
Privacy-Preserving Control of Partitioned Energy Resources
Evan Laufer

emlaufer@stanford.edu

Stanford University

Philip Levis

pal@cs.stanford.edu

Stanford University

Ram Rajagopal

ramr@stanford.edu

Stanford University

ABSTRACT
Distributed energy resources are an increasingly important part

of the electric grid. We examine the problem of partitioning a dis-

tributed energy resource among many users while providing pri-

vacy to them. In this model, clients can send requests to a server,

the server can verify that the requests are valid and aggregate them,

but it cannot see the actual values in the requests. Without privacy,

each user is forced to reveal their daily schedule or energy use.

Energy resources add a novel challenge that prior systems do not

address: they require verifying limits on private power (a rate over

time) and energy (a sum) values. Furthermore, the cryptographic

mechanisms must run on embedded energy control systems.

We describe Weft, a novel cryptographic system that verifies

both power (rate) and energy (integral) constraints on private client

values and aggregates them. The key insight behind the approach

is to rely on additively homomorphic secret shares, which allows

servers to compute sums from rates. We present 3 cryptographic

proof systems with different system trade-off for embedded sys-

tems: bit-splitting proofs minimize memory use, sorting proofs

minimize computation, and commitment proofs minimize network

communication. Using bit-splitting proofs, it takes an IoT client

using a CortexM microcontroller 4 minutes of compute time to

privately control its share of an energy resource for a day at 20s

granularity.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
energy storage, distributed energy resources, privacy

ACM Reference Format:
Evan Laufer, Philip Levis, and Ram Rajagopal. 2024. Privacy-Preserving

Control of Partitioned Energy Resources. In The 15th ACM International
Conference on Future and Sustainable Energy Systems (E-Energy ’24), June
04–07, 2024, Singapore, Singapore. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3632775.3661988

1 INTRODUCTION
Distributed energy resources (DERs) are an increasingly important

part of the electric grid. There are now over 500,000 Tesla Power-

Walls installed in the United States [43], providing 7GW of power,

which is more than half of the 13GW [53] provided by utility battery

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

E-Energy ’24, June 04–07, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0480-2/24/06

https://doi.org/10.1145/3632775.3661988

installations. Distributed energy resources differ from their utility

counterparts in that they are owned and controlled by consumers

and third parties.

Some distributed energy resources are partitioned among many

users. For example, a community solar/battery installation may sell

partitions to people in a neighborhood or power domain. Sharing a

communal resource in this way has many advantages: individuals

can join and leave the system, resources can be put in good locations,

and it allows people who cannot install resources in their home to

use them.

One problem that partitioned energy resources introduce is a

lack of privacy. Because each user operates a share of the large

resource, the controller of the resource (e.g., the battery storage

provider) can see how each person is using it. For example, the

provider can observe that a home starts requesting 40kW at 3PM,

suggesting they are charging an electric vehicle.

Recent work has considered a similar scenario, where clients

jointly control an energy resource [62]. Clients privately aggre-

gate their energy demand, which is sent to a resource operator

that minimizes the joint cost of the energy. This paper considers a

different scenario, where clients own and control partitions of an

energy resource. A major benefit of this approach is that clients

can individually optimize their own energy cost. Compared to the

joint control setting, this introduces a key challenge: the resource

operator must verify that the commands from the client are valid.

For example, in the case of a privately shared battery, the battery

owner needs to verify that a client isn’t requesting more power

than their maximum, nor that they are undercharging or overcharg-

ing their battery. Section 8 describes how this leads to different

cryptographic elements in this work.

Adapting private aggregation to partitioned energy resources

has three challenges. First, distributed energy resources require

verifying both an instantaneous value (power) and its integral (en-

ergy). Second, values are commands to an active device, and the

timing of these commands can leak sensitive information about

the client’s usage of the resource. Third, prior techniques focus on

traditional client/server computing systems that have GHz of CPU

and GB of RAM. Distributed energy resources, in contrast, often

have embedded controllers, with MHz of CPU and kB-MB of RAM.

This paper describes Weft, a secure system which addresses

these challenges. First, Weft enforces constraints over power (rates)

and energy (integrals) using the key observation that the additive

homomorphism in systems like Prio and a local state variable al-

low servers to compute and constrain secret integrals over time.

Second, to provide temporal secrecy, instead of sending commands

to the device, clients send schedules of commands at fixed times.

Third, Weft can run in diverse deployment scenarios, including on

resource constrained embedded devices. Weft can use three types of

proofs which each minimize one of compute, memory, or network

communication.

610

https://orcid.org/0009-0001-5767-0844
https://orcid.org/0000-0003-2934-2701
https://orcid.org/0000-0002-4961-9539
https://doi.org/10.1145/3632775.3661988
https://doi.org/10.1145/3632775.3661988
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632775.3661988&domain=pdf&date_stamp=2024-05-31

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

This paper makes the following contributions:

(1) Design of a novel cryptographic system for privacy-

preserving control of partitioned energy resources, which

can verify both power (rate) and energy (integral) constraints,

using three proof systems with different trade-offs:

(a) Bit-splitting proofs which minimize memory usage.

(b) Sorting proofs which minimize CPU usage.

(c) Commitment proofs, which minimize network communi-

cation. These proofs are a general-use, novel extension to

Bulletproofs to operate over secret-shared data.

(2) A novel optimization (Disjunctive Schedule Compression)

for compressing secret shared time series data, at the cost of

leaking a small amount of information.

(3) An implementation that is efficient enough to run on re-

source constrained embedded systems.

2 BACKGROUND
This section provides background on distributed energy resources

and three cryptographic techniques that Weft builds on: additive

secret sharing, secure aggregation, and cryptographic proofs.

2.1 Distributed Energy Resources
Distributed energy resources (DERs) are energy resources that are

controlled by consumers and third-parties, instead of the energy

company. DERs are a growing segment of the grid. For example,

Powerwall, Tesla’s home battery, is now installed in over 500,000

homes in the United States, with over half installed in the last two

years [43]. In total, they can provide 7GW of power to the grid,

which is more than half of the 13GW that can be provided by battery

installations owned by energy companies [53].

Because DERs are controlled by many parties and distributed

across the grid, they often have poor utilization [52]. For exam-

ple, typically home batteries are only used to minimize energy

cost. Recent work in academia and industry has created systems

to increase the utilization of DERs through aggregation and shar-

ing [2, 26, 44, 52].

2.2 Additive Secret Sharing
Secret sharing is a technique that splits a value 𝑣 into 𝑛 secret shares,
[𝑣]1, ..., [𝑣]𝑛 .1 Each share individually reveals nothing about 𝑣 , and

recovering the original value requires having all of the shares [17,

59]. Additive Secret Sharing, used in this paper, operates on values

over a modulus, which wrap around on overflow (e.g. standard

64-bit unsigned integers).

In additive secret sharing, 𝑛 − 1 shares ([𝑣]1 . . . [𝑣]𝑛−1) are ran-
dom numbers, and the remaining share ([𝑣]𝑛) is 𝑣 with every ran-

dom number subtracted from it ([𝑣]𝑛 = 𝑣− [𝑣]1− [𝑣]2− ...− [𝑣]𝑛−1).
To recover 𝑣 , a user adds together all of the shares: the random

numbers cancel and 𝑣 remains. If a user holds fewer than 𝑛 shares,

they are unable to learn any information about 𝑣 because the shares

appear completely random.

Additive secret sharing is additively homomorphic, meaning one

can add or subtract values by adding or subtracting their secret

shares. For example, suppose there are two values, 𝑣 , and𝑤 , each

1
Throughout this paper, [𝑣]𝑖 denotes the 𝑖th share of 𝑣.

split into secret shares. Adding up all of the shares of 𝑣 and𝑤 (in

any order) will produce 𝑣 +𝑤 .

2.3 Secure Aggregation and Prio
Secure aggregation allows a server to compute an aggregate of

many values without learning the individual values. It also sup-

ports computations in which only some input values are valid.

Using secure aggregation, a battery-solar system can receive secret

discharge requests from users, check that each request is valid, and

compute the total amount of power it should provide to the grid

without learning any individual user’s request.

A secure aggregation scheme has two security properties.

(1) Client Privacy: A (potentially malicious) server should learn

no information about an individual client’s values, except

for the final sum and that each value is valid.

(2) Server Robustness: If a client sends the server a malicious

value, a server can detect and reject it.

Prio is a secure aggregation system [27]. To provide client pri-

vacy, Prio adds a non-colluding third party that participates in the

protocol. Clients send arithmetic secret shares of their values to

each server. By the privacy property of these shares, as long as

one server is not malicious, they reveal no information about the

underlying value. The servers can individually sum up the client

shares into partial sums. They add together their partial sums to

reveal the sum of all the client values. To provide server robustness,

Prio introduces SNIPs, a type of zero-knowledge proofs [37].

2.4 Bulletproofs
Bulletproofs is an efficient, aggregatable zero-knowledge proof

system [22]. Compared to Prio’s SNIPs, Bulletproofs require more

memory and computation but are much more concise, so require

≈ 10𝑥 less network communication. For DERs on low-speed long-

range wireless links, this can be a necessary trade-off. A Bullet-

proofs prover publishes a public commitment 𝐶 to𝑤 , which binds

them to the value of 𝑤 without revealing any information about

𝑤 . Later, if the prover reveals 𝑤 , other parties may verify that 𝑤

was indeed the committed value. Bulletproofs range proofs prove

that the commitment 𝐶 both commits to 𝑤 and that 0 ≤ 𝑤 < 2
𝑛
,

without revealing𝑤 .

3 PROBLEM STATEMENT
This section formulates privacy-preserving control of partitioned

energy resources as a security problem, shown in Figure 1.

A client wants to use a partitioned energy resource. Many clients

own partitions of the resource, but it is operated by a central server.

The server maintains a (possibly negative, in case of charging

and discharging) minimum rate, maximum rate, and a maximum

amount of the resource that the client can use. The client wants

their usage to remain private; the server should learn the sum of all

clients’ usages but not the usage of any individual client. The server

wants to ensure that no client uses a rate outside their allowed

bounds, more than the maximum amount, or drains their resource

below zero.

To be practical for real-world deployment, the system (and par-

ticularly the client) must be efficient. Energy systems often run

on low-power embedded devices with limited compute, memory,

611

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

g
5 KW

g
7 KW

g
8 KW

g
1 KW

�g
21 KW = 1 + 8 + 7 + 5

(a) Without privacy

g
5 KW

g
7 KW

g
8 KW

g
1 KW

�g
21 KW = 1 + 8 + 7 + 5

(b) With privacy

Figure 1: Partitioned resource control with and without pri-
vacy. Without privacy, the server sees each client’s value and
adds them together. With privacy, each client’s value is en-
crypted such that the server can sum them without seeing
the value.

or bandwidth (e.g., smart meters, energy system controllers). The

system assumes the server is commodity hardware, with resources

at least equivalent to a recent desktop.

In summary, a system for privacy-preserving control of parti-

tioned energy resources has the following goals:

(1) Client privacy: the resource operator should only learn the

sum of all client requests.

(2) Server integrity: the resource operator should be able to

detect and reject invalid client requests.

(3) The system should be computationally efficient, able to run

on desktop-class systems and in some configurations, clients

can be embedded devices.

4 SYSTEM DESIGN
Weft allows private control of a partitioned energy resource. In this

model, each client controls a partition of the energy resource, and

sends private commands to the resource operator, such as charge

or discharge. The resource operator aggregates the client requests.

For example, following the approach used in prior work on battery

virtualization [52], to calculate whether a partitioned battery should

charge or discharge it sums the charge and discharge requests.

The exact commands are private. The resource operator does

not know what individual clients do. The resource operator, how-

ever, can verify that each command is valid in terms of power and

energy: no client can charge or discharge faster than what their

partition allows, nor can it overcharge above its partition capacity

or discharge below zero.

The rest of this section formally describes this security model,

how clients specify their commands in terms of schedules, and how

Weft extends secure aggregation to verify the validity of both power

and energy.

4.1 Security Model
Weft follows the same security model as Prio [27]. The resource

operator has a server, responsible for controlling the energy re-

source and sending commands to it. There is at least one additional

server, operated by a third party (e.g., the ISRG [4]). Weft assumes

the third party does not collude with the resource operator. This is

a practical assumption because organizations such as the Internet

Security Research Group provide this as a service. For example, in

a deployment of secure aggregation used for COVID-19 exposure

notifications, the servers were controlled by the NIH and ISRG [4].

