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Abstract studies noted that packet delivery rates are highly variable over dis-
We propose modeling environmental noise in order to efficiently tance [9, 24]. Many existing simulators have used the high-level
and accurately simulate wireless packet delivery. We measure noise packet delivery data from these experiments in their network mod-
traces in many different environments and propose three algorithms els [10, 15]. This approach allows simulators such as TOSSIM and
to simulate noise from these traces. We evaluate applying these al- EmStar to have packet delivery behavior similar to the real world.
gorithms to signal-to-noise curves in comparison to existing simu- However, as these simulators simulate loss rather than its causes,

lation approaches used in EmStar, TOSSIM, and ns2. We measure they are unable to easily or accurately model novel environments,
simulation accuracy using the Kantorovich-Wasserstein distance on concurrent transmissions, or variable packet sizes.
conditional packet delivery functions. We demonstrate that using a Recent investigations into low-cost radio hardware have distin-
closest-fit pattern matching (CPM) noise model can capture com- guished how many different factors, such as hardware calibration,
plex temporal dynamics which existing approaches do not, increas- interference, and orientation affect packet delivery [20]. In par-
ing packet simulation fidelity by a factor of 2 for good links, a factor ticular, these and other results [16, 21] have verified that packet
of 1.5 for bad links, and a factor of 5 for intermediate links. As our delivery follows a simple SNR curve. Furthermore, these studies
models are derived from real-world traces, they can be generated have shown that the RSSI of received packets (the S of the SNR) is
for many different environments, often very stable over long periods. Taken together, these observa-

tions point at the causes of temporal variations in packet loss and
bursty connectivity. Hardware variations cause node pairs to have

Categories and Subject Descriptors different SNR curves, but for any given pair the curve is precise.
1.6 [Simulation and Modeling]: As RSSI is generally stable over short periods, it is reasonable to

conclude that the missing piece of the RF simulation puzzle is the
General Terms environmental noise. With that in mind, in the context of this paper,
Experimentation we term any RF energy generated by sources outside the control of

a protocol designer noise, while interference is RF energy that can
Keywords be controlled.
Sensor networks, wireless simulation Unfortunately, simulating environmental noise is hard. Unlike

hardware-based noise, which is typically modeled as additive white

1. INTRODUCTION Gaussian noise (AWGN), environmental noise is often from packet-
based devices. Section 2 shows how packet based noise appears as

Simulation is a critical part of developing, testing, and evaluat- brief, strong, short-lived noise spikes which can be temporally cor-
ing sensornet protocols and systems. Having complete control of related. To simulate this noise, we gather 1kHz noise traces using
the simulated environment allows us to run reproducible experi- current 802.15.4 sensor node platforms and use these traces to gen-
ments, explore parameter spaces, and disambiguate causes of error erate statistical models of noise using three techniques, presented
or undesirable behavior. The inherent difficulty in developing ro- in Section 3: probabilistic sampling, closest-fit pattern matching
bust sensornet codes has led many tools to focus on system dynam- (CPM), and a non-Gaussian random process. We simulate radio
ics through real-code simulation [1, 10, 15, 22]. packet delivery with these noise models using an SNR/PRR curve.

Very accurate system simulation allows users to test code paths. Whenever a simulated node receives a packet, it samples a noise
It does not, however, promise a representative execution environ- reading from its model to determine the SNR and computes the
ment. First and foremost, low-power wireless networks have many packet delivery probability.
complex, rare, and difficult behaviors that protocols must address We implemented these three techniques as replacements of the
properly in order to be effective in practice [5, 6, 9, 21, 24]. Early TinyOS 2.0 TOSSIM simulator radio model. Section 4 evaluates

how well the algorithms as well as wireless protocol simulators
such as EmStar [10], TOSSIM I.x [15], TOSSIM 2.x [4], and ns2 [2]
simulate packet delivery dynamics for good, intermediate, and bad
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personal or classroom use is granted without fee provided that copies are tion accuracy using conditional packet delivery functions (CPDFs),
not made or distributed for profit or commercial advantage and that copies . ....
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republish, to post on servers or to redistribute to lists, requires prior specific fully after n consecutive failures or successes. We compare CPDFs
permission and/or afee. using the Kantorovich-Wasserstein distance [11]. Our results in-
IPSN'07, April 25-27, 2007, Cambridge, Massachusetts, USA. dicate that existing techniques are sufficient for environments with
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E 40 However, it also makes simplifying assumptions that do not hold
9:0 in practice. First and foremost, this approach assumes that every
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500 1000 1500 2000 link is independent (they are sampled independently from the dis-

ms tance distribution), while real networks tend to have "bad" nodes

(a) Lake Lagunita, channel 26 with poor connectivity. This simplification causes discrepancies be-
£ 40 tween simulation and testbed experiments.

