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|. Executive Summary

In this project, the Stanford and SLAC Teams have developed a Trusted, Private and
Scalable platform for coordinating Coordination of Distributed Energy Resources
(TrustDER). This is a layered system that ensures private, trusted and scalable
coordination and monitoring of DERSs. It accommodates a variety of resources, such as
solar generation, gensets and loads, with a particular focus on battery systems-based
resources, as they are a transformational technology experiencing fast growth in
adoption by large critical facilities. The platform can be used as standalone or added to
existing aggregation systems to enable trust, privacy and resilience.

TrustDER consists of layers that address each of the shortcomings of the existing state
of the art. Each layer in the platform can operate independently but provides information
to the layers above it to enable a novel form of overall coordination architecture. The
project consists of several tasks, with each task dedicated to the design of each layer,
except Task 1 which is Project Management. For Task 1, we have separately submitted
a DMP, PMP, CSP and IOP documents. Task 4, led by the LLNL team, is on Trust and
Mapping IoT for Data Reliability. It was determined that the team would not pursue the
LLNL subcontract as the Stanford SPO and LLNL could not agree on some legal teams.
The fund that was originally allocated to LLNL was re-allocated to the Stanford team for
work in virtualization (Task 2.6) and privacy (Task 6.4). The risk to the project was low
as it could be mitigated by using multiple testbeds.

Task 2: Resource Virtualization

This Task defined a software abstraction layer for distributed energy resources (DERS).
The goal of this abstraction was to simplify the implementation of algorithms utilizing
cooperation of DERSs resources in a variety of use cases. Work under this task focused
on virtualization of batteries and battery-solar systems. We researched, designed,
implemented, deployed and evaluated a new technique for managing distributed energy
resources: virtualization. Virtualization has long been used in computer systems as a
way to decouple software control of resources from their physical instances. At its core,
virtualization is about two key ideas: aggregation and partitioning. Aggregation means
making many different resources look like a single one. For example, when a computing
system takes multiple disks and makes them act like one larger disk, or multiple
monitors act like one larger monitor; this is aggregation. When it divides a single disk
into multiple partitions or shares a single CPU across multiple programs; this is
partitioning.

We focused on battery energy storage systems and battery-solar systems for
virtualization. We designed a new software abstraction, called the Battery Abstraction
Layer (BAL) for controlling batteries. We demonstrated that the BAL is general enough
to control both small, contained DC battery systems as well as Internet-connected
consumer batteries installed in homes. The key research question that arose is how
aggregate and partitioned batteries behave: when a request to discharge comes into an
aggregate of 4 different batteries, how is the command distributed across them?



Similarly, when different requests come into the 3 partitions of a large battery, how does
the BAL process them to ensure correct operation?

We demonstrated that the Battery Abstraction Layer allows battery owners and users to
easily create new applications of energy storage. In the example topology in Figure
[.2.1, a homeowner’s association aggregates two batteries (A1 and A2) into a single,
larger battery H. It then rents unequal partitions of H (O1 and O2) to two homeowners.
Homeowner 2, who rents 02, has their own home battery installation C. They aggregate
their share O2 with C, to create a larger battery O2’, for them to use. Battery
virtualization allows homeowners to rent arbitrary shares of a pool of batteries, and also
use these rented shares to supplement their own energy storage.
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Figure 1.2.1: Example topology of battery aggregation

We deployed BAL on a testbed consisting of several residential batteries as well as a
lab battery setup. In one experiment, we used the virtual battery topology depicted
above, demonstrating that requests to discharge O2’ were distributed across O2 and C,
and that requests from O2 and O1 were merged at H then distributed to A1 and A2.

We researched how to manage virtualized batteries when they are part of a battery-
solar system with uncertain solar production and loads. In particular, we examined how
jointly controlling a set of batteries among a set of users can lead to substantially
greater cost savings than each individual using only their battery. Because these
savings manifest as heavy users saving a lot by drawing on the batteries of light users,
we explored hybrid schemes, in which each owner partitions their battery into a private
part for their own use and a shared part for joint use. Each day, an owner can
recalibrate their partitioning based on forecasts of load and solar generation. Our results
show that the ability to partition virtualized batteries provides benefits in complex
forecasting/control loops, in that it allows partitioning of resources for different objective
functions (personal vs. joint optimization).