The clients know their own requests and the state of their par-

tition of the energy resource, but they should not learn any infor-

mation about other clients. The servers should learn whether each

request is valid and the sum of the power across all client’s requests,

but no other client information. Weft assumes that the clients and

servers communicate over authenticated, encrypted channels.

Servers are trusted for request integrity, meaning they will not

modify client requests. However, servers are untrusted for request

privacy, meaning they may try to learn information about client

requests. This information may be from the request itself, by relat-

ing different requests, from the timing of requests, etc. Clients are

trusted for neither integrity nor privacy; they may attempt to learn

other client’s information or submit malformed requests.

4.2 Data Model
Like prior work on secure aggregation in the non-colluding third-

party model, Weft uses secret sharing to preserve client privacy [27].

A client submits a power request by splitting the request into secret

shares and sending one share to each server. Using the additive

homomorphism of the sharing scheme, the servers aggregate the

shares of different clients, hiding the client’s private data in the

sum. The resource operator recombines the aggregated shares to

learn the true aggregate.

Standard RESTful APIs for energy resources allow clients to

control a resource by setting its charge/discharge value. This value

replaces the prior one. While this can be achieved with secret shares

(simply cache values and reaggregate on a new value), it leaks

information and therefore violates privacy. Whenever a request

comes in from a client, the resource operator sees how the aggregate

changes and can compute how the client’s request changed.

To avoid this information leak, Weft encodes requests as sched-
ules, an array of power values, similarly to prior work [62]. Each

element in the schedule specifies the value for a time interval. The

energy resource defines this interval and the length of a schedule.

Shortly before the start of each epoch, a client sends its schedule

for that epoch. Schedules do not leak information because they

decouple changes from the timing of messages.

To ensure the client request is valid, the servers must check two

things: a rate constraint and an integral constraint. More formally,

for some minimum (possibly negative) rate 𝑛, some maximum rate

𝑚, and a maximum usage 𝑒 , these constraints over a schedule 𝑆 are

(1) Rate Constraint: 𝑛 ≤ 𝑆 [𝑖] ≤ 𝑚 for all 0 ≤ 𝑖 < |𝑆 |.
(2) Integral Constraint: 0 ≤ ∑𝑗

𝑖=0
𝑆 [𝑖] ≤ 𝑒 for all 0 ≤ 𝑗 < |𝑆 |

The minimum rate, maximum rate, and maximum usage may all be

different values for each client, and we assume that they are known

to the servers and the resource operator.

To ensure that client requests are valid, the system uses zero-

knowledge proofs over secret shared data. The client constructs

zero-knowledge proofs which prove that their schedule 𝑆 satisfies

both the rate and integral constraints. They send the proofs to the

servers, who jointly verify them over their secret shares. If the

proofs are valid, the servers are convinced that 𝑆 satisfies both

constraints. If any proof is invalid, the servers reject 𝑆 .

612

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

4.3 Checking Integral Constraints
Both the rate and integral constraints require checking range predi-
cates (a value is within a range). To prove the rate constraint, the

client generates a zero-knowledge proof for each value 𝑆 [𝑖] in its

schedule, which proves 𝑛 < 𝑆 [𝑖] < 𝑚. We defer a description of

how these proofs are generated to Section 5.

While the rate constraint is a straight-forward application of

range predicate proofs, proving the integral constraint requires

extra steps. The key insight behind checking integral constraints

is that because secret shares are additively homomorphic, one can

compute the integral by keeping a running sum of the rates.

Recall the integral constraint requires proving that for some

maximum usage 𝑒 , over a schedule 𝑆

0 ≤
𝑗∑︁

𝑖=0

𝑆 [𝑖] ≤ 𝑒 for all 0 ≤ 𝑗 < |𝑆 |

Because the schedules are arrays, the integral over [0, 𝑡] is the
partial sum of the values from 0 to 𝑡 . The servers can compute

secret shares of the integral at each time-slice by summing up the

secret shares of the schedule.

Once the servers have secret shares of the integral at each time-

slice, the client can use the same range proofs used to prove the

rate constraint for the integral constraint. Instead of proving that

𝑛 ≤ 𝑆 [𝑖] ≤ 𝑚, the client computes the integral and proves that

0 ≤ ∑𝑡
𝑖=0 𝑆 [𝑖] ≤ 𝑒 . The servers can verify these proofs using their

secret shares of the integrals.

Integrals across schedules. In the partitioned battery application,

the amount of energy remaining in the client’s partition must never

be below 0 or above the maximum possible energy 𝑒 . This constraint

must hold across multiple schedules: the value at the start of the

schedule depends on the prior one. The amount of energy remaining

in the client’s partition should also remain private, because it reveals

information about the client’s energy usage.

Weft extends the integral constraint across schedules. Each

server keeps a secret share representing the current sum up to

this point (denoted [𝑒𝑐]). Weft modifies the integral constraint to

0 ≤ 𝑒𝑐 +
𝑛∑︁
𝑖=0

𝑆 [𝑖] ≤ 𝑒 for all 0 ≤ 𝑛 < |𝑆 |

The servers compute shares of each partial sum using the addi-

tive homomorphism of the secret shares. The client generates a

range proof for each partial sum, which convinces the servers their

schedule satisfies the constraint.

Once the current schedule is finished, the servers update their

shares of 𝑒𝑐 using the shares of the schedule

[𝑒𝑐] = [𝑒𝑐] +
|𝑆 |∑︁
𝑖=0

[𝑆 [𝑖]]

Again, the servers are able to update [𝑒𝑐] locally with no help from

the client or other servers because the secret sharing scheme is

additively homomorphic.

5 RANGE PROOFS
The client needs to prove to the server that their secret value 𝑣 is

within some interval [𝑛,𝑚]. This section gives three types of proofs

Proof Compute (s) Memory (kB) Communication (kB)

Bit-splitting 0.13 105 723

Sorting 0.04 638 343

Commitment 34.71 262×103 24

Table 1: The amount of compute, memory, and communica-
tion needed to prove a schedule with 5760 values (one value
sampled every 15 seconds over one day).

for these predicates. Full descriptions of Weft’s range proofs are

given in Appendix A, and security proofs are given in Appendix B.

The first proof is a bit-splitting argument implemented using

Prio. Informally, if each value 𝑆 [𝑖] is expressible within 𝑛 bits, then

𝑆 [𝑖] must be within the interval [0, 2𝑛) . The proof can extend to

arbitrary intervals using additive homomorphism.

The second proof is based on sorting, and is also implemented

using Prio. The client convinces the servers that the values in a

schedule 𝑆 are within an interval [𝑛,𝑚] by providing a sorted ver-

sion of the schedule 𝑆 . If the first and last values in 𝑆 are within

[𝑛,𝑚], then the entire schedule 𝑆 must also be within [𝑛,𝑚].
The third proof, which we call commitment proofs, is based

on Bulletproofs, but adds novel modifications to allow it to be

used over secret shared data, which is of independent interest. The

key insight is to have the servers construct a commitment to the

original, unshared values using the additive homomorphism of the

commitment scheme.

Table 1 summarizes trade-offs to prove the validity of 5760 values

with each proof system. The range proofs are the most expensive

part of the client and server, and ideally there would be one proof

that is efficient in compute, memory, and communication. Unfortu-

nately, techniques which reduce the cost of one resource increase

the cost of others. For example, the bit-splitting and sorting proofs

are very compute efficient. However, they require a lot of network

communication. On the other hand, the commitment proofs are

very communication efficient, but require large amounts of compute

and memory.

5.1 Disjunctive Schedule Compression
For large schedules, range proofs use too much RAM to run on

embedded devices. One way to reduce this cost is to increase the

granularity of the schedule. However, this means clients no longer

have as much flexibility with when they can change their values.

To reduce the schedule sizes while still giving clients flexibility,

the system may implement an optimization that allows clients to

only send values at timeswhen some client changes their value. This

reduces the cost for applications where clients are often sending

duplicate values within their schedule, while providing the full

flexibility of a larger schedule. However, it requires leaking when

some client changes their schedule.

Weft implements the optimization as an additional round be-

fore clients send their schedules and proofs. During this round, the

clients send the servers secret shares of bits which encode whether

or not their value changes during that time slice. The servers com-

pute the multiplication of the clients bits, and reveal the result to

all the clients. The clients only send values and proofs for the bits

which indicate that some client intends to change their value.

613

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

More precisely, at the beginning of the first round, each client

computes 𝑥 [𝑖] = (𝑆 [𝑖] == 𝑆 [𝑖 − 1]) for all 1 ≤ 𝑖 ≤ |𝑆 | and sends

a boolean secret share of 𝑥 [𝑖] to each server. 𝑥 [𝑖] is 1 if the client
didn’t change the value in their schedule between time slice 𝑖 −
1 and 𝑖 , and 0 otherwise. The servers maintain an accumulator

vector 𝑎𝑐𝑐 , where 𝑎𝑐𝑐 [𝑡] is the value of the accumulator for time 𝑡 .

This accumulator is initialized to shares of all 1s (the initial state

does not need to be secret, so the servers can initialize with no

communication). On a set of bits 𝑥 the servers compute 𝑎𝑐𝑐 = 𝑎𝑐𝑐◦𝑥
where ◦ is an entrywise product. The entrywise product can be

computed using standard MPC techniques [11, 68]. Once an 𝑥 is

received from all clients, the servers reveal the values of 𝑎𝑐𝑐 to each

other and the clients. Then, for time 𝑡 , the clients only send values

and proofs when 𝑎𝑐𝑐 [𝑡] = 1

6 IMPLEMENTATION
Weft is implemented as a Linux process and as a TockOS process run-

ning on the nRF52840 microcontroller. The system uses using mod-

ified versions of the libprio crate [3] and the bulletproofs [29]

crate to implement the range proofs. For the Tock implementation,

we modified libprio to materialize less data in memory to support

larger schedule sizes on RAM constrained embedded systems. Most

of these modifications were straightforward.

7 EVALUATION
This section evaluates Weft and whether it is efficient enough to

be deployed and used in distributed energy resources. It does so by

examining three questions:

• What are the CPU, memory, and communication costs of

Weft on clients, which may be IoT systems?

• What are the CPU costs of theWeft on servers? (The memory

and communication costs are tiny for server-class systems.)

• What savings does disjunctive schedule compression provide

on realistic DER control traces?

7.1 Methodology
We measure client costs on a desktop-class machine as well as a

microcontroller-based embedded system. We measure server costs

on only the desktop. The embedded system has an nRF52840 micro-

controller, a system-on-a-chip (SoC) integrating a 64 MHz 32-bit

Cortex-M4 microcontroller with 1MB of flash for code and 256kB

of RAM [1]. The desktop has an Intel i9-129000KF processor with

8 performance and 8 efficiency cores. Each performance core can

run at up to 5.2GHz. The system has 30MB of shared L3 and 14MB

total L2 cache. Main memory is DDR4-3200.

The primary variable wemanipulate is the schedule size, in terms

of number of values.

7.2 RAM use
Figure 2 shows the peak client heap of Weft using the bit-splitting

and sorting proofs. To prove a schedule with 10,000 elements, the

sorting strategy uses a peak of 2.4MB of RAM, the bit-splitting

strategy uses 191kB. The commitment proofs require 524MB of

RAM for the same schedule, which exceeds the memory of most

IoT devices. Bit-splitting is the most RAM-efficient approach, using

8% the RAM of sorting and 0.04% the RAM of commitment proofs.

0

500

1000

1500

2000

2500

0 2500 5000 7500 10000
Schedule Size

P
ea

k
M

em
or

y
(K

B
)

Bit−Splitting
Sorting

Figure 2: Peak memory usage of the client using the Bit-
Splitting and Sorting proofs.

0.0

0.1

0.2

0.3

0 2500 5000 7500 10000
Schedule Size

T
im

e
(s

)

Bit−Split Client
Bit−Split Server
Sort Client
Sort Server

Figure 3: Compute time by the client and server when using
the bit-splitting or sorting proofs.

0

100

200

0 1000 2000 3000 4000
Schedule Size

T
im

e
(s

)

Figure 4: Time spent by the client generating proofs for var-
ious schedule sizes on an nRF52840 microcontroller. For a
schedule of size 4000, the client takes 4.5 minutes.