The EmStar system [10] avoids the independence problems of
X L__L_u _ _______L_ TOSSIM by having one of its radio models using PRR values mea-

o 500 1000 1500 2000 2500 3000 3500 4000 sured in real-world networks [5]. This has the benefit of capturing
Ms effects such as poor receivers. The cost is that it can only sim-

(b) Lake Lagunita, channel 18 ulate networks for which PRR has been measured. The EmStar
7-;6Cand TOSSIM approaches assume that packet losses are indepen-coD -70 -- -- --

ro-80 l; - - l - ldent (PRR does not change), but experimental results have shown
__-_0__________0______ _ that PRR varies significantly over time [5, 6].

0 500 1000 1500 2000 2500 3000 3500 4000 Recent studies have begun to shed light on the underlying causes
Ms

of the complex packet delivery behavior of real networks [20]. One
(c) Meyer Library, channel 18 important observation from these studies is that for a given node

E _70 pair, there is a crisp SNR/PRR curve. Effects such as the reception
0-8 grey region are caused by different pairs having different curves

10 -90
- 50i and signal strength variations. A hardware covariance matrix can

0 500 1000 1500 2000 2600 3000 3500 4000 capture these effects with reasonable accuracy [25].
Experimental studies of current sensornet platforms, such as the

(d) Meyer Library, channel 18, during nearby micaZ and telosB, have shown that signal strength is stable over
heavy 802.11 use short periods of time, but can have longer-term variations due to

Figure 1: 4 second 1kHz noise traces of 802.15.4 channel 26 and environmental conditions [16, 21]. However, computing PRR from
18 measured at an outdoor park and in a library with dense an SNR curve requires the noise as well as the signal. Historically,
802.11b coverage. Noise sources in the 2.4GHz band are dis- the RF community has explored how to simulate signal propaga-
crete but show significant temporal correlation. tion in tremendous detail [12, 19]. The underlying assumption in

all of this work, however, is that the noise encountered is all addi-
tive white Gaussian noise (AWGN). If the spectrum is not shared

little noise from external transmitters, but for noisy environments with any other RF sources, then the signal propagation of simu-
CPM significantly outperforms all other approaches. lated transmitters and AWGN can describe the entire channel. As
We have gathered noise traces for a variety of environments, in- sensornets often operate in unlicensed ISM bands, their spectrum

cluding busy and quiet indoor office environments, outdoor areas is crowded with many conflicting transmitters. 2.4 GHz, the band
with 802.11 connectivity, and outdoor environments with no inter- used by micaz, telos, and imote2 nodes, is particularly crowded,
fering traffic (the Grand Canyon). Section 6 discusses the implica- as it is also occupied by 2.4 GHz phones, 802.1 lb/g, microwave
tions and limitations of our approaches as well as our planned di- ovens, and Bluetooth, all of which interfere significantly. Without
rections of future work. Our results suggest that an effective route these considerations, SNR-based simulation models are fundamen-
towards accurate wireless simulation is to simply measure a diverse tally limited in accuracy.
set of environments and generate statistical models of them. The hypothesis of this paper is that coming up with an efficient

and effective model of environmental noise will allow a sensornet
simulator to accurately model packet delivery using an SNR/PRR

2. BACKGROUND curve. We leverage the observations and advances of prior work to
Accurately simulating wireless packet delivery is a long-standing achieve this goal. From Zuniga et al.'s experimental work [25] we

challenge in sensornet research. Early studies used a unit-disc model, borrow the idea of hardware covariance matrices to govern the SNR
which defines transmission range as a simple disc of binary connec- curve of a node pair. From EmStar we borrow the idea of measur-
tivity; nodes within a range r successfully receive packets, while ing real environments to derive a representative model. Once we
those outside r do not. This model, while simple to implement and have derived a per-node noise model, we plug it and the RSSI of a
reason about, has little basis in reality. Experimental studies have transmitter into a SNR curve to compute packet delivery probabil-
shown that connectivity varies tremendously over distance [9, 24] ity. Simulating noise allows us to capture short-term connectivity
and that many links fall into a "grey region" of intermediate quality. variations, such as those caused by a large burst of 802.11 traffic.

