
were not subject to the RSSI filtering at the receiver. There-
fore, these motes were good candidates for the master clock.
We wanted to choose a node that maximized the number of
nodes that heard a master beacon. After reviewing a physi-
cal map of the high school, we chose a node from the dining
hall area. A quick query on all data confirmed that 742 of the
792 motes had received one or more beacons from stationary
mote 10055, located in the middle of the student cafeteria.

For nodes that had received a master beacon, we calcu-
lated the offset between the master and the local sequence
numbers. An additional outcome was the creation of a table
of offsets; this lookup table included participants’ nodes as
well as other stationary nodes. To processes data traces from
nodes that did not hear directly from node 10055, we used
the offsets table to transitively compute a timestamp from
another node that already had its global time.

The techniques in Section 6 left five data traces without
consistent local sequence numbers. To fix those and deliver
a complete, timestamped data set, we treated each trace as
several sub-traces delineated by node reboots. Each sub trace
had enough beacons from location motes that we could use
the offsets lookup table to generate global time. After pro-
cessing each sub-trace, we concatenated them back together,
delivering the original trace plus the global timestamp. This
was the last step, as shown in Table 1, to removing all node
reboots and providing global network tim.
8 Related Work

In addition to manual pen-and-paper techniques for mea-
suring contact networks, cellphones and RSSI-based meth-
ods have been proposed in the literature. In a study by Eagle
et al. [1], 94 participants were given Nokia 6600 phones with
Bluetooth used to periodically scan for nearby devices. Col-
lected data was either sent over the cell network or stored in

the local flash memory. The cellphones did not filter Blue-
tooth signals; therefore, the possible range of contact dis-
tances is much higher (16-32 feet) than with RSSI filtering.

Olguin et al. [4] studied high-level human behavior with
sociometric badges that use RSSI to detect physical proxim-
ity. The sociometric badges were tested in several environ-
ments, including a set of 60 nurses in a Boston hospital. The
focus of this research was to identify individual and group
behavior using different sensing modalities including audio
and acceleration in addition to physical proximity data.

The ZebraNet [5] deployment observed that the addition
of sensors affected subject behavior. In the case of the ze-
bras, biologists observed additional head shakes for the first
day. However, this behavior did not affect the data nega-
tively. In our deployment, playing with the motes resulted in
some unexpected reboots.
9 Conclusion

Our deployment measured the proximity contacts be-
tween 792 students, teachers, and staff and their locations
over a typical high-school day. The success of the final de-
ployment hinged largely on a number of lab and field tests.
The first helped discover code bugs and determine parame-
ters, such as RSSI and power level. However, working with
human subjects had its own unpredictable effects, and small-
scale pre-deployments at the school were invaluable.

We collected 6 million log entries, of which 50% were
proximity contact beacons. The remaining 3 million were
from stationary motes across the school campus indicating
location. The design choices and techniques in this study
ensured that we could produce complete and accurate data
that can be used in the study of infectious disease spread.
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