The 191kB required for bit-splitting approaches the RAM avail-

able on the nRF52840. In practice, its 256kB has to be shared between

applications, the kernel, and networking stack. In our execution

environment, an application is limited to 96kB of RAM. This is

sufficient to prove a 4,000 element schedule, so a day-long schedule

with an interval of 22 seconds. A 1,440 element schedule uses 45kB.

7.3 CPU Performance
Figure 3 shows the time it takes the desktop to compute the client

and server portion of bit-splitting and sorting proofs. It can prove

the validity of a 10,000 element schedule with the bit-splitting strat-

egy in 0.36 seconds. Using the sorting strategy, it can prove the same

schedule in 0.09 seconds. Server verification of the two Prio-based

proof strategies takes 0.085 and 0.065 seconds respectively. Com-

mitment proofs is the most computationally intensive approach.

A client can prove the validity of a schedule of 10,000 elements in

73.59 seconds. It takes a server 9.99 seconds to verify the proofs.

Figure 4 shows the compute time for the bit-splitting client when

running as a Tock [45] process on the nRF52840 microcontroller. A

614

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

0.0

0.4

0.8

1.2

0 2500 5000 7500 10000
Schedule Size

C
om

m
un

ic
at

io
n

(M
B

)

Bit−Splitting
Sorting

Figure 5: Amount of data sent from the client to the leader
server when using the bit-splitting or sorting proofs.

steps Compressed size % reduction

- 1440 0%

10000 1158 20%

1000 697 52%

100 215 85%

10 28 98%

Table 2: The table shows the compressed size of a single-
day battery discharge schedule when discretized to various
numbers of steps. The first row shows the uncompressed size
(1440).

schedule of 1,440 elements takes 66s to compute, while a maximum-

sized schedule of 4,000 elements takes 4.5 minutes; as the schedule

is for a day, this is an acceptable cost.

7.4 Communication
Figure 5 shows the number of bytes the bit-splitting and sorting

proofs communicate between the clients and servers. We assume

server-to-server communication is not a bottleneck (the number of

bytes is tiny for modern Internet speeds).

The sorting strategy requires 0.66 MB for a 10,000 element sched-

ule and 159kB for a 1,440 element schedule. The bit-splitting strat-

egy, which can execute on an embedded microcontroller, requires

the most communication. It sends 1.13MB for a 10,000 element

schedule and 183kB for 1,440 elements.

Commitment proofs are the most efficient strategy, sending 41.5

KB for a schedule of 10,000 values. This is close to optimal – the

values in the schedule themselves require 40 KB of data. For a 1,440

element schedule, commitment proofs send 7.1kB.

7.5 Disjunctive Schedule Compression
Disjunctive schedule compression has negligible RAM and CPU

overhead: the client only needs to compute the secret shares of the

schedule changes, and the servers only performs bitwise operations.

For communication, the clients must send bits which represent

when their schedule changes, and the servers must perform boolean

MPC to multiply all the clients changes together.

To evaluate the effectiveness of schedule compression, we use

a trace of a battery-solar system on a home in California. Because

these values are measurements of observed output from a control

system, rather than the commands issued by the control system,

they are noisy. We therefore discretize the power values into bins.

We discretize the power values by rounding them down to the

nearest value. Table 2 shows the results, showing the size of the

compressed schedule when power is discretized into 10, 100, 1000, or

10000 values, representing steps of 1kW to 1W.With high resolution

(e.g. 𝑛 = 10000), compression reduces the schedule size by 282

values. At a resolution of 𝑛 = 1000 (10W steps), compression cut

the schedule size by half. At 1kW granularity the schedule is cut to

28 items. This represents a lower bound on the size of the schedule

after optimization – in reality it compresses to the union of the

changes among all clients.

8 RELATEDWORK
Wang, Chau, and Zhou propose using multi-party computation

(MPC), zero-knowledge proofs, and Blockchains to reduce costs

among users who share an energy storage unit while preserving

user privacy [62]. This work differs fromWeft in two keyways. First,

in its model, many users have a shared resource and the system

minimizes the total cost across all the users. In Weft’s model, many

users have partitions of an energy resource, which they individually
control, and the system hides their commands and use from the

owner of the storage unit. Second, this prior work is intended to

run on desktop-class computing systems.

There is a deep literature on private collection of smart meter

data for billing, demand response, and aggregate statistics [5, 7, 9,

21, 23, 24, 32–34, 36, 38, 42, 46–50, 56, 57, 60, 64]. These approaches

focus on private aggregation in the single-server setting, as opposed

private resource control to the non-colluding third-party model

that Weft uses; they solve a different problem and must rely on

more expensive cryptographic mechanisms.

There is a long line of research into secure aggregation using

a single server (not requiring a non-colluding third party) [16, 31,

39, 60]. While these techniques could be readily applied to power

values, extending their schemes to support proofs over integrals

(energy) is an open problem.

Another key area of related work is on secure aggregation in the

non-colluding server model outside the energy application domain.

Prio+ [6] builds on Prio by reducing client to server communication

cost by supporting boolean secret shares, at the cost of higher server

compute and communication.

There is a long line of research into efficient zero-knowledge

proof systems, and those used within secure aggregation schemes

are only a small portion of it [12–15, 18, 22, 25, 28, 35, 41, 51, 55, 58,

61, 65–67, 69]. The commitment proofs used in Weft make a contri-

bution to the zero-knowledge literature by extending Bulletproofs

for use over secret shares.

9 CONCLUSION
This paper presents Weft, a system for privacy preserving control

of partitioned energy resources. The system is efficient, and can be

configured to run on resource constrained embedded systems.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department

of Energy, Office of Electricity under Award Number DE-OE0000919

and NSF grant #2303639.

615

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

REFERENCES
[1] 2021. nRF52840 Product Specification v1.7. https://infocenter.nordicsemi.com/

pdf/nRF52840_PS_v1.7.pdf.

[2] 2024. Join the Tesla Virtual Power Plant. https://www.tesla.com/support/energy/

tesla-virtual-power-plant-pge.

[3] 2024. libprio-rs crate. https://github.com/divviup/libprio-rs.

[4] Josh Aas and Tim Geoghegan. 2020. Introducing ISRG Prio Services for Pri-

vacy Respecting Metrics. https://www.abetterinternet.org/post/introducing-

prio-services/.

[5] Gergely Ács and Claude Castelluccia. 2011. I Have a DREAM! (DiffeRentially

privatE smArt Metering). In Information Hiding, Tomáš Filler, Tomáš Pevný, Scott

Craver, and Andrew Ker (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

118–132.

[6] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-

niadou. 2021. Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares.

Cryptology ePrint Archive, Report 2021/576. https://eprint.iacr.org/2021/576.

[7] Khalid Alharbi and Xiaodong Lin. 2012. LPDA: A lightweight privacy-preserving

data aggregation scheme for smart grid. In 2012 International Conference on
Wireless Communications and Signal Processing (WCSP). 1–6. https://doi.org/10.

1109/WCSP.2012.6542936

[8] Apple and Google. 2021. Exposure Notification Privacy-preserving Ana-
lytics (ENPA) White Paper. Technical Report. https://covid19-static.cdn-

apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_

White_Paper.pdf

[9] Mungyu Bae, Kangho Kim, and Hwangnam Kim. 2016. Preserving privacy and

efficiency in data communication and aggregation for AMI network. Journal of
Network and Computer Applications 59 (2016), 333–344. https://doi.org/10.1016/j.

jnca.2015.07.005

[10] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for

Correctness of a Shuffle. In Advances in Cryptology – EUROCRYPT 2012, David
Pointcheval and Thomas Johansson (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 263–280.

[11] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.

In Advances in Cryptology — CRYPTO ’91, Joan Feigenbaum (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 420–432.

[12] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scalable

Zero Knowledge with No Trusted Setup. 701–732. https://doi.org/10.1007/978-3-

030-26954-8_23

[13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero

Knowledge. Cryptology ePrint Archive, Report 2013/507. https://eprint.iacr.org/

2013/507.

[14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2013. Succinct

Non-Interactive Arguments for a von Neumann Architecture. Cryptology ePrint

Archive, Report 2013/879. https://eprint.iacr.org/2013/879.

[15] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Scalable

Zero Knowledge via Cycles of Elliptic Curves. 276–294. https://doi.org/10.1007/

978-3-662-44381-1_16

[16] Fabrice Benhamouda, Marc JOYE, and Benoît Libert. 2015. A New Framework

for Privacy-Preserving Aggregation of Time-Series Data. ACM Transactions on
Information and System Security 18 (07 2015). https://doi.org/10.1145/2873069

[17] G. R. Blakley. 1979. Safeguarding cryptographic keys. In Managing Requirements
Knowledge, International Workshop on. IEEE Computer Society, Los Alamitos, CA,

USA, 313. https://doi.org/10.1109/AFIPS.1979.98

[18] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. 67–97.

https://doi.org/10.1007/978-3-030-26954-8_3

[19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs.

Cryptology ePrint Archive, Paper 2019/188. https://eprint.iacr.org/2019/188

https://eprint.iacr.org/2019/188.

[20] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller.

2018. Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution.

Cryptology ePrint Archive, Report 2018/380. https://eprint.iacr.org/2018/380.

[21] Fábio Borges andMaxMühlhäuser. 2014. EPPP4SMS: Efficient Privacy-Preserving

Protocol for Smart Metering Systems and Its Simulation Using Real-World Data.

IEEE Transactions on Smart Grid 5, 6 (2014), 2701–2708. https://doi.org/10.1109/

TSG.2014.2336265

[22] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions

and More. 315–334. https://doi.org/10.1109/SP.2018.00020

[23] Le Chen, Rongxing Lu, Zhenfu Cao, Khalid AlHarbi, and Xiaodong Lin. 2015.

MuDA: Multifunctional data aggregation in privacy-preserving smart grid com-

munications. Peer-to-Peer Networking and Applications 8, 5 (01 Sep 2015), 777–792.
https://doi.org/10.1007/s12083-014-0292-0

[24] Xin Chen, Xiaolei Dong, Zhenfu Cao, Jiachen Shen, Yuanjian Zhou, and Jiawei

Qian. 2021. SSDA: A Privacy-Preserving and Fault-Tolerant Data Aggregation

Scheme Based on Secret Sharing in Smart Grids. In International Conference on
Big Data and Social Sciences. https://doi.org/10.1109/ICBDSS53610.2021.00035

[25] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and

Nicholas Ward. 2019. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. Cryptology ePrint Archive, Report 2019/1047. https://eprint.iacr.

org/2019/1047.

[26] Tzi cker Chiueh, Mao-Cheng Huang, Kai-Cheung Juang, Shih-Hao Liang, and

Welkin Ling. 2018. Virtualizing Energy Storage Management Using RAIBA. In

2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association,

Boston, MA, 187–198. https://www.usenix.org/conference/atc18/presentation/

chiueh

[27] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and

Scalable Computation of Aggregate Statistics. CoRR abs/1703.06255 (2017).

arXiv:1703.06255 http://arxiv.org/abs/1703.06255

[28] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,

Michael Naehrig, Bryan Parno, and Samee Zahur. 2014. Geppetto: Versatile

Verifiable Computation. Cryptology ePrint Archive, Report 2014/976. https:

//eprint.iacr.org/2014/976.

[29] Dalek Cryptography. 2024. Bulletproofs crate. https://github.com/dalek-

cryptography/bulletproofs.

[30] Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann.

2023. Verifiable Distributed Aggregation Functions. Cryptology ePrint Archive,

Report 2023/130. https://eprint.iacr.org/2023/130.

[31] Keita Emura. 2017. Privacy-Preserving Aggregation of Time-Series Data with

Public Verifiability from Simple Assumptions. 193–213.

[32] Chun-I Fan, Shi-Yuan Huang, and Yih-Loong Lai. 2014. Privacy-Enhanced Data

Aggregation Scheme Against Internal Attackers in Smart Grid. IEEE Transactions
on Industrial Informatics 10, 1 (2014), 666–675. https://doi.org/10.1109/TII.2013.