In response to the observation that connectivity is more complex The challenge in simulating 2.4GHz noise is that it does not fol-
than what simple disc or RF propagation models (such as those used low a clean and elegant mathematical model. Because much of
in ns2 [2]) can express, sensornet simulators have for the most part the interference is 802.11 traffic, it has a highly bimodal behavior:
adopted an empirical approach. Rather than trying to model the un- an 802.11 node is either transmitting or not. Instead of a Gaus-
derlying causes of RF connectivity, such as interference, noise, and sian process or wave, transmissions are a discrete signal with highly
RF propagation, an empirical approach merely recreates packet- variable temporal characteristics. Figure 1 shows four noise traces
level behavior. For example, TOSSIM takes inter-node distances from different environments on 802.15.4 channel 18 and 26. Lake
and samples from a packet reception rate (PRR) distribution to de- Lagunita at Stanford is almost free of 802.1 lb interferences and
termine the connectivity between a pair of nodes [15]. This simple other noise sources. On the other hand, Stanford Meyer library has
approach can capture a large number of real-world complexities, many 802.1lb access points and so has severe 802.11lbinterference.
such as link asymmetries and highly variable spatial connectivity.
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Figure 2: 802.11b and 802.15.4 spectrum utilization. Chan- RSSI (dBm)
nel 18 in 802.15.4 heavily overlaps with 802.11b channels, while (a) Simulating noise with naive sampling.
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-40 Na wetMtod
-50

The periodic peak values in the plots are 802.1 lb beacon packets at _80
a frequency 9.765Hz (0.1024s). The next section describes three .n0
approaches to statistically modeling 2.4GHz noise, and Section 4 |~~~~~~~~~o soo 1 o00 150 2000 2500 3000 350 4000
evaluates how well these approaches reflect real-world behavior in ms
comparison to commonly used simulators. (b) Sample noise trace from naive sampling using

heavy traffic Meyer trace.
3. NOISE CHARACTERIZATION Figure 3: Simulating noise with naive sampling. By generating

This section describes three approaches to statistically charac- a uniformly distributed random variable in [0,1], a noise sam-
terize noise traces. In this paper we broadly define environmen- ple can be derived by filtering with CMF function of measured
tal noise as the RF interference produced by any unsimulated RF noise.
sources in the node's spectrum in addition to the thermal agitation
of charge carriers in the electronic circuits and devices [14, 17]. Bin1 2 3 ... 16
The first approach, naive sampling, generates a probability dis- RSSI(dBm) -102 - -98 -97 - -93 -92 - -88 -27 - -23

tribution of a noise trace and simply samples from this distribution.
Naive sampling is fast and simple, but makes the assumption that Table 1: Closest-fit pattern matching further discretizes noise
noise samples are independent. The second approach, closest-fit values in order to shrink its state space.
pattern matching (CPM), computes the conditional probability dis-
tribution of noise values given k previous noise readings. It gen-
erates a noise value based on the matching series and defaults to 2.4GHz noise: naive sampling, closest-fit pattern matching, and the
the mode when no measured series matches. The third approach correlation distortion method.
uses a non-Gaussian random model with the correlation distortion 3.2 Naive Sampling
method in order to describe noise as a random process. This can
capture temporal dynamics, but is computationally expensive and Because copresent packet networks are discrete event sources,
has difficulty with signals that are highly non-Gaussian. probabilistic sampling is a simple way to model noise. This ap-

proach works by computing the distribution of noise values and
3.1 Measuring Noise sampling from the distribution whenever a noise value is needed.

To measure environmental noise, we wrote a TinyOS application This approach has the benefit that generating the model and taking
that samples RF energy at 1kHz by reading the RSSI register of samples from it is very fast.
the CC2420 radio. The register contains the average RSSI over the Assuming that each noise sample is independent, simulating a
past 8 symbol periods (125,us). The application logs this data to noise trace can be reduced to generating random variables. Once
flash for a fixed period of time (3 * 216 samples, so 197s). A a cumulative mass function (CMF) of target data is prescribed, the
PC application reads the data off of the mote. We sampled noise on same distribution of simulated data can be achieved by filtering uni-
different radio channels in a wide range of environments, including formly distributed random numbers as inputs by the inverse CMF
inside WiFi enabled buildings (Meyer Library at Stanford), in out- in Figure 3. The probability mass function (PMF) of the simulated
door WiFi enabled areas (Lake Lagunita at Stanford), in outdoor data is nearly identical to the target data.
quiet areas (Grand Canyon), and during controlled tests (a large While simple and fast, this method neglects crucial information
HTTP download in Meyer Library). such as time-dependence. Noise has temporal correlation, and mak-

