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Abstract—Blockchain technologies, such as smart contracts,
present a unique interface for machine-to-machine communication
that provides a secure, append-only record that can be shared
without trust and without a central administrator. We study
the possibilities and limitations of using smart contracts for
machine-to-machine communication by designing, implementing,
and evaluating AGasP, an application for automated gasoline
purchases. We find that using smart contracts allows us to
directly address the challenges of transparency, longevity, and
trust in IoT applications. However, real-world applications using
smart contracts must address their important trade-offs, such
as performance, privacy, and the challenge of ensuring they are
written correctly.

Index Terms—Internet of Things, IoT, Machine-to-Machine
Communication, Blockchain, Smart Contracts, Ethereum

I. INTRODUCTION

The Internet of Things (IoT) refers broadly to interconnected
devices that communicate, share data, measure the physical
world, and interact with people. IoT applications have been
deployed in a wide variety of domains such as healthcare,
manufacturing, agriculture, and transportation. They also have
the potential to transform daily life through smart homes, cities,
and infrastructure [1–3]. Cisco and Ericsson estimate that there
will be 100 billion IoT devices by 2020 [4].

Many IoT applications rely on machine-to-machine com-
munication—the communication between devices with limited
or without human intervention [5]—to automate tasks, send
commands, and/or distribute information. Figure 1 shows an ex-
ample of this broad class of machine-to-machine applications, a
smart vehicle automatically paying for its refueling. Machine-
to-machine applications encounter three technical challenges
that human-centric applications solve with a person in the loop.

The first challenge is transparency. IoT devices are infa-
mously insecure [6], [7], but encryption makes it extremely
difficult to verify that they are acting appropriately. In Figure 1,
where actions are automatically performed by a smart vehicle
on a user’s behalf, it would be impossible for the user to audit
the encrypted information sent from their vehicle to the cloud
service to ensure that private data was not also sent—a concern
that is well justified [8], [9].

The second challenge is longevity. IoT devices are often ex-
pected to function for decades. Some of these objects may still
be in use long after their vendors stop maintaining them [10].
But, because these devices are often vertical silos—where a

Figure 1. A traditional IoT application that stores a user’s credit card
information and is installed in a smart vehicle and smart gasoline pump.
Before refueling, the vehicle and pump communicate directly using short-range
wireless communication, such as Bluetooth, to identify the vehicle and pump
involved in the transaction. Then, the credit card stored by the cloud service
is charged after the user refuels. Note that each piece of the application is
controlled by a single entity.

centralized entity manages application state and communication
protocols—they cannot function without the cloud services of
their vendors [11], [12]. In Figure 1, without the cloud service,
the vehicle is unable to pay the gas station.

The third challenge is trust. In Figure 1, the user must trust
the vendor with their credit card information, and the credit
card company acts as a trusted third party to help manage funds
and resolve disputes in exchange for non-negligible fees. IoT
transactions that involve the exchange of digital or physical
assets require trust, which inherently involves risks. Examples
of such risks are the vendor leaking credit card information
or the credit card company undermining the fairness of an
exchange by colluding when resolving disputes [13]. Each of
these risks can compromise an IoT application.

To summarize these challenges:
1) IoT applications acting on behalf of users benefit from

transparency. Without it, users cannot verify the actions
their applications are taking on their behalf.

2) Long-lived IoT devices may outlive the infrastructure
that supports them, causing them to fail or exposing
vulnerabilities. They lack longevity.

3) IoT applications that exchange goods or services require
trust. This often adds financial overhead and risks that
can subvert an application.

One approach to addressing these challenges is to use
blockchain technologies. A blockchain provides a publicly-
auditable, append-only ledger that ensures full transparency of
transactions performed on the chain. It also allows state to be
stored in a distributed manner among the nodes in a network
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that persists as long as a network of nodes exists. Furthermore,
blockchain-based ledgers that support smart contracts allow
applications to embed the contractual logic of a transaction onto
the blockchain. This way, the logic is executed independently
and automatically by each node on the network using the data
provided on the blockchain—reducing the need for trust and
third party involvement in a transaction [14].

However, these beneficial properties come with impactful
trade-offs: certain blockchain consensus algorithms, such as the
proof-of-work used in Ethereum, significantly limit the perfor-
mance of executing transactions in terms of both throughput
and latency; the availability of a public log of transactions raises
important privacy considerations; and smart contracts require
special care in deployment. Because a smart contract acts as
the absolute arbiter for transactions performed through it, bugs
in a smart contract may incur costly damages that are difficult
or impossible to resolve [15].