2277938

[33] Hongbin Fan and Changbing Huang. 2021. Blockchain-based data aggrega-

tion scheme for fault-tolerant privacy-preserving in smart grid. In 2021 8th
International Forum on Electrical Engineering and Automation (IFEEA). 376–380.
https://doi.org/10.1109/IFEEA54171.2021.00169

[34] Mochan Fan and Xiaohong Zhang. 2019. Consortium Blockchain Based Data

Aggregation and Regulation Mechanism for Smart Grid. IEEE Access 7 (2019),
35929–35940. https://doi.org/10.1109/ACCESS.2019.2905298

[35] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Per-

mutations over Lagrange-bases for Oecumenical Noninteractive arguments of

Knowledge. Cryptology ePrint Archive, Report 2019/953. https://eprint.iacr.org/

2019/953.

[36] Flavio D. Garcia and Bart Jacobs. 2011. Privacy-Friendly Energy-Metering via

Homomorphic Encryption. In Security and Trust Management, Jorge Cuellar,

Javier Lopez, Gilles Barthe, and Alexander Pretschner (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 226–238.

[37] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity

of Interactive Proof-Systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing (Providence, Rhode Island, USA) (STOC
’85). Association for Computing Machinery, New York, NY, USA, 291–304.

https://doi.org/10.1145/22145.22178

[38] Zhitao Guan and Guanlin Si. 2017. Achieving privacy-preserving big data aggre-

gation with fault tolerance in smart grid. Digital Communications and Networks
3, 4 (2017), 242–249. https://doi.org/10.1016/j.dcan.2017.08.005 Big Data Security

and Privacy.

[39] Marc Joye and Benoît Libert. 2013. A Scalable Scheme for Privacy-Preserving

Aggregation of Time-Series Data. 111–125. https://doi.org/10.1007/978-3-642-

39884-1_10

[40] Ahmed Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn

Song. 2020. MIRAGE: Succinct Arguments for Randomized Algorithms with Ap-

plications to Universal zk-SNARKs. Cryptology ePrint Archive, Report 2020/278.

https://eprint.iacr.org/2020/278.

[41] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, andDawn

Song. 2020. MIRAGE: Succinct Arguments for Randomized Algorithms with

Applications to Universal zk-SNARKs. 2129–2146.

[42] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. 2011. Privacy-Friendly

Aggregation for the Smart-Grid. In Privacy Enhancing Technologies, Simone

Fischer-Hübner and Nicholas Hopper (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 175–191.

[43] Fred Lambert. 2023. Tesla has now installed over 500,000 Powerwalls. https:

//electrek.co/2023/06/16/tesla-installed-over-500000-powerwalls/

[44] Stephen Lee, Prashant Shenoy, Krithi Ramamritham, and David Irwin. 2021.

AutoShare: Virtual community solar and storage for energy sharing. Energy
Informatics 4, 1 (12 Jul 2021), 10. https://doi.org/10.1186/s42162-021-00144-w

[45] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,

Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer

Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP ’17). Association for Computing Machinery,

New York, NY, USA, 234–251. https://doi.org/10.1145/3132747.3132786

616

https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.7.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.7.pdf
https://www.tesla.com/support/energy/tesla-virtual-power-plant-pge
https://www.tesla.com/support/energy/tesla-virtual-power-plant-pge
https://github.com/divviup/libprio-rs
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/
https://eprint.iacr.org/2021/576
https://doi.org/10.1109/WCSP.2012.6542936
https://doi.org/10.1109/WCSP.2012.6542936
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://doi.org/10.1016/j.jnca.2015.07.005
https://doi.org/10.1016/j.jnca.2015.07.005
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/507
https://eprint.iacr.org/2013/879
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1145/2873069
https://doi.org/10.1109/AFIPS.1979.98
https://doi.org/10.1007/978-3-030-26954-8_3
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2018/380
https://doi.org/10.1109/TSG.2014.2336265
https://doi.org/10.1109/TSG.2014.2336265
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/s12083-014-0292-0
https://doi.org/10.1109/ICBDSS53610.2021.00035
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://www.usenix.org/conference/atc18/presentation/chiueh
https://www.usenix.org/conference/atc18/presentation/chiueh
https://arxiv.org/abs/1703.06255
http://arxiv.org/abs/1703.06255
https://eprint.iacr.org/2014/976
https://eprint.iacr.org/2014/976
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs
https://eprint.iacr.org/2023/130
https://doi.org/10.1109/TII.2013.2277938
https://doi.org/10.1109/TII.2013.2277938
https://doi.org/10.1109/IFEEA54171.2021.00169
https://doi.org/10.1109/ACCESS.2019.2905298
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178
https://doi.org/10.1016/j.dcan.2017.08.005
https://doi.org/10.1007/978-3-642-39884-1_10
https://doi.org/10.1007/978-3-642-39884-1_10
https://eprint.iacr.org/2020/278
https://electrek.co/2023/06/16/tesla-installed-over-500000-powerwalls/
https://electrek.co/2023/06/16/tesla-installed-over-500000-powerwalls/
https://doi.org/10.1186/s42162-021-00144-w
https://doi.org/10.1145/3132747.3132786

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

[46] Fengjun Li, Bo Luo, and Peng Liu. 2010. Secure Information Aggregation for

Smart Grids Using Homomorphic Encryption. In 2010 First IEEE International
Conference on Smart Grid Communications. 327–332. https://doi.org/10.1109/

SMARTGRID.2010.5622064

[47] Hongwei Li, Xiaodong Lin, Haomiao Yang, Xiaohui Liang, Rongxing Lu, and

Xuemin Shen. 2014. EPPDR: An Efficient Privacy-Preserving Demand Response

Scheme with Adaptive Key Evolution in Smart Grid. IEEE Transactions on Parallel
and Distributed Systems 25, 8 (2014), 2053–2064. https://doi.org/10.1109/TPDS.

2013.124

[48] Xiong Li, Shanpeng Liu, Fan Wu, Saru Kumari, and Joel J. P. C. Rodrigues. 2019.

Privacy Preserving Data Aggregation Scheme for Mobile Edge Computing As-

sisted IoT Applications. IEEE Internet of Things Journal 6, 3 (2019), 4755–4763.
https://doi.org/10.1109/JIOT.2018.2874473

[49] Rongxing Lu, Xiaohui Liang, Xu Li, Xiaodong Lin, and Xuemin Shen. 2012. EPPA:

An Efficient and Privacy-Preserving Aggregation Scheme for Secure Smart Grid

Communications. IEEE Transactions on Parallel and Distributed Systems 23, 9
(2012), 1621–1631. https://doi.org/10.1109/TPDS.2012.86

[50] Lingjuan Lyu, Karthik Nandakumar, Ben Rubinstein, Jiong Jin, Justin Bedo, and

Marimuthu Palaniswami. 2018. PPFA: Privacy Preserving Fog-Enabled Aggre-

gation in Smart Grid. IEEE Transactions on Industrial Informatics 14, 8 (2018),
3733–3744. https://doi.org/10.1109/TII.2018.2803782

[51] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:

Zero-Knowledge SNARKs from Linear-Size Universal and Updateable Structured

Reference Strings. Cryptology ePrint Archive, Report 2019/099. https://eprint.

iacr.org/2019/099.

[52] Sonia Martin, Nicholas Mosier, Obi Nnorom, Yancheng Ou, Liana Patel, Oskar

Triebe, Gustavo Cezar, Philip Levis, and Ram Rajagopal. 2022. Software Defined

Grid Energy Storage. In Proceedings of the 9th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (Boston, Mas-

sachusetts) (BuildSys ’22). Association for Computing Machinery, New York, NY,

USA, 218–227. https://doi.org/10.1145/3563357.3564082

[53] Kassia Micek and Justine Coyne. 2023. US battery storage: Capacity tops 12.5 GW

in Q2; 3.5 GW planned in Q3. https://www.spglobal.com/commodityinsights/

en/market-insights/latest-news/electric-power/082523-us-battery-storage-

capacity-tops-125-gw-in-q2-35-gw-planned-in-q3

[54] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to e-Voting.

116–125. https://doi.org/10.1145/501983.502000

[55] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. 238–252. https://doi.org/10.1109/SP.

2013.47

[56] Alfredo Rial and George Danezis. 2011. Privacy-Preserving Smart Metering. In

Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society
(Chicago, Illinois, USA) (WPES ’11). Association for Computing Machinery, New

York, NY, USA, 49–60. https://doi.org/10.1145/2046556.2046564

[57] Sushmita Ruj and Amiya Nayak. 2013. A Decentralized Security Framework for

Data Aggregation and Access Control in Smart Grids. IEEE Transactions on Smart
Grid 4, 1 (2013), 196–205. https://doi.org/10.1109/TSG.2012.2224389

[58] Srinath Setty. 2019. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. Cryptology ePrint Archive, Report 2019/550. https://eprint.iacr.

org/2019/550.

[59] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (nov 1979),

612–613. https://doi.org/10.1145/359168.359176

[60] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.

2011. Privacy-Preserving Aggregation of Time-Series Data.

[61] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and

Michael Walfish. 2015. Efficient RAM and control flow in verifiable outsourced

computation.

[62] Nan Wang, Sid Chi-Kin Chau, and Yue Zhou. 2021. Privacy-Preserving Energy

Storage Sharing with Blockchain and Secure Multi-Party Computation. CoRR
abs/2111.02005 (2021). arXiv:2111.02005 https://arxiv.org/abs/2111.02005

[63] Nan Wang and Sid Chi-Kin Chau. 2022. Flashproofs: Efficient Zero-Knowledge

Arguments of Range and Polynomial Evaluation with Transparent Setup. In

Advances in Cryptology – ASIACRYPT 2022, Shweta Agrawal and Dongdai Lin

(Eds.). Springer Nature Switzerland, Cham, 219–248.

[64] Xiaodi Wang, Yining Liu, and Kim-Kwang Raymond Choo. 2021. Fault-Tolerant

Multisubset Aggregation Scheme for Smart Grid. IEEE Transactions on Industrial
Informatics 17, 6 (2021), 4065–4072. https://doi.org/10.1109/TII.2020.3014401

[65] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2020. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. Cryptology ePrint Archive, Report 2020/925. https:

//eprint.iacr.org/2020/925.

[66] Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2022. Orion: Zero Knowledge

Proof with Linear Prover Time. 299–328. https://doi.org/10.1007/978-3-031-

15985-5_11

[67] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. Cryptology ePrint Archive, Report 2021/076. https://eprint.iacr.

org/2021/076.

[68] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). 162–167. https:
//doi.org/10.1109/SFCS.1986.25

[69] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with Program-

Independent Preprocessing. 908–925. https://doi.org/10.1109/SP.2018.00013

A FULL RANGE PROOFS
A.1 Bit-splitting Proofs using Prio
The first proof is based on bit-splitting, a technique that has been

used extensively in prior zero-knowledge work [22, 63].

The client has a schedule 𝑆 , which they want to prove only

contains values in an interval [𝑛,𝑚]. Because this proof strategy
uses Prio, the values in the schedule 𝑆 (and secret shares) must be

values in a finite field F, which is much larger than [𝑛,𝑚].
To prove that a value 𝑠 ∈ 𝑆 is in [𝑛,𝑚], the client proves that

𝑠 − 𝑛 ∈ [0, 2𝑏) and𝑚 − 𝑠 ∈ [0, 2𝑏), where 𝑏 = ⌈log
2
(𝑚 − 𝑛)⌉. This

follows from arithmetic over the inequality 𝑛 ≤ 𝑠 ≤ 𝑚.

Let 𝑣 be either 𝑠 −𝑛 or𝑚 − 𝑠 . To prove that 𝑣 ∈ [0, 2𝑏), the client
shows that 𝑣 fits in 𝑏 bits by sending the servers secret shares of

each bit of 𝑣 and prove that the bits are valid. Let 𝑣𝑖 denote the 𝑖
th

bit of 𝑣 . A valid bit-decomposition of 𝑣 in 𝑏 bits has the following

properties:

(1) Summation: 𝑣 = 2
0𝑣0 + 21𝑣1 + ... + 2𝑏−1𝑣𝑏−1

(2) Well-Formedness: 𝑣𝑖 ∈ {0, 1} for all 𝑖 ∈ 0...𝑏 − 1
The servers check both properties.