Figure 1 shows 4 second periods from four gathered noise traces. ing samples independent breaks this correlation. In theory, this
These traces show three key characteristics of noise in the 2.4GHz means that if real noise has bursts of interference that cause bursts
band. First, noise tends to have discrete spikes, which are as much of packet losses, a naive sampling model may not be able to cap-
as 4OdBm above the noise floor. These spikes typically but not ture this behavior. On the other hand, it may be that this limitation
always represent transmissions from copresent wireless packet net- ends up having minimal effects on the final simulation behavior.
works. As Figure 2 borrowed from [21] shows, 802.11 shares spec- We therefore consider this approach to be a baseline measurement
trum with the 802.15.4 radios used in several sensor platforms. Sec- for noise simulation.
ond, many of these spikes are periodic. For example, 802.1 lb base
stations transmit beacons every 0.1024s. Third, noise is temporally 3.3 Closest-fit Pattern Matching (CPM)
correlated: there are periods of activity and periods of quiet. Unlike naive sampling, which generates independent noise val-
The rest of this section describes three approaches to modeling ues, closest-fit pattern matching (CPM) uses a probability distribu-
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Noise Mean Std Skewness Kurtosis random process from a noise trace using mean-square (MS) ergod-
Real Noise -97.1017 2.9702 3.8350 23.2346 icity, assuming that the noise random process follows wide-sense
Simul. Noise -97.6699 2.0886 5.1972 49.3293 stationarity. A non-Gaussian random process x(t) has a nonlin-

Table 2: Statistical characteristics of real noise in a light Meyer ear relationship with a Gaussian normal random process u(t), i.e.
trace and noise correspondingly simulated using the correlation x(t) = g(u(t)). In Eq. (1), the auto-correlation of non-Gaussian

distortion method. process in terms of that of Gaussian normal random process can be
described as

00

tion of noise values given k previous noise values. One problem R..(T) Za'P x(T) (1)
CPM faces is an exploding state space: if noise can take -60 val- k=O
ues (-100 to -40 dBm), then CPM with a window of k = 20 has a
state space of6020, or 4 1035. As ourtraces have only 2 105 1r 0 u 2

samples, very few patterns will be populated. We therefore further 2rk=J00 2
discretize the RSSI values, as shown in Table 1.

Each data point in the CPM model is a PDF of the observed noise u2 dk 2
values given k previous values. To calculate nt, CPM samples from Hk(U) =(_1)keXp( )_[eXp(- )] (3)2 duk 2the PDF associated with nt1, nt-2, . .nt-k If there is no PDF u
associated with this noise series, CPM samples from the most com- In the above expressions, Pxx is the normalized auto-correlation
mon PDF (the mode). CPM bootstraps from the measured trace: of the non-Gaussian process (t) and Hka(u) is the kth Hermite
first k noise values are simply the first k samples from the real- polynomial. The Hermite polynomial is a classical orthogonalupoly-
world measurements. nomial basis function. By Eq. 4, the auto-correlation of non-Gaussian

In the degenerate case of k = 0, CPM is equivalent to naive process can be transformed into that of a Gaussian process.
sampling. There is a tradeoff in how large a k is used. A large k
allows CPM to capture longer term periodicities. However, as the R (T) 2[R (T)+232R2 (T)+642R3 (T) (4)
state space grows at (rk) where r is the number of discretized [ R
RSSI readings, but the number of samples does not increase, the h 1+1.5)4-1
probability that any sequence exists goes down exponentially. This 4 + 2 +. 4 18
is a basic overfitting problem: in the case where k is the number 4 + 2 1 + 1.5-Y4' 18
of samples in the trace, then CPM will play back the trace exactly, 1
which does not allow representative simulation. Oa (5)
Our CPM implementation uses a hashtable to store the CPM state 1 + 2h3 + 6h4

space, where the key is a string concatenation of the noise values
and the value is the PDF. Depending on the self-correlation of a where Y3 is skewness(3Td order moment) of the process and Y4 is
given trace, the optimal k value varies. For example, if noise val- kurtosis(4th order moment) of the process.
ues are completely independent, then a k 0 will be best. We One limitation in the standard Hermite Model is that h3, 1h4, and
found that for the busy Meyer trace, a k 20 provides a good a parameters have been calculated with the assumption of small
tradeoff between being representative of the noise yet remaining deviations from Gaussian. Therefore, for non-Gaussians which de-
non-deterministic, as determinism could lead to incorrect assump- viate significantly, the method is not quite applicable. To reduce
tions when testing protocols. We evaluate the effect of different k this problem, we applied modified Hermite models which were pro-
values for the busy Meyer trace in the next section. posed by Tognarelli et al. [23], leading to improvement of perfor-
3.4 Correlation Distortion Method mance in non-Gaussian simulation.