When evaluating the feasibility of TrustDER’s mechanisms in loT systems, we consider
three metrics: computational requirements (in time and space), communication
requirements, and system complexity. The first two metrics are quantitative: they involve
concrete measures of properties such as computation time, RAM used, and bytes
transmitted. The third metric, system complexity, is qualitative. It examines the
additional complexity that incorporating the system will introduce. To evaluate whether



the complexity is feasible or acceptable, we rely on analogies in similar systems. For
example, TrustDER’s computational privacy requires having two non-colluding servers.
To evaluate this cost, we consider use cases in which this would or would not be simple
and compare with other applications that have a similar requirement.

Task 3: Secure ID for Asset Authentication

Identity Management Systems (IDMS) are a foundational infrastructure for interactions
between entities (organizations, users, devices, and services). At a minimum, an IDMS
must support the following features:

e Allow entities to authenticate

e Share authentication results with others (apps, services), and

e Maintain and protect a registry of credentials

With traditional IDMS, organization(s) store credential information for each entity,
thereby creating a privileged system with disproportionate control, and a well-defined
target for cyber-attacks. Centralized models for identity management face challenges
due to the increasing regularity of data breaches that lead to monetary loss,
compromised privacy, and reputational damage.

Currently there are several initiatives investigating alternative approaches to identity
management that seek to improve the trustworthiness of the system while minimizing
the risks from cyber-attacks. Secure ID is an alternative approach to identity
management for grid assets.

Secure ID is blockchain-based a distributed identity management system allowing (1)
identity provisioning, (2) authentication, (3) authorization, and (4) identity data sharing
for loT-enabled assets on the electricity grid.

In this project, the SLAC team focused on designing and testing Keymaker, a protocol
for authenticating device identity managed by Secure ID.

Task 5: Private and Safe Integration

This task is focused on the design and evaluation of a DER cooperation scheme which
allows for the aggregation of DERs without impacting network reliability. The approach
is designed based on realistic assumptions regarding data availability, communication

infrastructure limitations, and privacy.

To evaluate the impact of DERs on network reliability and the performance of the
proposed approach, a comprehensive distribution grid simulation suite was developed.
The proposed DER cooperation scheme was designed to reduce the number of grid
upgrades needed to support the growing penetration of DERs. The cooperation scheme
includes (i) a day ahead scheduler that calculates power injection bounds for each
customer that ensures that voltage and transformer constraints are respected, and (ii)
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local controllers for each customer which manage the local DERs. Results demonstrate
that the algorithm can provide greater than a 10% reduction in the cost of transformer
upgrades, satisfying the project metric goal for this task.

The cooperation capabilities were also extended to ramping, regulation, and black start
applications. Results show a tracking error for ramping and regulation of less than 10%,
which meets the goals for this task. Our analysis also investigated how stationary
storage, EV chargers, and rooftop PV can assist the grid in a black start scenario and
provide the grid with power during a blackout. The final portion of this task investigated
testing the proposed system in a hardware-in-the-loop setup.

Task 6: Scalable Distributed Privacy for Information and Energy Exchange

This Task explored how virtualized batteries could be managed privately. Specifically, it
examined the case in which a principal provides a partitioned battery to multiple clients.
These clients each control their partitions, but wish to do so privately, such that the
principal learns nothing more than their aggregate use (which it must learn, to control
the battery). One complication is that the principal must be able to enforce constraints
on client commands. For example, a principal needs to be able to keep a client within
their energy (storage) and power (charge/discharge) limits. The principal must be able
to do this without knowing the exact value a client sends, merely that it is valid, violating
neither energy nor power constraints.

