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ABSTRACT
Graph Neural Networks (GNNs) are a type of deep neural network that can learn directly from irregular graph-
structured data. However, GNN inference relies on sparse operations that are difficult to implement on accelerator
architectures optimized for dense, fixed-sized computation. This paper proposes GReTA (Gather, Reduce,
Transform, Activate), a graph processing abstraction designed to be efficient for an accelerator to execute and
flexible enough to implement GNN inference. We demonstrate GReTA’s advantages by designing and synthesizing
a custom accelerator ASIC for GReTA and implementing several GNN models (GCN, GraphSage, G-GCN, and
GIN.) Across several benchmark graphs, our implementation reduces 97th percentile latency by a geometric mean
of 15× and 21× compared to a CPU and GPU baseline respectively.

1 INTRODUCTION

Traditional deep neural networks (DNNs) rely on regularly
structured input (e.g. vectors, images, or sequences) mak-
ing it difficult for them to learn from data with irregular
structure (e.g. connections between users on social media.)
Graph neural networks (GNNs) address this limitation by
extending DNNs to operate on graph-valued data. During
inference, vertices exchange messages along the edges of
the input graph, combining per-vertex feature values with
information from other vertices in their local neighborhood.
GNNs have found success in a variety of domains, from
recommending content on social media (Ying et al., 2018)
to categorizing paper topics (Kipf & Welling, 2017).

A key challenge of GNNs is their reliance on sparse op-
erations, such as aggregating data from an arbitrary set
of neighbors. This makes them difficult to implement ef-
ficiently on widely deployed DNN accelerators, that are
optimized for the dense matrix multiplications found in tra-
ditional DNNs (Balog et al., 2019). As a result, GNNs have
seen limited use in real applications, even in domains where
they are considered state of the art.

In this paper, we introduce GReTA, a graph processing ab-
straction designed to be straightforward to execute by a
hardware accelerator while being flexible enough to imple-
ment the sparse operations used in GNNs. In GReTA, each
layer of a GNN is decomposed into one or more GReTA
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programs. We show that by extending a traditional DNN
accelerator with two new stages (gather and reduce), these
programs can be executed efficiently. Finally, we give a par-
titioning technique to limit the amount of memory required
to perform inference, a significant concern in practice for
large GNN models.

We demonstrate the advantages of GReTA by designing
and synthesizing a 32/28 nm ASIC capable of executing
GReTA programs. Evaluated across four different GNN
models, our implementation reduces 97th percentile latency
by a geometric mean of 15× and 21× compared to a CPU
and GPU baseline respectively.

2 BACKGROUND

2.1 Graph Neural Networks

GNNs are a type of neural network that operate on graph-
valued data. Unlike traditional DNNs, GNNs can directly
use graph structure during learning. For example, consider
the problem of classifying web pages by subject. A pure
content-based approach (e.g. a recurrent neural network)
considers only features derived directly from the content
of the page. In contrast, a GNN can natively leverage both
page content and graph structure (e.g. links between pages.)
GNN models have achieved state of the art performance on
a diverse set of tasks involving graphs (Ying et al., 2018).

Message Passing Architecture. While many GNN models
have been proposed (Battaglia et al., 2018; Wu et al., 2019),
modern variants typically follow an iterative message pass-
ing architecture (Gilmer et al., 2017). Algorithm 1 shows the
forward pass of a single layer in this architecture. The layer
takes as input a graph G, with each vertex assigned a feature
vector hv . Computation is split into three operations:
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Algorithm 1 Message Passing Layer Forward Pass

Input: Graph G = (V, E), Vertex and edge features hv

and h(u,v), Neighborhood function N(v)
Output: Updated vertex features zv

1: for (u, v) in E do
2: mu,v ← Send(hv, hu, h(u,v))
3: end for
4: for v in V do
5: av ← Aggregate({mu,v | u ∈ N(v)})
6: zv ← Update(hv, av)
7: end for
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Figure 1. An example of the nodeflow when performing inference
for vertex B using a two layer GNN.

• Send computes a message vector mu,v for each edge.

• Aggregate reduces the set of incoming messages for
each vertex to a single vector av .