The correlation distortion method can generate noise data repre-
The main cause of interference we observed, 802.11, has a non- sentative of a low-traffic 802.1 lb environment. This is because it

Gaussian property as a result of its discrete traffic patterns. The can capture the long-term periodicities. We compared how well a
tradeoff k imposes in CPM raises a significant issue: much of the simulated noise trace follows real noise behavior in terms of power
periodic noise spikes (e.g., 802.11 beacons) have very long periods. spectral density corresponding to auto-correlation function, first-
For CPM to be able to capture these beacons, for example, k should order PMF, mean (1St moment), standard deviation(2nd moment),
be larger than or equal to 100. This large k (lOOms) makes the skewness (3rd moment), and kurtosis (4th moment). The power
CPM state space very sparse. There is longer-term correlation in spectral density of simulated noise matches that of real noise. This
the noise trace, but CPM cannot effectively capture it. Our third means that time-correlated noise information, which could be a
approach addresses this limitation by using a non-Gaussian random critical factor for consecutive packet failures, is successfully ex-
process, which captures longer-term periodicities. ploited. For the first-order PMF, our simulated noise closely fol-
The core idea of the method is to transform non-Gaussian to lows the RSSI distribution of real noise, but it is not exactly same

Gaussian with the same auto-correlation or spectrum of the target. as the real one. The Jensen-Shannon distance between PMFs of
Expressing the relationship in terms of Hermite polynomials allows real noise and simulated noise is 0.089. While the naive method in
us to generate Gaussian random process by using spectral represen- the above section can achieve the perfectly same first-order PMF,
tation method. In the end, with the generated Gaussian process, the it fails to exploit time-correlated information. With a small differ-
original non-Gaussian process can be achieved by using a transfor- ence of the first-order PMF, this approach achieves the sameness of
mation equation. auto-correlation between short-term noise data. Table 2 shows the
More formally, we apply the correlation distortion method [7, 8, mean, standard deviation, skewness, and kurtosis.

13] to generate a non-Gaussian random process with a prescribed However, heavy-traffic 802.1 lb environments deviate significantly
auto-correlation function. We calculate the auto-correlation of the from Gaussian noise. The correlation distortion method is usually
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Model Naive Sampling CPM Corr.Dist. 1
RunningTime 6 ,us 29.8 ,us 769 ,us

0.8

Table 3: Mean execution time for each model to generate a noise
sample. For CPM, k = 20. 00.6

0.4

applicable to the environment of mediocre deviations from Gaus- 0.2
sian. In Section 4, we compare the correlation distortion method to
CPM and naive sampling for low- and heavy-traffic environments. 01, 2 4 6 8 10 12

Signal-to-Noise ratio (dBm)

4. EXPERIMENTAL METHODOLOGY
We measure simulation accuracy by comparing conditional packet

delivery functions (CPDFs). A conditional packet delivery function
describes the probability that a packet will be received successfully ,ReaINoise]
given n previous failures or successes. For example, the CPDF
of node A to node B, CAB, of 5 (CAB(5)) is the probability that 0)0..
B will receive a packet from A after 5 consecutive failures, while li i
CAB (-5) is the probability that B will receive a packet after 5 con- -
secutive successes. If packet losses are independent, then the CPDF & -10 0 10 20
is for the most part uniform; if packet losses are bursty, then the
CPDF is non-uniform. Figure 5: CPDF of an intermediate link from low-noise Meyer
We compare CPDFs using a rigorous theoretical measure, the trace of real noise. The X-axis [-20,20] is consecutive packet