Researchers have proposed a variety of uses for blockchain
and smart contracts in IoT applications (Section II-D). Our
work presents an initial technical and experimental evaluation
of this approach. We present AGasP, an IoT application for
automated, machine-to-machine gasoline purchases that uses
smart contracts to perform transactions. In contrast to the
traditional centralized IoT architecture shown in Figure 1,
AGasP allows users to audit all interactions and can continue to
function as long as the blockchain network exists. Furthermore,
by using smart contracts to cut out third parties, AGasP can save
gas stations over 79% in fees for a typical transaction.

Contributions This paper makes these contributions:
1) The design, implementation, and evaluation of AGasP,

an application that uses smart contracts for automated
gasoline purchases between a vehicle and gas station.

2) A discussion of the practical trade-offs of using smart
contracts for machine-to-machine communication. We
find that transaction latencies are sensitive to transaction
fees and that the 95-percentile latency can be on the order
of hours (Section VI).

The remainder of the paper is structured as follows. Section II
describes the building blocks for using smart contracts. Sec-
tion III makes the case for smart contracts. Section IV describes
AGasP’s design and implementation while Section V evaluates
its performance and Section VI discusses the limitations of this
approach. We conclude in Section VII.

II. BACKGROUND

We describe blockchains and smart contracts abstractly, and
then describe how they are implemented in Ethereum, the
largest smart contract blockchain used today, to ground these
abstract concepts concretely.

A. Blockchain

A blockchain is a distributed data structure, introduced with
Bitcoin [16], that provides a verifiable, append-only ledger of
transactions. As its name suggests, a blockchain is comprised
of timestamped blocks, where each block is identified by

a cryptographic hash and references the hash of the block
preceding it—forming the links, or chain, between each block.
In addition, blocks may contain transactions, which record a
transfer of data or assets between two addresses. As a result,
any node in a blockchain network with access to the blockchain
can traverse it to construct the global state stored on the chain.
Nodes in a blockchain network operate on the same blockchain
and form a peer-to-peer network where each node replicates all
or part of the blockchain.

In order to submit transactions to the chain, each node uses
a pair of public and private keys. First, the node constructs
and signs a transaction and broadcasts it to its one-hop peers.
Each node validates any transactions it receives, dropping
invalid transactions, before broadcasting it to its peers. These
transactions form a pool of valid, pending transactions that are
ready to be included in a block. Miners are nodes in the network
that construct new blocks to be added to the blockchain and
broadcasts them to its peers, who verify it before appending it.
This process continuously repeats. Each blockchain employs
a consensus mechanism to resolve different states, or “forks”
in the network, and the choice of mechanism varies among
networks. [17] details a variety of consensus mechanisms.

B. Smart Contracts

Smart contracts “combine protocols, user interfaces, and
promises expressed via those interfaces, to formalize and secure
relationships over public networks [14].” In other words, smart
contracts allow users to execute a script on a blockchain
network in a verifiable way and allows many problems to be
solved in a way that minimizes the need for trust. To do so, they
allow users to place trust directly in the deterministic protocols
and promises specified in a smart contract, rather than in a third
party. For example, in Figure 1, users must trust the vendor with
their credit card number, and the gas station must trust the credit
card company to pay on behalf of the user in exchange for fuel.
With smart contracts, a user can pay the gas station directly by
using the protocol and promises established in the contract such
that neither party can manipulate the exchange.

A smart contract has its own address and account on the
blockchain. Consequently, it can maintain its own state and take
ownership of assets on the blockchain, which allows it to act
as an escrow. Smart contracts expose an interface of functions
to the network that can be triggered by sending transactions
to the smart contract. Because a smart contract resides on the
blockchain, each node can view and execute its instructions, as
well as see the log of each interaction with each smart contract.
A smart contract acts as an autonomous entity on the blockchain
that can deterministically execute logic expressed as functions
of the data that is provided to it on the blockchain.

C. The Ethereum Platform

Ethereum is an open-source, distributed platform based on
a blockchain. In Ethereum’s blockchain network, miners ex-
ecute a proof-of-work consensus algorithm [18]. In addition,
Ethereum supports smart contracts written in a Turing-complete
language, like Solidity, which can be compiled to bytecode that



can be executed in the Ethereum Virtual Machine. This allows
users to create arbitrary ownership rules, transaction formats,
and state transition functions [19].