• Update combines each vertex’s current value with the
output of aggregation to produce an updated vector zv .

By iteratively applying K of these layers, the final state for
each vertex captures information about the structure of its
K-hop neighborhood.

Nodeflow. When performing inference on a subset of ver-
tices, a layered graph structure called the nodeflow (Huang
et al., 2019) is commonly used to describe how feature vec-
tors are propagated during a model’s forward pass. In this
paper, we denote the nodeflow for a particular layer as the
three-tuple (U, V,E), where U is the set of vertices read, V
is the set of vertices updated, and E is the subset of edges
connecting vertices in U and V . Figure 1 shows an exam-
ple of the nodeflow for a two layer GNN when computing
inference for a single vertex.

2.2 DNN Accelerator Model

Figure 2a shows an abstract, TPU-like (Jouppi et al., 2017),
DNN accelerator model we use as a architectural baseline.
The model executes operations in four stages:

1. Load: Data is loaded from the unified buffer into the
setup unit, which applies any preprocessing required
for the compute unit.

2. Compute: The core computation of the accelerator is
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Figure 2. Comparison between a traditional DNN accelerator (2a)
and an extended architecture designed to execute GReTA programs
(2b). The main difference is the replacement of the setup unit with
the gather unit and reduction buffers.

performed, typically a dense, fixed-sized matrix mul-
tiplication. Note that weight values must be loaded
into the compute unit separately, before computation
begins.

3. Accumulate: The output of the compute unit is col-
lected in the accumulator buffer.

4. Activate: Activation and normalization operations are
applied to the values in the accumulation buffer and
the result is stored back into the unified buffer.

3 GRETA
GReTA is a graph processing abstraction designed for ef-
ficient execution on an accelerator. Similar to other graph
processing frameworks, such as PowerGraph (Gonzalez
et al., 2012), computation in GReTA is expressed by imple-
menting stateless user-defined functions (UDFs).

GReTA’s interface consists of four such UDFs (Gather,
Reduce, Transform, and Activate) which are executed in a
series of phases. First, in the aggregation phases, Gather
loads data associated with each edge and vertex in the node-
flow. The result is accumulated into a single value per vertex
using Reduce. Then, Transform is applied, combining the
reduced value with the previous vertex state. It also typically
performs the most significant computation in the GReTA
program (e.g. a matrix multiplication.) Finally, during the
update phase, Activate performs any final computation and
stores the result. Algorithm 2 shows GReTA’s full execution
semantics.

3.1 Expressing Inference

GReTA is expressive enough to allow implementing infer-
ence for a wide variety of GNNs. To implement a particular
model, each layer of the GNN is mapped to one or more
GReTA programs. Mapping is typically straightforward
since the overall semantics of GReTA are similar to the
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Algorithm 2 GReTA Execution Semantics

Input: Layer nodeflow (U, V,E); Vertex and edge data htv
and ht(u,v); Weights W t; Number of tiles T

Output: Updated vertex data h′v
1: for t = 1 to T do
2: /* Accumulate Edges Phase */
3: for (u, v) in E do
4: atv = Reduce(atv , Gather(htu, htv , ht(u,v)))
5: end for
6: /* Accumulate Vertices Phase */
7: for v in V do
8: zv = Transform(zv , atv , W t)
9: end for

10: end for
11: /* Update Phase */
12: for v in V do
13: h′v = Activate(zv)
14: end for

def Gather(ht
u, ht

v, ht
(u,v)): return ht

u

def Reduce(at
v, mt

v):
at
v.value += mt

v ; at
v.count += 1

return at
v

def Transform(zv, at
v, W t):

return zv +W tat
v.value / at

v.count
def Activate(zv): return ReLU(zv)

Figure 3. GReTA pesudocode implementation for GCN inference.

message passing architecture introduced in Section 2.1

Here, we demonstrate mapping inference for a common
model, the Graph Convolutional Network (GCN) (Kipf &
Welling, 2017). GCN follows the message passing architec-
ture with the following send, aggregate, and update opera-
tions:

mu,v ← hu (1)
av ← mean({mu,v | u ∈ N(v)}) (2)
zv ← ReLU(Wav) (3)

The corresponding GReTA implementation is given in Fig-
ure 3. The only subtlety is mapping the mean function,
which we implement by tracking separate value and count
fields in the accumulator and performing an element-wise
division operation in Transform.