The summation condition can be checked using the additive

homomorphism of the secret sharing scheme. Each server computes

𝑣 − 2
0𝑣0 + 21𝑣1 + ... + 2𝑛−1𝑣𝑛−1 over their local shares, and they

reveal the result to the other servers. If the result is 0, then 𝑣 =

2
0𝑣0 + 21𝑣1 + ... + 2𝑛−1𝑣𝑛−1 as required.
The second condition cannot be checked using the additive homo-

morphism because it is nonlinear. The client generates a Prio proof

that each 𝑣𝑖 is 0 or 1, using the validity predicate 𝑝𝑏 (𝑥) = 𝑥 (𝑥 − 1).

Batching Prio Proofs. The cost for the Prio bit-checking proofs is

large – over an entire schedule 𝑆 , the size of the proofs scales linearly

with |𝑆 |. To reduce this cost, Weft uses the G-gate optimization [19]

which batches repeated proofs into a single proof of size 𝑂 (
√︁
|𝑆 |).

Applying this optimization to repeated bit-checking predicates in

Prio has been used in previously deployed systems [8].

Efficiency. The bit-splitting proof is the most memory efficient

proof. Because the predicates being checked by Prio are degree-2,

the memory footprint of the FFTs used is small. Batching the proofs

does increase the memory usage to𝑂 (
√︁
|𝑆 |), but this is still efficient

enough to run within 256 KB of memory. However, the bit-splitting

proof is not communication efficient, because the client must send a

secret share of each bit, which amounts to |𝑆 | ·𝑏 extra field elements.

This is 640kB with |𝑆 | = 10, 000, 𝑏 = 16, and a 32-bit field.

A.2 Sorting Proofs using Prio
The second technique uses sorting, and is based on is based

on techniques used for permutation and RAM checking in ZK-

SNARKS [20, 40, 54]. The client sends the servers a sorted list 𝑆

which contains the schedule 𝑆 , 𝑛, and𝑚. The servers use Prio proofs

to check that 𝑆 is sorted and contains all values in 𝑆 . They reveal

617

https://doi.org/10.1109/SMARTGRID.2010.5622064
https://doi.org/10.1109/SMARTGRID.2010.5622064
https://doi.org/10.1109/TPDS.2013.124
https://doi.org/10.1109/TPDS.2013.124
https://doi.org/10.1109/JIOT.2018.2874473
https://doi.org/10.1109/TPDS.2012.86
https://doi.org/10.1109/TII.2018.2803782
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099
https://doi.org/10.1145/3563357.3564082
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/082523-us-battery-storage-capacity-tops-125-gw-in-q2-35-gw-planned-in-q3
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/082523-us-battery-storage-capacity-tops-125-gw-in-q2-35-gw-planned-in-q3
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/082523-us-battery-storage-capacity-tops-125-gw-in-q2-35-gw-planned-in-q3
https://doi.org/10.1145/501983.502000
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1145/2046556.2046564
https://doi.org/10.1109/TSG.2012.2224389
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://doi.org/10.1145/359168.359176
https://arxiv.org/abs/2111.02005
https://arxiv.org/abs/2111.02005
https://doi.org/10.1109/TII.2020.3014401
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://eprint.iacr.org/2021/076
https://eprint.iacr.org/2021/076
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SP.2018.00013

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

the first and last value in the sorted list, which they confirm are

equal to 𝑛 and𝑚 respectively. If the client attempts to provide a

value which is outside of [𝑛,𝑚], then either 𝑆 is improperly sorted,

or the value will be revealed by the servers.

To catch a lying client, the servers check:

(1) 𝑆 [0] = 𝑛 and 𝑆 [|𝑆 | − 1] =𝑚

(2) 𝑆 is sorted

(3) 𝑆 contains all values in 𝑆

The first condition can be checked by revealing 𝑆 [0] = 𝑛 and

𝑆 [|𝑆 | − 1] =𝑚. The second and third conditions are more complex

to check efficiently.

Ensuring that 𝑆 is sorted requires checking that 𝑆 [𝑖 − 1] < 𝑆 [𝑖]
for all 𝑖 ∈ 1...|𝑆 | + 2. One way to check this is using bit-splitting, but
this leads to a communication cost blowup because secret shares

of all the bits must be sent to the server. To avoid bit-splitting,

the clients also add every value in [𝑛,𝑚] to 𝑆 . In particular, the

client constructs 𝑆 = 𝑆𝑜𝑟𝑡 (𝑆 | | [𝑛, 𝑛 + 1, ...,𝑚]), where | | means list

concatenation. If the client is honest, and 𝑆 is sorted, then each

consecutive value in 𝑆 is at most 1 apart. This is equivalent to

checking that 𝑆 [𝑖] − 𝑆 [𝑖 − 1] ∈ {0, 1} for all 𝑖 ∈ 0...|𝑆 |, which the

servers check using Prio proofs.

To check that 𝑆 contains all values in 𝑆 , the servers use a permu-

tation argument from Bayer et al [10]. The core idea is to encode

𝑆 | | [𝑛, ...,𝑚] and 𝑆 as the following polynomial:

𝐻 (𝑟) =
∏

𝑠∈ (𝑆 | | [𝑛,...,𝑚])
(𝑟 − 𝑠) −

∏
𝑠′∈𝑆
(𝑟 − 𝑠′)

If 𝑆 is a permutation of 𝑆 | | [𝑛, ...,𝑚], then 𝐻 is the zero-polynomial.

To prove this, the client generates a Prio proof that 𝐻 (𝑟) = 0 for an

𝑟 that was randomly chosen by the servers. 𝑟 is generated using

the extension to Prio from Davis et al [30].

Efficiency. The sorting proof is the most compute efficient, and,

when [𝑛,𝑚] is small and |𝑆 | is large, it sends less data than the

bit-splitting proof. However, it uses significantly more memory

than the bit-splitting proof. This is because the Prio proofs for

the permutation argument perform a Fast-Fourier Transform over

|𝑆 | +𝑚 − 𝑛 values which are materialized in RAM.

A.3 Commitment Proofs using Bulletproofs
The commitment proof is a novel modification to Bulletproofs which

adapts it for use over secret shares [22]. These proofs are extremely

efficient in communication, at the cost of higher compute and mem-

ory requirements. This may be desirable in deployments with more

powerful clients (e.g. Raspberry Pis) or low-bandwidth connections.

Recall Bulletproofs allows a prover who knows a secret value

𝑣 to convince a verifier that 𝑣 ∈ [0, 2𝑏) for some 𝑏 and that a

public Pedersen commitment opens to 𝑣 , without revealing any

other information about 𝑣 (Section 2.4). Like the bit-splitting proof,

these proofs can show that a value 𝑣 is in an arbitrary interval

[𝑛,𝑚] by proving that 𝑣 − 𝑛 ∈ [0, 2𝑏) and𝑚 − 𝑣 ∈ [0, 2𝑏) where
𝑏 = ⌈log

2
(𝑚 − 𝑛)⌉ (Section A.1).

Bulletproofs cannot be directly used by the system because it

does not conduct proofs over secret shares. The commitment proof

modifies Bulletproofs to operate over secret shared data by leverag-

ing the fact that Pedersen Commitments are also additively homo-

morphic. This allows the servers to generate commitments to the

client’s unshared value.

Assume the client wants to prove a value 𝑠 ∈ 𝑆 is in [𝑛,𝑚]. To
do this, the client proves that both 𝑠 −𝑛 and𝑚 − 𝑠 are in [0, 2𝑏). Let
𝑣 be either 𝑠 − 𝑛 or𝑚 − 𝑠 . The high-level steps for both proofs are:

(1) The servers generate commitments to their share [𝑣] using
randomness chosen by the client.

(2) The servers send these commitments to the resource opera-

tor, who multiplies them to create a commitment to 𝑣 .

(3) The client sends the resource operator a Bulletproofs proof,

which they can verify using the commitment.

First, we will show how Bulletproofs can be used on secret shares

over |G|, and then show how to extend it to arbitrary fields. Assume

there are two servers, where the leader is the resource operator
and the follower is the third-party. The client wants to prove that

𝑣 ∈ [0, 2𝑏) (generalizing to many servers is straightforward). First,

the client generates secret shares [𝑣]1, [𝑣]2 ∈ |G| and random

values 𝑟1, 𝑟2 ∈ |G|. The client sends [𝑣]1 and 𝑟1 to the first server,

and [𝑣]2 and 𝑟2 to the second server.G refers to the Pedersen group,

and |G| is the size of the group. Then, each server 𝑖 ∈ {1, 2} creates
a Pedersen commitment to their share as

𝐶1 = 𝑔[𝑣]1ℎ𝑟1 ,𝐶2 = 𝑔[𝑣]2ℎ𝑟2

Note that this commitment is both hiding and binding. The fol-

lower sends 𝐶2 to the leader, who multiplies them to produce a

commitment to 𝑣 :

𝐶 = 𝐶1 ·𝐶2 = 𝑔[𝑣]1ℎ𝑟1 · 𝑔[𝑣]2ℎ𝑟2

= 𝑔[𝑣]1+[𝑣]2 mod |G |ℎ𝑟1+𝑟2

= 𝑔𝑣ℎ𝑟1+𝑟2

(1)

This follows from the additive homomorphism of Pedersen commit-

ments, and that [𝑣]1, [𝑣]2 were shares over |G|. Lastly, the client
sends a Bulletproof 𝜋 , that shows 𝐶 opens to 𝑣 and that 𝑣 ∈ [0, 2𝑏),
which the leader verifies.

The scheme above has two major limitations. First, the client

must use large secret shares (≈ 256-bits), because they are generated

over |G|. This leads to huge communication cost overhead. For

example, using 256-bit shares instead of 64-bit shares adds 2.4 MB

of communication overhead when sending 100, 000 shares. Ideally,

the client could use shares of any bit-width (e.g. 64-bits) to reduce

communication. Second, each server must send one commitment

per value to the resource operator. With 512-bit commitments, this

adds 6.4 MB of communication over 100, 000 proofs. We fix both

limitations by modifying Bulletproofs.

To allow clients to use secret shares of any bit-width, the com-

mitment proof adds extra bits to Bulletproof’s internal bit-splitting

argument. The core challenge in supporting secret shares of any

bit-width is handling the "carry" bits that can be produced when

summing the secret shares. For example, given two secret shares

[𝑣]1, [𝑣]2 ∈ 264, their sum either is 𝑣 or 𝑣 + 264. Normally, the extra

2
64

addend is removed by performing computations mod 2
64
. How-

ever, cannot be done in the exponent of a Pedersen commitment.

To fix this, commitment proofs add the extra bits to the Bullet-

proofs bit-splitting argument. Recall that internally, Bulletproofs

618

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

proves that some value 𝑣 ∈ [0, 2𝑏) by showing that there exists a

bit decomposition of 𝑣 in 𝑏 bits, such that

𝑣 = 𝑣02
0 + 𝑣121 + ... + 𝑣𝑏−12𝑏−1

We modify this relation to add the extra carry bit 𝑐 , as:

[𝑣]1 + [𝑣]2 = 𝑣02
0 + 𝑣121 + ... + 𝑣𝑏−12𝑏−1 + 𝑐264

When there are more than two servers, the idea can be extended

by adding additional carry bits.

To fix the second limitation which makes servers send many

commitments to the resource operator, the commitment proof com-

presses them into a single commitment leveraging associativity of

the group. To verify an aggregate Bulletproofs proof, the resource

operator must exponentiate and multiply commitments to each

value. The key insight is that this operation is associative, which

means by reordering the multiplications, each server only sends a

single value.

A detailed description of the protocol, including proofs of secu-

rity, are in Appendix B.

Efficiency. The commitment proof is the most communication

efficient, with the client only sending 𝑂 (log(𝑏 · |𝑆 |)) data for the
proofs. However, it is much more compute and memory intensive

because it requires group exponentiations for proving and verifying.

B RANGE PROOF SECURITY ANALYSIS
First, we begin by defining zero-knowledge and soundness in our

setting.

Definition 1 (Zero-Knowledge). Assume that the client and at
least one server is honest. That is, the adversary controls some proper
subset of corrupted servers. We say the protocol is zero-knowledge
if for any probabilistic polynomial time adversary A, there exists a
simulator 𝑆𝑖𝑚, such that for any schedule v,

ViewA (⟨𝐶 (v),A, 𝐻 ⟩) ≈𝐶 ViewA (⟨𝑆𝑖𝑚,A⟩)
where 𝐶 is the client and 𝐻 are the honest servers.