In Ethereum, all computation and transactions have fees,
which are measured in units of gas (not to be confused with
the real-world fuel discussed in our running example). Each
transaction in Ethereum must specify a gasLimit, which is
the maximum amount of gas that may be used while executing
a transaction. Transactions also specify a gasPrice, which
is the rate paid to miners in Ether (Ethereum’s associated
cryptocurrency) per unit of gas as a reward. If an account
cannot support the maximum fee of (gasPrice∗gasLimit),
the transaction is considered invalid. The amount of gas
used (gasUsed) is determined by the amount of computation
and storage required by a transaction. A transaction’s fee is
calculated as shown in Equation 1.

Fee = gasPrice ∗min(gasUsed,gasLimit) (1)

Transactors may specify any positive gasPrice and
gasLimit. Likewise, miners may ignore transactions and
prioritize transactions with larger fees to maximize their profits.
In Ethereum, the maximum number of transactions that can be
included in a block is limited by the total amount of gas used
by the transactions in the block. Unlike Bitcoin’s size-based
limit of 1MB, this gas block limit can increase by a small
scalability factor each block [18]. These block limits create an
upper-bound for transaction throughput of the network if the
mining rate of new blocks remains constant.

Relaxing the block size limit to improve throughput is not
a simple solution. For example, increasing the block size
increases the resources required to run a full mining node,
which could lead to centralization of entities with high compute
power. While other approaches for improving scalability such
as off-chain solutions (e.g., the Raiden Network [20]), peri-
odic merkleized commits [21], and sharding [22] have been
proposed, we only consider the implementation of the current
Ethereum network for this work.

D. Related Work

Many researchers have explored the application of smart
contracts in the IoT domain. For example, smart contracts
have been proposed as a mechanism for managing access con-
trol [23–25] and authentication [26]. Others have investigated
security and privacy implications of using smart contracts in
IoT applications [27], explored using smart contracts to create
a shared marketplace of services between devices [28], [29],
and built industrial IoT platforms using blockchains [30].

III. THE CASE FOR SMART CONTRACTS

We find that smart contracts address the technical challenges
of transparency, longevity, and trust that are frequently encoun-
tered in IoT applications like Figure 1.

Transparency with Public Logs In Figure 1, the vendor
may wish to gather personal information about a user (such as
driving behavior, location history, or vehicle mileage) that could
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Figure 2. AGasP uses smart contracts in Ethereum to pay for fuel. There
is no centralized entity that manages the state of the application. Instead, a
vehicle running a decentralized application can interact directly with the public
blockchain to submit funds to the smart contract. Likewise, the gas station
can interact directly with the blockchain through its application to determine
whether a vehicle has paid, and to record how much gas was purchased.

then be sold to advertisers for better advertisement targeting.
Users would have no way to directly verify exactly what
information was being sent by their vehicle if communication to
the cloud service was encrypted. The use of smart contracts as
the interface for machine-to-machine communication provides
a public, auditable log of communication.

Longevity through Decentralization In 2016, the average
age of a car in the United States was 11.6 years [31]—a
time frame that may outlast the vendor of our example IoT
application. By using smart contracts, the core state and logic
of an application is fully distributed, allowing an application to
continue to operate or be picked up by a new vendor long after
the original vendor has shut down. Because smart contracts are
a public interface, anyone can directly interact with the smart
contract using their own applications with the assurance that the
application’s state will be available on the blockchain, rather
than being lost with the shutdown of a vendor.

Minimized Trust using Smart Contracts The need to trust
vendors or third parties with personal information like credit
cards or bank accounts creates valuable targets for attack,
many of which have been notoriously exploited [32]. Instead,
transactors can avoid this risk by interacting directly through
deterministic business logic specified in smart contracts and
using smart contracts as reliable escrows for digital assets,
creating a platform that supports a wide variety of applications.

IV. AGasP: AUTOMATED GASOLINE PURCHASES

To understand the trade-offs involved with using smart con-
tracts, we design, implement, and evaluate AGasP, a decentral-
ized application for automated gasoline purchases. In contrast
to the centralized approach of Figure 1, with AGasP, the state
and protocol of the application are not controlled by a single
vendor, as shown in Figure 2. Instead, smart contracts on the
Ethereum blockchain network are used to purchase gasoline in
a verifiable and auditable way that minimizes trust.

A. System Design

In AGasP, the smart contract is the main component since it
defines the protocol of a gas purchase in a general way, and
stores the state and logic necessary to complete a purchase.
Consequently, a single contract can be utilized by many differ-
ent vehicles and different gas stations—it serves as a common
interface and protocol for purchasing gasoline. We designed the



AGasP smart contract protocol to follow a sequence familiar to
users from traditional gasoline purchases, while removing both
the credit card company and vendor as third parties.