3.2 Hardware Acceleration

GReTA has three major features that make execution on
an accelerator easier than existing graph processing frame-
works. First, data values are split into tiles (e.g. hv =
[h1v, . . . , h

T
v ]), the size of which can be tailored to match

the native width of the accelerator datapath. Second, the
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Figure 4. An example of the nodeflow for a layer (left) and its
possible partitioning (right). Rows and columns correspond to
chunks of input and output vertices respectively.

outer loop of the accumulate phase iterates over tiles rather
than edges or vertices. This allows each weight tile to be
reused across all vertices, improving performance. Finally,
the Transform UDF can accumulate values using zv , rather
than simply performing an update operation. This makes it
much easier to implement layers that sum together multiple
values (e.g. σ(W1h +W2h)) without having to store and
reload intermediate results.

Figure 2b shows a modified version of the DNN accelerator
architecture designed to execute GReTA programs. The
most significant deviation from the original architecture is
the replacement of the setup unit with two new components:
the gather unit and the reduction buffer. The gather unit
iterates over the edges defined by the nodeflow, loads the
associated vertex and edge data from the unified buffer, and
then executes the operation specified by the Gather UDF.
The result is passed to the reduction buffer, which executes
Reduce as well as the preprocessing originally performed by
the setup buffer. The final two UDFs in GReTA (Transform
and Activate) are mapped onto the compute and activation
units respectively, which operate essentially unmodified.

Note that although GReTA allows any operation to be de-
fined for each UDF, only a small number of operations are
needed for most GNN models in practice. Specifically, we
allow Gather to be identity (no-op), element-wise sum, prod-
uct, and a lookup-table operation. For Reduce, we allow
element-wise max, sum, and sum with count (the operation
used by GCN in Section 3.1.) While these covered all GNN
models we investigated, expanding the set of supported oper-
ations may be required for other GNNs. We leave exploring
other possible implementations for future work.

3.3 Nodeflow Partitioning

The total memory required for GReTA is proportional to
the number of vertices in the nodeflow. Here, we introduce
a technique to partition the nodeflow into blocks that can
be executed separately. This allows reducing the amount of
memory required to execute a GReTA program by loading
only a subset of vertices at a time, making it feasible to
execute GReTA on an accelerator with limited memory.

First, the input and output vertices are partitioned offline
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into chunks of size n and m respectively. Likewise, the
edges of the nodeflow are partitioned into blocks of size
n × m, where block NFi,j stores the edges connecting
input vertices in chunk Ui to output vertices in chunk Vj .
During execution, the accumulate phases for each block in
a column is executed sequentially, skipping blocks that are
empty. Then, the update phase executes once, writing the
update values for the vertices in the corresponding output
chunk back to unified memory. Note that by processing an
entire column we ensure every edge associated with a given
chunk of output vertices will be processed, regardless of the
input chunk the edge originates from. Figure 4 shows an
example of partitioning the nodeflow using this method.

4 EVALUATION

To evaluate the performance of GReTA on an accelerator,
we implemented a custom accelerator in SystemVerilog and
performed synthesis and place and route, targeting a generic
32/28 nm CMOS process and a 1GHz operating frequency.
Our final design achieved an area of 11.27mm2, a peak
operating power of 6.73W, and a peek performance of
2TOPS/s. To measure the performance, we also developed
a cycle accurate C++ model, using Ramulator (Kim et al.,
2016) to estimate DRAM timings.

To demonstrate flexibility, we mapped inference for four dif-
ferent GNN models to our accelerator as GReTA programs:
GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al.,
2017), G-GCN (Bresson & Laurent, 2017; Marcheggiani &
Titov, 2017), and GIN (Xu et al., 2019). Each model was
evaluated on datasets chosen from previous evaluations of
GNNs, the SNAP project (Leskovec & Krevl, 2014), and
the UF sparse matrix collection (Davis & Hu, 2011). In all
experiments, we use a feature size of 602 (the feature size
of the Reddit dataset), a hidden dimension of 512, a pooling
dimension of 256, and a batch size of 1.