Definition 2 (Soundness). Let 𝑛 be the minimum rate and𝑚 be
the maximum rate, 𝑙 be the number of servers, and v = [v]1+ ...+ [v]𝑙 ,
i.e. the sum of the servers shares. Then, if there is some 𝑣 ∈ v such that
𝑣 ∉ [𝑛,𝑚], then the servers will reject with overwhelming probability.

Weft requires that all servers are honest, and only requires ex-

istential soundness (instead of knowledge soundness). If a server

is dishonest, then soundness is impossible because servers can

always send invalid shares during the aggregation phase. The sys-

tem only requires existential soundness because the aggregators

only care that the value encoded in their shares is valid. These as-

sumptions have been made in prior work non-colluding third-party

model [6, 27].

B.1 Bit-Splitting Proof
Theorem B.1. When the client and at least 1 server is honest, then

the bit-splitting proof using Prio is zero-knowledge.

Proof. The proof is trivial. The simulator samples values v ∈
[𝑛,𝑚] and computes the bits of𝑚 − 𝑣 and 𝑣 − 𝑛. Then, it calls the
simulator for Prio, as defined in Appendix D of their paper [27].

The view of the adversary when interacting with the simulator is

exactly the same as the view when interacting with honest parties.

Therefore, the bit-splitting proof is zero-knowledge. □

Next, we will prove the bit-splitting proof is sound using a basic

lemma:

Lemma B.2. Let 𝑣,𝑚, 𝑛 ∈ F, 𝑏 = ⌈log
2
(𝑚 − 𝑛)⌉, and 𝑏 ≤

log
2
(|F|) − 1. If 𝑚 − 𝑣 ∈ [0, 2𝑏) and 𝑣 − 𝑛 ∈ [0, 2𝑏) where, then

𝑣 ∈ [𝑛,𝑚]

Proof. 𝑛 ≤ 𝑣 ≤ 𝑚 if and only if 0 ≤ 𝑣 − 𝑛 ≤ 𝑚 − 𝑛. If 0 ≤
𝑚 − 𝑣 ≤ 2

𝑏
, then either 𝑣 − 𝑛 ≤ 𝑚 − 𝑛 or 𝑣 − 𝑛 ≥ (𝑚 − 𝑛) − 2

𝑏
.

Notice that (𝑚 − 𝑛) − 2
𝑏
is large (> 2

𝑏
) because (𝑚 − 𝑛) < 2

𝑏

and arithmetic in the field is modulo |F| (i.e. it "wraps around").
Thus, if 0 ≤ 𝑚 − 𝑣 ≤ 2

𝑏
and 0 ≤ 𝑣 − 𝑛 ≤ 2

𝑏
, then 𝑛 ≤ 𝑣 ≤ 𝑚.

Therefore, 𝑣 ∈ [𝑛,𝑚] for arbitrary values 𝑛 and𝑚 using two bit-

splitting proofs: one that shows𝑚 − 𝑣 ∈ [0, 2𝑏) and one that shows
𝑣 − 𝑛 ∈ [0, 2𝑏). □

Theorem B.3. If all servers are honest, then the bit-splitting pro-
tocol is sound.

Proof. Assume towards a contradiction that the servers accept

on some v = [v]1 + ... + [v]𝑛 , where some value 𝑣 ∈ v is not in

[𝑛,𝑚]. Recall that 𝑣 ∈ [𝑛,𝑚] if and only if 𝑚 − 𝑣 ∈ [0, 2𝑏) and
𝑣 − 𝑛 ∈ [0, 2𝑏). Similarly, some 𝑥 ∈ [0, 2𝑏) if and only if there

is a bit-decomposition 𝑥0, 𝑥1, ..., 𝑥𝑏−1 such that 𝑥𝑖 ∈ {0, 1} for all
𝑖 ∈ 0...𝑏 − 1 and 𝑥 = 2

0𝑥0 + 21𝑥1 + ... + 2𝑏−1𝑥𝑏−1.
By the construction of the bit-splitting proof, this means that

the servers accepted on some 𝑥 ∈ {𝑚 − 𝑣, 𝑣 − 𝑛} where 𝑥 ∉ [0, 2𝑏).
The servers receive secret shares, [𝑥0], [𝑥1], ..., [𝑥𝑏−1], and Prio

proofs 𝜋𝑖 that 𝑝𝑏 (𝑥𝑖) = 𝑥𝑖 (𝑥𝑖 − 1) = 0 for all 𝑖 ∈ 0...𝑏 − 1. The bit-
decomposition 𝑥0, 𝑥1, ..., 𝑥𝑏−1 must be invalid by the assumption

that 𝑥 ∉ [0, 2𝑏). Either 𝑥 ≠ 2
0𝑥0 + 21𝑥1 + ... + 2𝑏−1𝑥𝑏−1 or a bit

𝑥𝑖 ∉ {0, 1} such that the proof 𝜋𝑖 accepted, If 𝑥 ≠ 2
0𝑥0 + 21𝑥1 + ... +

2
𝑏−1𝑥𝑏−1 then 𝑥 − 20𝑥0 + 21𝑥1 + ... + 2𝑏−1𝑥𝑏−1 is non-zero, which
contradicts the assumption that the servers accept. If 𝑥𝑖 ∉ {0, 1},
then 𝑝𝑏 (𝑥𝑖) = 𝑥𝑖 (𝑥𝑖 −1) ≠ 0 by the fundamental theorem of algebra.

However, this contradicts the soundness of Prio, which states that

Prio.Verify(𝜋𝑖 , 𝑝𝑏 , [𝑣𝑖]) will reject with overwhelming probability.

Therefore, such an 𝑥 cannot exist.

Thus, for some invalid v, the servers will reject with overwhelm-

ing probability. □

B.2 Sorting Proof
Theorem B.4. When the client and at least 1 server is honest, then

the sorting proof using Prio is zero-knowledge.

Proof. The proof is trivial. The simulator samples random val-

ues v ∈ [𝑛,𝑚], and computes v̂ = Sort(v| | [𝑛, 𝑛 + 1, ...,𝑚 − 1,𝑚]).
Then, it calls the simulator for Prio, as defined inAppendix D of their

paper [27]. The view of the adversarywhen interactingwith the sim-

ulator is exactly the same as the view when interacting with honest

parties. Therefore, the bit-splitting proof is zero-knowledge. □

Theorem B.5. If all servers are honest, then the sorting protocol is
sound.

619

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Proof. Assume towards a contradiction that the servers run the

sorting proof on on some v = [v]1 + ... + [v]𝑛 where some value

𝑣 ∈ v is not in [𝑛,𝑚], and |F| >>> |v+𝑛−𝑚 | The servers also hold
shares v̂.

There are two cases: either v ⊂ v̂, or v ⊄ v̂. If v ⊄ v̂, then there

is some value 𝑣 ∈ v such that 𝑣 ∉ v̂. However, this implies that

v̂ is not a permutation of v| | [𝑛, 𝑛 + 1, ...,𝑚 − 1,𝑚]. Therefore, the
permutation argument from Bayer et al. will accept with probability

|v+𝑛−𝑚 |
F , which is negligible.

If, v ⊂ v̂, then v̂ contains a value 𝑣 ∉ [𝑛,𝑚]. If 𝑣 = v̂[0] or
𝑣 = v̂[v̂ − 1], then the servers will always reject. If 𝑣 = v̂[𝑖] for
some 𝑖 ≠ 0 and 𝑖 ≠ v̂− 1, then v̂ is not sorted. Let 𝑣 at index 𝑖 be the

first value in v̂ which is not in sorted order. If 𝑣 − v̂[𝑖] ∉ {0, 1}, the
servers will reject with overwhelming probability by the soundness

of Prio. Therefore, 𝑣 = 0 and v̂[𝑖 − 1] = |F|. This is impossible

because v̂[𝑖 − 1] must be sorted and v̂[0] = 𝑛, so the maximum

value of v̂[𝑖 − 1] is 𝑛 + 𝑖 − 1 < 𝑚 < |F| Therefore, the servers will
reject with overwhelming probability. □

B.3 Commitment Proof
This section formally describes and proves the zero-knowledge and

soundness of the commitment proof protocol. We split the commit-

ment proofs into two parts. First, we describe a zero-knowledge

proof 𝑀𝑜𝑑𝐵𝑃 which proves that a vector v ∈ [0, 2𝑏)𝑚 for some

𝑏 given a commitment 𝑉 = gv+c·2
𝑛
h𝛾 for some c ∈ {0, 1}𝑚 Then,

we describe the 𝑛-server commitment proofs protocol, where the

servers jointly verify that the values encoded in their shares are in

range.

Figure 6 shows the pseudo-code for 𝑀𝑜𝑑𝐵𝑃 . We use similar

notation to the original Bulletproofs paper. G is a group of prime

order 𝑝 . For two vectors v ∈ G𝑚,w ∈ Z𝑚𝑝 , vw =
∏𝑚

𝑖=0 𝑣 [𝑖]𝑤 [𝑖] .
Similarly, we write ⟨v,w⟩ to mean the dot product between v and

w. The modifications compared to the original Bulletproofs protocol

are shown in red. Note that the only changes aremade to support the

extra carry bit from summing the secret shares. Like Bulletproofs,

it can be made non-interactive with Fiat-Shamir.

Theorem B.6. The modified aggregate Bulletproofs range argu-
ment has perfect completeness, perfect honest verifier zero-knowledge
and computational witness extended emulation.

Proof. The proof is identical to the proof of Theorem 3 in

the bulletproofs paper [22], except it computes all values using

[20, ..., 2𝑏 , 2𝑛] in place of [20, ..., 2𝑛]. □

Now, using 𝑀𝑜𝑑𝐵𝑃 as a building block, we describe the full

commitment proofs.

Figure 8 shows the full commitment proofs protocol in the two

server case. One server (LeaderServer) is the battery operator, and

the other (FollowerServer) is the third-party. With 𝑙 servers, there

is still one Leader, but 𝑙 − 1 Followers. Most of the protocol is from

𝑀𝑜𝑑𝐵𝑃 , with a few key differences. First, the prover generates

commitments V to [v]1 + [v]2, and blinds 𝛾1 and 𝛾2. Second, All

challenges are generated using the 𝐺𝑒𝑛𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 protocol, shown

in Figure 7. Third, the leader server computes 𝑉 as required for the

verification equation as

𝑉1 ·𝑉2 = V𝑧
2 ·z𝑚
1

V𝑧
2 ·z𝑚
2

= (V1 · V2)𝑧
2 ·z𝑚 = V𝑧

2 ·z𝑚

using 𝑉2 sent from the follower server.

First, we will prove that the challenges generated by GenChal-

lenge are always uniformly distributed.

Lemma B.7. As long as at least one server is honest, then the pro-
tocol GenChallenge will generate uniformly random challenges.

Proof. The proof is direct from the fact that 𝑧 is the sum of

𝑧1 and 𝑧2. If 𝑧1 was generated maliciously, 𝑧2 is still uniformly

random. Thus, 𝑧 is uniformly random. Similarly, if 𝑧2 was gener-

ated maliciously, 𝑧1 is still uniformly random. Thus, 𝑧 is uniformly

random. □

Now, we will prove the protocol is zero-knowledge.

Theorem B.8. If the client and at least one server are honest, then
the Commitment proofs protocol is zero-knowledge.

Proof. We will prove that the commitment proof is zero-

knowledge. We want to show that an adversary which corrupts

either the leader or follower servers cannot learn anything about

the clients values v. To do this, we will show that the transcript

between the adversary and the honest parties can be simulated

without knowledge of v.
The proof outline is to define a real vs ideal world experiment.

In the real world, the Adversary interacts with the real protocol.

In the ideal world, the Adversary interacts with the simulator. The

proof shows that the view of the adversary in both worlds is in-

distinguishable, proving that the view of the adversary leaks no

information about v.
We present the proof when there are two servers (so either the

Leader or Follower is corrupted, but not both). Then we will show

how to extend the proof to an arbitrary number of servers, where

any proper subset are corrupted.

In the first case, the Leader is corrupted. The simulator 𝑆𝑖𝑚1

which interacts with the corrupted Leader is defined in Figure 9. We

will now argue that the view of the adversary A when interacting

with 𝑆𝑖𝑚1 is indistinguishable the view of A interacting with the

honest client and follower. We prove this using a Hybrid argument.