Kantorovich-Wasserstein distance [ 1]. The Kantorovich-Wasserstein delivery successes (negative) or failures (positive), and the Y-

distance has been widely used in theoretical statistics and image axis is the PRR. Packet losses are nearly independent.
signal processing applications to show the similarity of probability
distributions. To calculate the Kantorovich-Wasserstein (KW) dis-
tance as our evaluation metric, we used open-source codes for the variance of the noise values and use them as the mean and range
Earth Mover's Distance [18], which is equivalent to KW distance. ofis not 100% accurate, but since noise
Both quantify how much elements of two distributions would have does not follow a uniform distribution, we believe it to be a reason-
to be shifted to make the two distributions equal. We do not use able approximation). We then tune the signal strength until it has
the Chi-squared test because CPDF values are not independent, and the desired PRR (e.g., 51% for an intermediate link, 90% for a good
do not use the Kolmogorov-Smirnov test because CPDFs are not link). We do the same for the baseline: we tune the signal strength
continuous functions. so that sampling from the PRR/SNR curve using the real noise trace
We use the Kantorovich-Wasserstein distance of CPDFs rather has the same PRR. We measure PRR over a 195 second trace with

than measuring the noise itself because of the difficulty of compar- an inter-packet interval of iSms (135,000 packets).
ing noise traces. Because our goal is to generate a representative We evaluate the noise models as well as four simulators: Em-

and reusable model of an environment's noise, rather than simply Star's shadowing model with uniformly distributed random noise,
replay it, simulated noise will inherently differ from the measured TOSSIM's bit-error model [15], TOSSIM 2.x's gain model [4], and
noise. We found that comparing mathematical properties of sim- ns2's shadowing model with Gaussian random noise [2].
ulated and real noise gave some indications that they might lead 4.1 Noise Sampling
to similar packet behavior, but for almost every similarity measure
between noise traces it is simple to create a degenerate case that We used our noise sampling TinyOS application to gather data
is mathematically similar but behaves completely differently. We from a wide range of environments and 802.15.4 channels. Figure 1
therefore measure similarity in terms of the behavior we seek to showed four example traces. We also collected noise traces from
recreate: packet delivery. the Grand Canyon in Arizona, Gates Hall at Stanford, and in the
We use the real noise trace as a baseline for measuring the ac- middle the Great Salt Desert. In the Grand Canyon and Great Salt

curacy of different simulation methods. This allows us to con- Desert we observed no 2.4GHz noise besides AWGN; in Gates Hall
trol all other variables in an experiment. To generate the baseline we observed noise similar to Meyer Library.
CPDF, we use the real noise trace against an SNR curve derived
from CC2420 experiments, using a fixed signal strength with a fixed 4.2 Implementation
inter-packet interval (15ms). While the signal strength is fixed for To evaluate the effectiveness of our models, we implemented
each simulation model, it is not fixed across the models, as mod- each one as a replacement for the standard packet simulation engine
els assume different sensitivity thresholds or SNR curves. Instead, of the TOSSIM simulator of TinyOS 2.0 [3]. The implementations
for each model we choose the signal strength that creates a desired all use a combined path-loss and shadowing model for signal prop-
PRR. This way, we can evaluate how good, bad, and intermediate agation. In the rest of this section, when we refer to the TOSSIM
links manifest in each simulation model, given a particular noise 2.0 simulation approach, we mean the default one included in the
environment. This evaluation asks the critical question "What do TinyOS distribution. Naive sampling keeps a single probability dis-
good, bad, and intermediate links look like to a simulated node?" tribution of noise values. CPM uses a hashtable to efficiently query

For example, the default radio model of TinyOS 2.x's TOSSIM for a particular distribution to sample from. The correlation dis-
(TOSSIM2) simulator samples noise values from the uniform dis- tortion method requires 1,024 data points of power spectral density
tribution [m -r, m + r). Given a trace, we compute the mean and information. Each of our implementations computes noise values at
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cient, We are currently exploring ways to avoid this cost (e.g., after 0

ma k unsampled periods, revert to the mode distribution).
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5. EVALUATION (f) KW distance of all approaches.
We generated many traces with a variety of signal strengths in

order to measure packet delivery behavior for good, bad, and inter- Figure 7: CPDFs of a good link using TOSSIM L.x, EmStar,
mediate links. For the most part, low-rate traffic and quiet environ- CPM, and Correlation Distortion approaches and the KW dis-
ments behave in a simple fashion: packet losses due to noise are tance of all CPDFs from the real noise CPDF. The x-axis [
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0.4
Figure 9 shows the CPDFs of an intermediate link based on real

0.3C2 | | | n nnoise as well as using EmStar, TOSSIM lx, TOSSIM 2.x, ns2,

.LO
0.2 naive sampling, closest-fit pattern matching, and the correlation dis-3: 0.1 tortion method. For real noise in an intermediate link, the PRR
0- _ 6decreases as the number of consecutive packet losses increases.