When exchanging digital currency, smart contracts them-
selves can act as an escrow to ensure that either both parties
get the results of the expected exchange, or neither do (e.g., if
one party were to cancel). However, in the case of exchanging
a physical good, the smart contract cannot act as an escrow.

Instead, the smart contract must clearly specify the sequence
of events in order to minimize the risk involved in the exchange.
For example, once gasoline is dispensed, it cannot be returned.
In order to eliminate the risk of a vehicle refueling and trying
to avoid payment, we require that payment occur before a
vehicle is allowed to refuel, following the pattern of traditional
gasoline payment. Similarly, our contract protects gas stations
from malicious users by placing the control of completing an
exchange in the power of gas stations (i.e., a vehicle cannot
refuel a large amount and then claim only a small amount
was taken). Finally, the smart contract itself contains all of the
information necessary to calculate the payment to send to the
gas station, and the change to return to the vehicle. With this
design, the vehicle cannot withdraw its deposit without the gas
station’s involvement in order to protect against the case where
a vehicle attempts to withdraw a deposit while refueling. This
places trust in the gas station to report the correct amount of
fuel dispensed, as is traditionally done.

In AGasP, a smart contract for gasoline purchases is pub-
lished to the blockchain. The protocol begins with a gas station
publishing a minimum deposit amount, as well as prices for
their various types of gasoline. A user then transfers Ether to
their vehicle. When the user decides that they would like to
refuel, they use the vehicle application to initiate a deposit to
the gas station where they plan to refuel. The gas station is
then able to view this transaction on the blockchain to identify
which vehicles are authorized to fuel at the station. When the
vehicle arrives at the pump, a short-range wireless protocol
(e.g., Bluetooth) can be used to verify the identity of the vehicle
and the gas station, and the fueling can begin. Once fueling is
complete, the station sends a transaction indicating the amount
and type of fuel dispensed and the smart contract calculates the
payment for the gas station, returning the deposit to the vehicle
after subtracting the payment (see Figure 3).

B. AGasP Implementation

To fulfill this protocol, the smart contract stores an internal
list of gas stations, along with the types of fuel they sell and
their respective prices. New stations are added to this list,
and prices are adjusted in this list, by calling setGasInfo,
the function to set the minimum deposit, prices, and types.
A vehicle can poll the blockchain for station, type, and price
information by calling getGasInfo. When a vehicle calls
sendDeposit to send a deposit, it includes the address of
the station so that the smart contract can keep a list of vehicles
and their deposits for each station, along with the prices at
the time of deposit. After verifying identities, the station can
check this list to ensure that a deposit has been made before

set deposit, prices, types

send deposit

get deposit, prices, types

mutually verify identities
verify deposit

provide fuel

send fuel usage

(deposit - payment) (payment)

Vehicle must be at Gas Pump

1

2

3

Figure 3. A typical transaction sequence between a vehicle, the AGasP smart
contract, and a gas station during a gasoline purchase. Ethereum transactions
that require the payment of fees are drawn with a solid black line.

dispensing fuel by calling verifyDeposit. Once refueling
is complete and the amount of fuel dispensed is reported by
calling sendFuelUsage, the payment and change are sent,
and the vehicle is removed from the list. We implement the
AGasP smart contract using Solidity, a high-level language for
the Ethereum platform.

In order to interact with the AGasP smart contract, we also
developed two decentralized applications—one for the vehicle
and one for the gas station—using JavaScript and the web3
Ethereum JavaScript API. Each application is programmed
with the address of the AGasP smart contract. The gas sta-
tion application provides an interface to call setGasInfo,
verifyDeposit, and sendFuelUsage. The vehicle ap-
plication provides an interface for calling getGasInfo and
sendDeposit. These applications simply help us test and
develop the AGasP smart contract.

V. EVALUATION

We evaluate AGasP by seeking to answer: (1) does AGasP
address the challenges resulting from traditional approaches and
(2) how does AGasP compare to traditional approaches in terms
of financial overhead to gas stations?

A. AGasP Compared to a Centralized Approach

Transparency As shown in Figure 3, the only operations that
do not interact with the blockchain are the mutual verification
of identities and the refueling. The rest of the key components
of a purchase are committed as blockchain transactions. With
this scheme, it is impossible for a vehicle to purchase gasoline
without making an auditable deposit on the chain to a specific
gas station, and it is impossible for a gas station to acquire
their payment without publishing the amount of fuel that was
dispensed. Similarly, it is impossible for a gas station to charge
a price other than what was committed to the blockchain at
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Figure 4. Smart contracts allow applications to minimize trust.

the time of purchase, since the smart contract performs the
calculation based on the published prices.