Hybrid 1: In the first hybrid, we replace the random ṽ in 𝑆𝑖𝑚1

with actual data v. Define𝐻1 as exactly the same as 𝑆𝑖𝑚1, except that

it uses the actual data v. Assume that there exists an adversary B
which distinguishes between transcripts of adversaryA interacting

with 𝑆𝑖𝑚1 or𝐻1 with non-negligible probability. We will use this to

build a distinguisher between the Pedersen commitments𝑉 = 𝑔ṽℎ𝛾

and 𝑉 ′ = 𝑔vℎ𝛾
′
with non-negligible probabilities. The code for the

distinguisher is very similar to 𝑆𝑖𝑚1. It differs from 𝑆𝑖𝑚1 in two

ways. First, it does not compute [𝑣]2 or𝛾2. Second, it computes𝑉2 =

𝑉 𝑧2 ·z𝑚/(g[v]1h𝛾1)𝑧2 ·z𝑚 . On input 𝑉 , the distinguisher produces a

view identical to 𝑆𝑖𝑚1, and on input𝑉
′
the distinguisher produces a

view identical to𝐻1. This is because𝑉2 = 𝑉 𝑧2 ·z𝑚/(g[v]1h𝛾1)𝑧2 ·z𝑚 =

gv−[v]1g𝛾2 = g[v]2h𝛾2 . The distinguisher outputs the result of B on

the constructed transcript. The probability that the distinguisher

succeeds equals the probability that B succeeds, and therefore we

have a distinguisher between two Pedersen commitments 𝑉 =

𝑔ṽℎ𝑟 and 𝑉 ′ = 𝑔vℎ𝑟
′
, contradicting the hiding property of the

commitments. Therefore, B does not exist, and the transcripts of

𝑆𝑖𝑚1 and 𝐻1 must be indistinguishable.

620

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

P(v ∈ (0..2𝑏)𝑚 , 𝛾 ∈ Z𝑚𝑝 , 𝑐 ∈ {0, 1}𝑚 , g ∈ G(𝑏+1) ·𝑚 , h ∈ G(𝑏+1) ·𝑚 , 𝑔 ∈ G, ℎ ∈ G, V = 𝑔v+c·2
𝑛
ℎ𝛾)

a𝐿 = BitDecomp(v, c, 𝑏) // 𝑣 [𝑗] = ⟨[20, 21, ..., 2𝑏 , 2𝑛], a𝐿 [𝑗 − 1 · (𝑏 + 1) : 𝑗 · (𝑏 + 1)]⟩ forall 𝑗 ∈ 1..𝑚
a𝑅 = a𝐿 − 1
𝛼

$←− Z𝑝
𝐴 = ℎ𝛼ga𝐿ha𝑅

s𝐿, s𝑅
$←− Z(𝑏+1) ·𝑚𝑝

𝜌
$←− Z𝑝

𝑆 = ℎ𝜌gs𝐿hs𝑅
P → V: 𝐴, 𝑆

V → P: 𝑦, 𝑧
y = [𝑦0, 𝑦1, ..., 𝑦 (𝑏+1) ·𝑚] ∈ Z(𝑏+1) ·𝑚𝑝

𝑙 (𝑋) = (a𝐿 − 𝑧 · 1(𝑏+1) ·𝑚) + s𝐿 · 𝑋
𝑟 (𝑋) = y ◦ (a𝑅 + 𝑧 · 1(𝑏+1) ·𝑚 + s𝑅 · 𝑋) +

∑𝑚
𝑗=1 𝑧

1+𝑗 · (0(𝑗−1) · (𝑏+1) | | [20, 21, ..., 2𝑏 , 2𝑛] | |0(𝑚− 𝑗) · (𝑏+1))
𝑡 (𝑋) = ⟨𝑙 (𝑋), 𝑟 (𝑋)⟩ = 𝑡0 + 𝑡1 · 𝑋 + 𝑡2 · 𝑋 2

𝜏1, 𝜏2
$←− Z𝑝

𝑇1 = 𝑔𝑡1ℎ𝜏1 ,𝑇2 = 𝑔𝑡2ℎ𝜏1

P → V: 𝑇1,𝑇2
V → P: 𝑥
l = 𝑙 (𝑥) = a𝐿 − 𝑧 · 1𝑏+1 + s𝐿 · 𝑥
r = 𝑟 (𝑥) = y ◦ (a𝑅 + 𝑧 · 1𝑏+1 + s𝑅 · 𝑥) + 𝑧2 · [20, 21, ..., 2𝑏 , 2𝑛]
𝑡 ← ⟨l, r⟩
𝜏𝑥 ← 𝜏2 · 𝑥2 + 𝜏1 · 𝑥 +

∑𝑚
𝑗=1 𝑧

1+𝑗 · 𝛾 [𝑗]
𝜇 = 𝛼 + 𝜌 · 𝑥
P → V: 𝜏𝑥 , 𝜇, 𝑡

Run inner-product argument to prove 𝑡 = ⟨l, r⟩

V(g ∈ G(𝑏+1) ·𝑚 , h ∈ G(𝑏+1) ·𝑚 , 𝑔 ∈ G, ℎ ∈ G, V ∈ G𝑚)

P → V: 𝐴, 𝑆

𝑦, 𝑧
$←− Z𝑝

V → P: 𝑦, 𝑧
P → V: 𝑇1,𝑇2

𝑥
$←− Z𝑝

V → P: 𝑥
P → V: 𝜏𝑥 , 𝜇, 𝑡

ℎ′
𝑖
← ℎ

(𝑦−𝑖+1])
𝑖

∀𝑖 ∈ [1, 𝑏 + 1]
𝛿 ← (𝑧 − 𝑧2) · ⟨1(𝑏+1) ·𝑚, y(𝑏+1) ·𝑚⟩ −∑𝑚

𝑗=1 𝑧
𝑗+2 · ⟨1𝑏+1, [20, ..., 2𝑏 , 2𝑛]⟩

𝑉 ← V𝑧
2 ·z𝑚

𝑔𝑡ℎ𝜏𝑥
?

= 𝑔𝛿 ·𝑉 ·𝑇𝑥
1
·𝑇𝑥2

2

𝑃 ← 𝐴 · 𝑆𝑥 · g−𝑧 · (h′)𝑧 ·y∏𝑚
𝑗=1 (h′ [(𝑗 − 1) · (𝑏 + 1) : 𝑗 · (𝑏)])𝑧

𝑗+1 · [20,21,...,2𝑏 ,2𝑛]

𝑃
?

= ℎ𝜇 · gl · (h′)r

Verify inner-product argument for 𝑡
?

= ⟨l, r⟩
If all checks succeed, output Accept. Otherwise, output Reject.

Figure 6: Pseudo-code for the the Modified Bulletproofs Range Argument

Hybrid 2: Now, we will show that 𝐻1 is indistinguishable from

the real protocol. Assume that there is an adversary B which distin-

guishes between accepting transcripts of an adversary A interact-

ing with 𝐻1 or the real protocol. We will define an adversary which

can distinguish between transcripts generated by𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉)
and 𝑀𝑜𝑑𝐵𝑃.𝑃𝑟𝑜𝑣𝑒 (𝑣, 𝑟,𝑉). The code for the distinguisher is sim-

ilar to 𝐻1, except it uses the input transcript instead of running

621

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

Prover
𝐿𝑒𝑎𝑑𝑒𝑟 → P : 𝑧1
𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 → P : 𝑧2
𝑧 = 𝑧1 + 𝑧2
P → 𝐿𝑒𝑎𝑑𝑒𝑟 : 𝑧

FollowerServer
𝑧2

$←− Z𝑝
𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 → P: 𝑧2
P → 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 : 𝑧

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 → 𝐿𝑒𝑎𝑑𝑒𝑟 : 𝑧2

LeaderServer
𝑧1

$←− Z𝑝
𝐿𝑒𝑎𝑑𝑒𝑟 → P : 𝑧1
P → 𝐿𝑒𝑎𝑑𝑒𝑟 : 𝑧

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 → 𝐿𝑒𝑎𝑑𝑒𝑟 : 𝑧2

𝑧
?

= 𝑧1 + 𝑧2

Figure 7: Protocol GenChallenge, which allows the servers to jointly generate random challenges

𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉). Just as in Hybrid 1,𝑉2 is the same value as required

for the real protocol, even though it is computed differently. There-

fore, the distinguisher produces a view of A that is distributed

identically for either 𝐻1 or the real protocol. Output the result

of B on the constructed transcript. The probability that the dis-

tinguisher succeeds equals the probability that B succeeds, and

therefore we have a distinguisher between transcripts generated by

𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉) and𝑀𝑜𝑑𝐵𝑃.𝑃𝑟𝑜𝑣𝑒 (𝑣, 𝑟,𝑉), which violates honest-

verifier zero-knowledge of𝑀𝑜𝑑𝐵𝑃 . Therefore, B does not exist, and

the transcripts between the adversary interacting with 𝐻1 and the

real protocol are indistinguishable.

Thus, we have proven that a transcript of any polynomial-time

adversary when interacting with the simulator 𝑆𝑖𝑚1 is indistin-

guishable from the view of the adversary when interacting with

the real protocol. Therefore, the protocol is zero-knowledge when

the Leader is corrupted.

Next, we will prove that the protocol is zero-knowledge when the

Follower is corrupted. We define the simulator 𝑆𝑖𝑚2 in Figure 9. We

will now argue that the view of the adversary A when interacting

with 𝑆𝑖𝑚2 is indistinguishable the view of A interacting with the

honest client and follower. Again, we will use a hybrid argument.

Hybrid 1: As in the Leader case, in the first hybrid, we replace

the random ṽ with actual data v. Define 𝐻1 as exactly the same as

𝑆𝑖𝑚2, except that it uses the actual data v. Assume that there exists

an adversary B which distinguishes between transcripts of adver-

saryA interacting with 𝑆𝑖𝑚2 or𝐻1 with non-negligible probability.

We will use this to build a distinguisher between the Pedersen

commitments 𝑉 = 𝑔ṽℎ𝑟 and 𝑉 ′ = 𝑔vℎ𝑟
′
with non-negligible proba-

bilities. The code for the distinguisher is very similar exactly the

same as 𝑆𝑖𝑚2, except it runs 𝐵𝑃.𝑆𝑖𝑚 on the input commitment.

On input 𝑉 , the distinguisher produces a view identical to 𝑆𝑖𝑚1,

and on input 𝑉 ′ the distinguisher produces a view identical to 𝐻1.

Output the result of B on the constructed view. The probability

that the distinguisher succeeds equals the probability that B suc-

ceeds, and therefore we have a distinguisher between two Pedersen

commitments 𝑉 = 𝑔ṽℎ𝑟 and 𝑉 ′ = 𝑔vℎ𝑟
′
, contradicting the hiding

property of the commitments. Therefore, B does not exist, and the

transcripts of 𝑆𝑖𝑚1 and 𝐻1 must be indistinguishable.

Hybrid 2: Now, we will show that 𝐻1 is indistinguishable from

the real protocol. Assume that there is an adversary B which distin-

guishes between accepting transcripts of an adversary A interact-

ing with 𝐻1 or the real protocol. We will define an adversary which

can distinguish between transcripts generated by𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉)
and𝑀𝑜𝑑𝐵𝑃.𝑃𝑟𝑜𝑣𝑒 (𝑣, 𝑟,𝑉). The code for the distinguisher is to 𝐻1,

except it uses the transcript given as input instead of running

𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚. The distinguisher produces a view of A that is dis-

tributed identically for either 𝐻1 or the real protocol. Output the

result of B on the constructed transcript. The probability that the

distinguisher succeeds equals the probability that B succeeds, and

therefore we have a distinguisher between transcripts generated by

𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉) and𝑀𝑜𝑑𝐵𝑃.𝑃𝑟𝑜𝑣𝑒 (𝑣, 𝑟,𝑉), which violates honest-

verifier zero-knowledge of 𝑀𝑜𝑑𝐵𝑃 . Therefore, B does not exist,

and the transcripts between the adversary interacting with 𝐻1 and

the real protocol are indistinguishable. Thus, the protocol is zero-

knowledge when the follower is corrupted.

Because the protocol is zero-knowledge when both the Follower

or Leader are corrupted, the protocol is zero-knowledge.