$± d i'¢ 8 se.jeN This represents the burstiness of the noise in this class of environ-
ment. One packet loss indicates that the node is likely encountering
a packet burst, and therefore the PRR decreases for a reasonable

Figure 10: Kantorovich-Wasserstein distance of the CPDFs of period. The PRR values in response to packet successes indicate
all simulation approaches from the real noise CPDF for the in- the probability of encountering a burst of losses. The PRR values
termediate link in Figure 9. given consecutive losses are non-zero because of 802.1 lb timing;

802.15.4 packets can transmit in between 802.1 lb/TCP timers.
All simulation models except CPM have PRRs that are indepen-

dent of consecutive packet delivery failures or successes: the CPDF
Figure 5 shows that for an intermediate link, packet losses are converges to the average PRR value regardless of error bursts. CPM

independent with respect to consecutive packet losses. This means captures the short-term temporal effects, showing the same behav-
that low 802.1 lb traffic does not lead to bursty packet errors and ior as real noise. Figure 10 shows the Kantorovich-Wasserstein dis-
the temporal effects are negligible in a low-traffic 802.1 lb envi- tance of each CPDF with the real noise trace. CPM significantly
ronment. Therefore, other simulation methods do not capture the outperforms all other simulation methods, with a KW distance of
differences between these two types of environments. 0.0402. The second best is naive sampling, with a KW distance of

Traces taken in a busy 802.11 environment, however, behave dif- 0.266: and CPM's KW distance is lower by a factor of 5. CPM
ferently. Figure 6 shows CPDFs for a good, intermediate, and bad captures the effects of the real noise much better than any other
link generated from the busy Meyer trace in Figure 1. Despite the method.
temporal correlation in noise, packet behavior in good and bad links Figure 5 shows that for an intermediate link, the CPDF does not
is for the most part independent. In the case of a good link, this is show the same short-term effects under light 802.1 lb traffic as it
due to the fact that the packet transmission interval (15ms) is not does under heavy 802.1 lb traffic. The packet losses are indepen-
a factor of the large noise spikes, which are governed by TCP and dent with respect to the number of consecutive packet losses. Low
HTTP timing. In the case of a bad link, there are many long bursts 802.1 lb traffic does not lead to bursts of packet errors: the temporal
of loss caused by the web traffic, creating a long tail over which effects are negligible in low-traffic 802.1 lb environment.
PRR degrades slightly. For an intermediate link, there is a 3-fold Overall, the correlation distortion method has mediocre perfor-
difference in the loss rate after 6 delivery successes and 6 delivery mance. The advantage of the correlation distortion method is that it
failures. can accurately capture occasional spikes, such as those observed in

Figure 7 shows how different simulation approaches capture the the good link. Bursts of high noise, however, are too non-Gaussian
dynamics of a good link. We show CPDFs of a subset of exist- for it to capture well. Unfortunately, occasional spikes generally
ing approaches due to space limitations. Because losses have lit- appear as independent packet losses to timing differences, and so
tle correlation, all simulation approaches perform reasonably well. the expressive power of this approach turns out to have very lit-
However, at high PRRs, slight variations can significantly change tle benefit in practice: on good links, naive sampling and EmStar
the CPDF. The real noise trace has up to 36 consecutive packet de- perform just as well.
livery successes, while TOSSIM and EmStar only reach 29 and 32 Of the three techniques we proposed, CPM performs best. In our
respectively. In contrast, CPM reaches up to 35. Figure 7(f) shows experiments, we set k = 20, packets are sent every 15ms and the
the Kantorovich-Wasserstein distance of the CPDFs of our three noise sampling rate is 1kHz. This means that there will be 15
approaches as well as both versions of TOSSIM, ns2, and EmStar. samples between two packet transmissions: the noise at one packet
CPM has the lowest KW distance (0.0692) by a factor of 2 over transmission is never in the historical window of more than one
the next best, naive sampling. Every approach had an effectively transmission. CPM can capture bursts that span multiple inter-
identical PRR over the 130,000 packets of the 195s interval. packet intervals, however, because the values it does consider are