Longevity In an architecture like Figure 1, the application
relies on the vendor’s infrastructure and cloud services to op-
erate. With AGasP, the infrastructure is completely distributed;
the permanence of the infrastructure and state of the appli-
cation is based on the permanence of the Ethereum network.
Although Ethereum is still relatively nascent, because it is open-
source, anyone can set up new Ethereum nodes to ensure that
applications persist. There are threats to the longevity of using
a public, proof-of-work-based blockchain like Ethereum, such
as a malicious entity controlling 51% of a network’s mining
power, allowing them to manipulate the ledger. However, the
high cost of such an attack on large public networks makes it
unlikely [33], and moving away from proof-of-work is already
on the Ethereum roadmap [34].

Trust In Figure 1, there are several relationships of trust
leveraged to complete a transaction. The user must trust: the
vendor with their credit card, the credit card to pay the station,
and the station to give them fuel and charge the correct amount.
Next, the credit card company trusts the user to pay back their
debt. Finally, the station trusts the credit card company to pay
on behalf of the user. By leveraging a smart contract, we can
reduce the trust to just a single edge (see Figure 4): a user must
trust the gas station to give them fuel and charge the correct
amount1. The smart contract itself will then distribute payment
without the involvement of another party.

B. Transaction Fees

In Figure 1, the gas station must pay fees to the credit card
company, and many gas stations have passed those fees onto
users by charging more for credit card transactions than for
debit or cash [36]. Similarly, with AGasP, both the user and
the gas station must pay transaction fees in order for their
transactions to be included on the blockchain. In order to
estimate these savings, we estimate the amount of fees paid
for a refueling a small car. Credit card companies charge a fee
comprised of a rate (Rate) of the transaction amount (Amount)

1While multi-signature transactions can be used to distribute the trust among
several parties (i.e., requiring m of n participants to validate a transaction),
ultimately, at least one point of trust is required when exchanging physical
goods or services [35].

Table I
ESTIMATES OF TRANSACTION FEES WITH AND WITHOUT AGasP.

Transaction Paying Party Approx. Fee ($)

Credit Card Gas Station 1.17

1 setGasInfo Gas Station 0.21
2 sendDeposit Vehicle 0.32
3 sendFuelUsage Gas Station 0.25
1 , 2 , 3 Vehicle, Gas Station 0.78

along with a flat fee (Flat) for each transaction, as shown in
Equation 2.

Fee = Rate ∗Amount+ Flat (2)

Assuming a typical rate of 2% (less than the 2016 average [37]),
a transaction amount of filling a 12 gallon tank with gas at
$3.85 per gallon, and a flat fee of $0.25, we estimate a fee of
$1.17. Similarly, we can compute an estimate of the transaction
fees incurred by AGasP using Equation 1. If we assume a
gasPrice of 10 × 10−9 Ether per transaction, and an Ether
value of $650. Then, based on our experimental measurements
of gasUsed for transactions 1 , 2 and 3 (as labeled in
Figure 3), the total cost in transaction fees for AGasP would
be $0.78, a 33% reduction in transaction fees. Furthermore,
note that a gas station only needs to send 1 when gas prices
change, and 2 is paid for by the vehicle. Thus, for a typical
refueling, the gas station only pays $0.25—a 79% reduction in
transaction fees. These estimates are summarized in Table I.

However, unlike credit card fees controlled by a credit card
company, the transaction fees of operating on Ethereum vary
with the market and can be unpredictable. For example, Ether
was valued at over $1300 in January 2018, and dipped back to
under $380 in April 2018—a span of just three months [38].

VI. LIMITATIONS AND DISCUSSION

A. Performance

A noticeable limitation of using smart contracts on Ethereum
for machine-to-machine communication is that low transaction
throughput results in high latencies in the time that it takes to
complete a transaction. In Figure 1, a cloud service using a
distributed database such as Google Spanner [39] can perform
tens of thousands of transactions per second. In stark contrast,
the public Ethereum network’s peak throughput was just short
of 16 transactions per second [40]. Furthermore, because miners
are incentivized to prioritize transactions with higher rewards,
transaction time can be highly influenced by the gasPrice
of the transaction.