Lastly, we show how to extend the proof to the 𝑛 party setting,

where any proper subset are corrupted. There is always a single

leader, so there are two cases, either the subset includes the leader

or it doesn’t. In the case the corrupted subset doesn’t include the

Leader, then the simulator is exactly as 𝑆𝑖𝑚2, except that it also

computes additional 𝑦𝑖 , 𝑧𝑖 , and 𝑥𝑖 for each follower such that they

are consistent with 𝑦, 𝑧, and 𝑥 from 𝐵𝑃.𝑆𝑖𝑚. The hybrids from the

622

E-Energy ’24, June 04–07, 2024, Singapore, Singapore Laufer et al.

P(v ∈ (0..2𝑏)𝑚)

[v]1
$←− (0..2𝑛)𝑚 , [v]2 = v − [v]1

𝛾1
$←− Z𝑚𝑝 , 𝛾2

$←− Z𝑚𝑝
a𝐿 = BitDecomp([v]1 + [v]2, 𝑏)
a𝑅 = a𝐿 − 1
𝛼

$←− Z𝑝
𝐴 = ℎ𝛼ga𝐿ha𝑅

s𝐿, s𝑅
$←− Z(𝑏+1) ·𝑚𝑝

𝜌
$←− Z𝑝

𝑆 = ℎ𝜌gs𝐿hs𝑅
P → Leader: [v]1, 𝛾1, 𝐴, 𝑆
P → Follower: [v]2, 𝛾2
Run 𝐺𝑒𝑛𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 to generate 𝑦, 𝑧

y = [𝑦0, 𝑦1, ..., 𝑦 (𝑏+1) ·𝑚] ∈ Z(𝑏+1) ·𝑚𝑝

𝑙 (𝑋) = (a𝐿 − 𝑧 · 1(𝑏+1) ·𝑚) + s𝐿 · 𝑋
𝑟 (𝑋) = y ◦ (a𝑅 + 𝑧 · 1(𝑏+1) ·𝑚 + s𝑅 · 𝑋) +

∑𝑚
𝑗=1 𝑧

1+𝑗

·(0(𝑗−1) · (𝑏+1) | | [20, 21, ..., 2𝑏 , 2𝑛] | |0(𝑚− 𝑗) · (𝑏+1))
𝑡 (𝑋) = ⟨𝑙 (𝑋), 𝑟 (𝑋)⟩ = 𝑡0 + 𝑡1 · 𝑋 + 𝑡2 · 𝑋 2

𝜏1, 𝜏2
$←− Z𝑝

𝑇1 = 𝑔𝑡1ℎ𝜏1 ,𝑇2 = 𝑔𝑡2ℎ𝜏1

P → Leader: 𝑇1,𝑇2
Run 𝐺𝑒𝑛𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 to generate 𝑦, 𝑧

l = 𝑙 (𝑥) = a𝐿 − 𝑧 · 1𝑏+1 + s𝐿 · 𝑥
r = 𝑟 (𝑥) = y◦(a𝑅+𝑧 ·1𝑏+1+s𝑅 ·𝑥)+𝑧2 · [20, 21, ..., 2𝑏 , 2𝑛]
𝑡 ← ⟨l, r⟩
𝜏𝑥 ← 𝜏2 · 𝑥2 + 𝜏1 · 𝑥 +

∑𝑚
𝑗=1 𝑧

1+𝑗 · 𝛾 [𝑗]
𝜇 = 𝛼 + 𝜌 · 𝑥
P → V: 𝜏𝑥 , 𝜇, 𝑡

Run inner-product argument to prove 𝑡 = ⟨l, r⟩

Follower()
P →Follower: [𝑣]2, 𝛾2
Run 𝐺𝑒𝑛𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 to generate all challenges

V2 ← 𝑔[v]2ℎ𝛾2

𝑉2 ← V𝑧
2 ·z𝑚
2

Send 𝑉2 to LeaderServer

Accept if Leader Accepts. Reject otherwise.

Leader()
P → Leader: [𝑣]1, 𝛾1, 𝐴, 𝑆
Run 𝐺𝑒𝑛𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 to generate 𝑦, 𝑧

P → Leader: 𝑇1,𝑇2
Run 𝐺𝑒𝑛𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 to generate 𝑥

P → Leader: 𝜏𝑥 , 𝜇, 𝑡

Follower→ Leader: 𝑉2
V1 ← 𝑔[v]1ℎ𝛾1

𝑉1 ← V𝑧
2 ·z𝑚
1

ℎ′
𝑖
← ℎ

(𝑦−𝑖+1])
𝑖

∀𝑖 ∈ [1, 𝑏 + 1]
𝛿 ← (𝑧 − 𝑧2) · ⟨1(𝑏+1) ·𝑚, y(𝑏+1) ·𝑚⟩ −∑𝑚

𝑗=1 𝑧
𝑗+2

·⟨1𝑏+1, [20, ..., 2𝑏 , 2𝑛]⟩
𝑉 ← 𝑉1 ·𝑉2
𝑔𝑡ℎ𝜏𝑥

?

= 𝑔𝛿 ·𝑉 ·𝑇𝑥
1
·𝑇𝑥2

2

𝑃 ← 𝐴 · 𝑆𝑥 · g−𝑧 · (h′)𝑧 ·y

·∏𝑚
𝑗=1 (h′ [(𝑗−1) · (𝑏+1) : 𝑗 · (𝑏)])𝑧

𝑗+1 · [20,21,...,2𝑏 ,2𝑛]

𝑃
?

= ℎ𝜇 · gl · (h′)r

Verify inner-product argument for 𝑡
?

= ⟨l, r⟩
Accept if all check succeed. Reject otherwise.

Figure 8: Commitment Proofs Protocol. It is parameterized by 𝑔, ℎ ∈ G, g, h ∈ G𝑚

2-server corrupted follower proof then follow naturally. In the case

the corrupted subset includes the Leader, then the simulator is

similar to 𝑆𝑖𝑚1. However, the simulator also computes additional

𝑦𝑖 , 𝑧𝑖 , and 𝑥𝑖 for each follower such that they are consistent with 𝑦,

𝑧, and 𝑥 from 𝐵𝑃.𝑆𝑖𝑚, and it receives𝑉𝑖 values from each corrupted

follower. Then, the proof is straightforward from the proof of the

two-server case. □

Now, we argue that the Commitment proofs protocol is sound.

Theorem B.9. When all servers are honest, the commitment proofs
protocol is sound.

Proof. Assume that the commitment proofs protocol is not

sound. Then there is an adversary A that, when interacting with

the servers, can convince the servers to accept some shares such

that 𝑣 =
∑[v]𝑖 and 𝑣 mod 2

𝑛 ∉ [0..2𝑏)𝑚 . We will use A to break

the soundness of𝑀𝑜𝑑𝐵𝑃 . Define an adversary B for𝑀𝑜𝑑𝐵𝑃 which

interacts with A and the 𝑀𝑜𝑑𝐵𝑃 verifier V . When interacting

with A, B acts as all the servers. When B receives [v]𝑖 and 𝛾𝑖 for

𝑖 = 0, ..., 𝑙 , it computes 𝑉 = 𝑔
∑[v]𝑖ℎ∑𝛾𝑖

, and forwards it to V. B
forwards 𝐴, 𝑆,𝑇1,𝑇2, 𝜏𝑥 , 𝜇, 𝑡 , and the IPA messages from A to V .

When it gets a challenge 𝑥 from V , it computes corresponding

pieces 𝑥𝑖 for the leader and each follower, and sends them to A.

We will show thatV accepts when interacting with B exactly

when honest servers accept when interacting with A. Notice that

the verification conditions in the Leader are exactly that of the

𝑀𝑜𝑑𝐵𝑃 verifierV , except it computes 𝑉 using information from

the followers. The value computed from 𝑉 is exactly 𝑉 𝑧2 ·z𝑚
that is

computed byV . All other values given toV are the same as those

given to the Leader. Therefore, V must accept when the servers

accept. Thus, B can convince V of false 𝑀𝑜𝑑𝐵𝑃 proofs, which

violates the soundness of𝑀𝑜𝑑𝐵𝑃 . Therefore,A does not exist, and

the protocol is sound. □

B.3.1 Efficiency. The protocol presented in Figure 8 has the client

send blinds 𝛾1, 𝛾2 ∈ Z𝑚𝑝 to each server. In practice, this leads to

huge communication blow-up, because 𝑝 is large. Therefore, in

623

Privacy-Preserving Control of Partitioned Energy Resources E-Energy ’24, June 04–07, 2024, Singapore, Singapore

𝑆𝑖𝑚1()

ṽ
$←− (0..2𝑏)𝑚

𝛾1
$←− Z𝑚𝑝

𝛾2
$←− Z𝑚𝑝

[v]1
$←− (0..2𝑛)𝑚 , [v]2

$←− v − [v]1
𝑉 = g[v]1h𝛾1g[v]2h𝛾2
(𝐴, 𝑆,𝑦, 𝑧, 𝑥, 𝜏𝑥 , 𝜇, 𝑡, ipa_tr) ← 𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉)
Send [𝑣]1, 𝛾1 to LeaderServer

Send 𝐴, 𝑆 to LeaderServer

Receive 𝑦1, 𝑧1 from LeaderServer

𝑦1, 𝑧1 ← Z𝑝
𝑧2 = 𝑧 − 𝑧1, 𝑦2 = 𝑦 − 𝑦1
Send 𝑧,𝑦, 𝑧2, 𝑦2 to LeaderServer

Receive 𝑥1 from LeaderServer

𝑥1 ← Z𝑝
𝑥2 = 𝑥 − 𝑥1
Send 𝑥, 𝑥2 to LeaderServer

𝑉2 ← (g[v]2h𝛾2)𝑧
2 ·z𝑚

Send 𝑉2 to LeaderServer

Compute and send parts of the challenges for the IPA transcript ipa_tr.

Output Accept if the Adversary Accepts, output reject otherwise.

𝑆𝑖𝑚2()

ṽ
$←− (0..2𝑏)𝑚

𝛾1
$←− Z𝑚𝑝

𝛾2
$←− Z𝑚𝑝

[v]1
$←− (0..2𝑛)𝑚 , [v]2

$←− v − [v]1
𝑉 = g[v]1h𝛾1g[v]2h𝛾2
(𝐴, 𝑆,𝑦, 𝑧, 𝑥, 𝜏𝑥 , 𝜇, 𝑡, ipa_tr) ← 𝑀𝑜𝑑𝐵𝑃.𝑆𝑖𝑚(𝑉)
Send [v]2, 𝛾2 to FollowerServer

Receive 𝑦2, 𝑧2, 𝑥2 from FollowerServer

𝑧1 = 𝑧 − 𝑧2, 𝑦1 = 𝑦 − 𝑦2, 𝑥1 = 𝑥 − 𝑥2
Send 𝑦, 𝑧, 𝑥,𝑦1, 𝑧1, 𝑥1 to FollowerServer

Receive 𝑉2 from FollowerServer

Compute and send parts of the challenges for the IPA transcript ipa_tr.

Output Accept if the LeaderServer verification conditions hold, output Reject otherwise.

Figure 9: Simulators for the proof that Commitment Proofs are zero-knowledge in the two server setting.

practice the leader and followers generate𝛾𝑖 using a pseudo-random

generator with a seed sent by the client. As long as the pseudo-

random generator is secure, the protocol remains zero-knowledge

and sound. Lastly, the protocol requires all servers participate in

challenge generation. Using a verifiable random function or random

oracle, the amount of interaction between the servers and client

can be reduced.

624

	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Energy Resources
	2.2 Additive Secret Sharing
	2.3 Secure Aggregation and Prio
	2.4 Bulletproofs

	3 Problem Statement
	4 System Design
	4.1 Security Model
	4.2 Data Model
	4.3 Checking Integral Constraints

	5 Range Proofs
	5.1 Disjunctive Schedule Compression

	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 RAM use
	7.3 CPU Performance
	7.4 Communication
	7.5 Disjunctive Schedule Compression

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Full Range Proofs
	A.1 Bit-splitting Proofs using Prio
	A.2 Sorting Proofs using Prio
	A.3 Commitment Proofs using Bulletproofs

	B Range Proof Security Analysis
	B.1 Bit-Splitting Proof
	B.2 Sorting Proof
	B.3 Commitment Proof