Figure 8 shows how different simulation approaches capture the still dependent on those outside its window. Consider, for example,
dynamics of a bad link. We show CPDFs of a subset of the existing if CPM has a historical entry of this form:
approaches due to space limitations. Again, the different simulation PDF(8, 8, 8, 8, 8, 8, 8, 8, 8, 8) = {0.02: 1, 0.98 : 8}
approaches all perform reasonably well. However, CPM is able to
capture short-term trends well enough to capture PRR degradation That is, given 10 consecutive noise readings of 8, 2% of the time
as losses increase. Figure 8(f) shows the KW distance of the CPDFs CPM will produce a noise value of 1 and 98% of the time CPM will
of our three approaches and sensornet simulators. CPM has a KW produce a noise value of 8. Once a run of 8s begins, the expectation
distance of 0.0227, which is the lowest by a factor of 1.5 over the is that it will last for 50ms (50 samples). In practice, CPM histories
next best, naive sampling. are much more complex, but the principle still holds.
As Figure 6 shows, intermediate links are more complex than

their good and bad counterparts. Unlike the comparatively flat CPDFs 5.1 Varying k
of good and bad links, an intermediate link can have a huge varia- All of the CPM results in Figures 7-11 use a k 20, which we
tion in PRR. This behavior supports the common observation that noted was the best value for the busy Meyer trace. Figure 11 shows
intermediate links are the difficult ones for networking algorithms how varying k for the good, intermediate and bad link affects the
such as link estimators. They are therefore the most interesting and KW distance from the real noise trace. For intermediate and good
important to simulate. Given the simplicity of other cases, we focus links, k has a pronounced effect on the accuracy: the KW distance
on intermediate links for the rest of the evaluation, of k =20 is approximately 40% of the KW distance of a very high
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Figure 11: Effect varying k has on KW distance from CPDF of the Meyer busy noise trace. Setting k = 20 produces the best results
for all three link classes.

or low k. Additionally, in good and intermediate links, k = 60 as
roughly the same accuracy as k = 1.

For a bad link, k = 20 also has the highest accuracy, but the
accuracy does not degrade nearly as significantly with an increasing
k as it does with the good and intermediate link. The fact that k =
20 is the most accurate for the busy Meyer trace does not mean it
is the right value for all traces. One area of our future work is to

Sinks 50% 50% 10% determine the optimal k values for a wide range of environmentsin order to gain insight on its relationship to the traffic patterns of
packet-based interference sources.

Source 5.2 Effect on higher-level protocols
Finally, we evaluated how correlated packet losses affect higher-

(a) Topology. level protocols. In simulation, we set up a simple 4-node topology,
shown in Figure 12(a) where the source node transmits to one of

S tic Link three sink nodes. The source has intermediate links to two of the
> o.o8- * l sinks and a bad link to the third. We ran the standard TinyOS 2.0

II0o°6 || | | l tree collection layer such that the three sinks were all base stations.
0.04I JL The collection layer's link estimator therefore decides Which of the
0.02 - |l three sinks to transmit to. The TinyOS 2 collection layer uses data

0 I I 2~ Ng- -El -| l ~ E | | gl l ~ [ as well as control traffic to estimate link quality, such that it reacts
o G2 460 80 100 to bursts of losses.

# of Parent Changes In each trial, the source sent 100,000 packets as quickly as it
(b) Parent changes with static link qualities (independent could. In terms of the TinyOS code, the application called send ()
packet loss). in the sendDone () handler. We counted how many times the

0.1
link estimator caused the routing layer to change the next hop node.

uynamic Link mith CPM We ran 100 trials each for two configurations: CPM links derived
0.0i°81 from the busy Meyer trace and static links where packet losses were
06 I 0 independent (as is the case in all other simulation methods). As with

- 0O04 the CPDF experiments, noise spikes at the transmitter were always
X002 i I below the clear channel assessment threshold in order to remove

2
I -d10 MAC effects.020 40 60 so 100 Figure 12 shows the results. On average, a network simulated

# of Parent Changes with CPM has 50% more parent changes (69) than one with static
(c) Parent changes with CPM (correlated packet loss). links (46). Additionally, the minimum number of parent changes

observed in the CPM case is much higher than in the static case.
This shows that the bursty losses of CPM can affect the behavior ofFigure 12: Number of next hop route selection changes for ay

four-node topology using CPM and static link loss rates. The higher-level protocols and therefore higher-level simulation results.

percentages on the sinks are the PRRs: there are two interme-
diate links and one bad link. The bursty losses of CPM affect 6. DISCUSSION AND CONCLUSION
link estimators and higher-level protocol behavior. This paper takes a step forward in simulating packet delivery

by modeling difficult noise signatures from measurements. Rather
than depend on a simplified and abstract view of an environment,
the models strive to recreate the behavior of a real network. This al-
lows us to simulate a particular network, rather than a fictional one.
However, modeling noise as we have presented here has three sim-
plifying assumptions; relaxing each assumption is in and of itself a
complete research topic which we plan to explore in the future.
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