In Figure 5, we vary the gasPrice of a transaction while
holding all other variables constant and measure the time it
takes from sending the transaction from a node on the public
network, to seeing that transaction executed and included in a
block on the chain. Each gasPrice was tested five times. A
higher gasPrice helps reduce both the average transaction
time and the variance of transaction times, down to an average
of 14 seconds with a gasPrice of 64×10−9 Ether. However,
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Figure 5. Transaction times for increasing gasPrice on the public Ethereum
network with a gasLimit of 70,000.

we see diminishing returns as eventually we are bottlenecked
by the throughput of the Ethereum network. In Figure 6, we
use a constant gasPrice and gasLimit, and run the same
transaction 60 times over the span of 5 days. The load of
the network and value of gas varies over time, leading to
high tail latencies when using a constant gasPrice. In our
experiments, we measure a mean latency of 14 minutes and a
95-percentile latency of 69 minutes.

The relatively low performance of smart contracts on
Ethereum means that applications that utilize them must design
around the possibility of transaction delays on the order of
minutes to hours, or be prepared to raise gasPrice values to
lower transaction times (down to the order of tens of seconds).
In AGasP, we design our sequence such that transaction latency
can be hidden from the user by allowing the time-consuming
smart contract transactions to occur before and after the user
is interacting with the gas pump (Figure 3). If a user does
not pay beforehand, they must wait one transaction time at
the pump. Other blockchain networks, such as Stellar, address
performance by using alternative consensus algorithms [41].

B. Privacy

Recall that transactions contain an origin address, a desti-
nation address, and the data or assets to be sent. Although
using smart contracts enables users to audit the transactions
of their devices, the nature of a public blockchain also means
that anyone else can also view these transactions. Even though
addresses are not explicitly tied to a real-world identity, other
nodes are still able to monitor a blockchain to learn patterns
about a user’s transactions.

Techniques such as zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zkSNARK) [42] have been deployed
successfully in the Bitcoin network and extend the Bitcoin pro-
tocol by adding a new type of transaction that hides the origin,
destination, and transferred amount from the public [43]. While
a zkSNARK approach has recently been tested on the Ethereum
Byzantium test network, the transaction required two orders of
magnitude more gas to complete, making transaction fees a
potential barrier [44]. Other work, such as Hawk [45], explores
methods for creating privacy-preserving smart contracts that do
not store financial transactions in the clear in order to retain
transactional privacy from the public.
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Figure 6. Cumulative density function for the transaction times of
setGasInfo on the public Ethereum network with a gasPrice of 10 ×
10−9 Ether and a gasLimit of 70,000.

C. Impact of Bugs in Smart Contracts

In contrast to traditional software, smart contracts cannot
be directly patched once deployed. This brings a unique set
of challenges and considerations for designing smart con-
tracts [46]. Two common approaches for updating smart con-
tracts are to either (1) use a self-destruct function that releases
all the internal state of the contract—typically by sending all
funds to a particular address—and then publish a new one, or
(2) include a version flag and a mutable pointer to the address
of a new contract after a contract is deprecated. If a smart
contract contains critical flaws, such as logical errors and lack
a self-destruct, assets can be locked in a contract. The most
noticeable example of this was the flaw in The Distributed
Autonomous Organization (The DAO) smart contracts that
allowed an attacker to siphon over $50M USD out of the $168M
funds invested in the organization. Ultimately, this required
a highly controversial “hard fork” to return the state of the
blockchain to a state prior to the hack. Smart contracts may
have vulnerabilities at the language, bytecode, and blockchain
levels that open them to a wide variety of attacks as seen with
The DAO, Rubixi, GovernMental, and others. [47] provides a
taxonomy and details of these exploits.

VII. CONCLUSION

IoT applications that automatically perform tasks or ex-
change assets in behalf of users pose unique design challenges
in terms of: a desire for transparency of the actions that a device
takes on behalf of user; the longevity of these devices compared
to traditional software products; and the common use case of
exchanging digital or physical goods or services, which requires
a trusted arbiter. We make a case for using smart contracts to
address these challenges and take a first look at their trade-
offs by designing, implementing, and evaluating AGasP, an IoT
application for automated gasoline purchases using machine-to-
machine communication. We find that the use of smart contracts
provides transparency, longevity, and allows applications to
minimize the need for trusted third parties—which we estimate
can reduce fees paid by a gas station for a typical transaction by
79%. However, Ethereum smart contracts have low transaction
throughput (tens of transactions per second) and 95-percentile
transaction latency can be on the order of hours, limiting the
types of applications that can be supported.
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