Finally, we implemented each model in Tensorflow to use as
a baseline. To discount Tensorflow’s overhead, we measured
the time to execute an equivalent model with all tensor
dimensions set to zero, and subtract this from the latency
measurement. We used an Intel Xeon E5-2690v4 for the
CPU baseline, restricted to a single socket to avoid latency
variation from NUMA. For the GPU baseline we used a
Nvidia Tesla P100.

Table 1 shows the GReTA ASIC’s total execution time (la-
tency) to compute inference for each model and the speedup
versus our CPU and GPU implementation at the 97th per-
centile. Compared to the CPU implementation, GReTA
achieved a latency improvement of between 23× (GCN,
LiveJournal) and 9× (GIN, Youtube) with a geometric mean
of 15.1× across all datasets and models. GReTA tends to
give a smaller speedup on models that perform a larger por-

Table 1. 97th percentile inference latency for GReTA ASIC versus
CPU and GPU baselines.

CPU GPU

Model Dataset GReTA µs × µs ×

gcn youtube 14.1 253.2 (17.9) 791.3 (56.0)
gcn livejournal 15.4 353.1 (23.0) 1040.0 (67.7)
gcn pokec 15.9 327.6 (20.7) 790.3 (49.8)
gcn reddit 16.2 310.8 (19.2) 698.4 (43.1)
g-gcn youtube 120.6 1975.9 (16.4) 1191.0 ( 9.9)
g-gcn livejournal 134.1 2303.9 (17.2) 1685.7 (12.6)
g-gcn pokec 146.4 2467.3 (16.9) 1168.8 ( 8.0)
g-gcn reddit 146.9 2766.0 (18.8) 872.6 ( 5.9)
gs-max youtube 101.1 1244.1 (12.3) 1150.1 (11.4)
gs-max livejournal 113.7 1650.5 (14.5) 2006.6 (17.7)
gs-max pokec 124.5 1931.2 (15.5) 1494.2 (12.0)
gs-max reddit 125.2 2021.1 (16.1) 1064.6 ( 8.5)
gin youtube 29.2 285.3 ( 9.8) 1180.6 (40.4)
gin livejournal 30.5 306.2 (10.0) 960.5 (31.5)
gin pokec 31.0 300.5 ( 9.7) 676.6 (21.8)
gin reddit 31.3 312.1 (10.0) 818.8 (26.1)

tion of their computation during the update operation. For
example, GIN uses a two-layer MLP in its update phase and
performs significantly more computation than GCN which
uses a single matrix multiply. This is because the CPU im-
plementation is mostly bottlenecked by cache bandwidth
during the aggregation operation, and models with more
computationally intensive update operations spend a smaller
portion of their time performing aggregation.

Compared to the GPU implementation, GReTA achieved
speedups ranging from 68× (Livejournal, GCN) to 6× (Red-
dit, G-GCN), with a geometric mean of 21×. Models with
relatively low overall latency (GCN, GIN) have a signifi-
cantly higher speedup than with our CPU implementation.
This is largely due to the overhead of transferring data from
host to GPU memory (roughly 200-500 µs, depending on
the nodeflow size), which comprises a large portion of the
overall latency for models like GCN (25-50% of total la-
tency.) On models with a higher latency (e.g. G-GCN), we
still achieve significant speedup due to low GPU utilization.
With a batch size of 1, there is insufficient computation dur-
ing each layer to fully utilize the resources of the GPU and
the kernel launch overhead tends to dominate.

5 CONCLUSION

GNNs represent a promising new method in machine learn-
ing to learn directly from graph-structured data. However,
the mismatch between the sparse operations required for
GNNs and accelerators optimized for dense matrix multipli-
cation represents a significant barrier for deploying GNNs
more widely. This paper presents GReTA, a graph pro-
cessing abstraction designed to both be an easy target for
mapping GNN operations and be efficiently executed by an
accelerator. Our evaluation of an ASIC implementation of
GReTA on a range of real graphs shows a 97th percentile
latency improvement of between 9× to 23× and 6× to 21×
compared to a CPU and GPU baseline respectively.
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