We researched and developed Weft, a novel cryptographic system to achieve these
goals. Weft enforces constraints over power (rates) and energy (integrals) using the
key observation that the additive homomorphism in prior work and a local state variable
allow servers to compute and constrain secret integrals over time. To provide temporal
secrecy, instead of sending commands to the device, clients send schedules of
commands at fixed times. Weft can run in diverse deployment scenarios, including on
resource constrained embedded devices. Weft can use three types of proofs which
each minimize one of compute, memory, or network communication.

Some distributed energy resources are partitioned among many users. Sharing a
communal resource in this way has many advantages: individuals can join and leave
the system, resources can be put in good locations, and it allows people who cannot
install resources in their home to use them. One problem that partitioned energy
resources introduce is a lack of privacy. Because each user operates a share of the
large resource, the controller of the resource (e.g., the battery storage provider) can see
how each person is using it.

Adapting private aggregation to partitioned energy resources has three challenges.
First, prior techniques have focused on single values (e.g., page load times), but
distributed energy resources require verifying both an instantaneous value (power) and
its integral (energy). In other words, a client request is valid only if its requested power
is within allowed limits and the integral of all of its requests over time do not
undercharge or overcharge its battery. Second, values are commands to an active
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device, and timing of these commands can leak sensitive information about the client’s
usage of the resource. For example, if a client sends a request which immediately
changes the aggregate power, then that request is trivially discoverable. Third, prior
techniques focus on traditional client/server computing systems that have GHz of CPU
and GB of RAM. Distributed energy resources, in contrast, often have embedded
controllers, with MHz of CPU and kB-MB of RAM.

Wetft is a secure system which addresses these three challenges. Weft enforces
constraints over power (rates) and energy (integrals) using techniques from Task 6.2.
Second, to provide temporal secrecy, instead of sending commands to the device,
clients send schedules of commands at fixed times. Third, Weft can run in diverse
deployment scenarios, including on resource constrained embedded devices. Towards
this end, Weft can use three types of proofs: sorting proofs which minimizes compute,
bit-splitting proofs which minimizes memory, and commitment proofs which minimize
network communication. To control an energy resource for a day at 20s granularity, a
client running commaodity hardware needs 0.093s compute and 505 kB communication
using the bit-splitting proofs, 0.027s compute and 322 kB communication using sorting
proofs, and 17s compute and 17 kB communication using commitment proofs. Bit-
splitting proofs reduce memory usage enough to run on memory constrained embedded
devices. It takes an I0T client with 256 kB of memory using a CortexM microcontroller 4
minutes of computation time to privately control its share of an energy resource for a
day at 20s granularity.

Task 7: Use Cases

While the other Tasks focus on designing the software and technology for trusted DER
virtualization, the main goal of Task 7 was to ensure that this technology was applied in
relevant situations and scenarios. Primarily, this means that virtualization needed to be
employed in a manner that either improved flexibility, bolstered security or privacy, or
decreased costs.

Identifying specific use cases first included surveying literature and current technology
to find battery, load, and solar system configurations that could benefit from introducing
virtualization. Next, we formed an industry advisory board committee to help us discover
new potential use cases. This included collaborations with academic institutions as well
as commercial companies such as VMware.

Ultimately, we found that virtualization used for cost minimization as well as for
maintaining critical power supplies were the most important use cases. We developed
specific system configurations based on these needs, and in our publications, we tested
the use of virtualization on the use cases.



Objectives

Task 2: Resource Virtualization
Task 2 has three major objectives:

1. Design and implement the Battery Abstraction Layer, a software abstraction for
virtualizing battery energy storage systems and battery-solar systems. Write a
complete design document on the abstraction, its algorithms, and implementation
considerations. Provide an open-source implementation of the Battery Abstraction
Layer that demonstrates interoperability with multiple batteries.

2. Deploy the Battery Abstraction Layer on a real-world testbed to evaluate its
effectiveness and operation. Demonstrate that the Battery Abstraction Layer
enables new and interesting use cases of battery storage systems.

3. Extend battery virtualization to battery-solar systems, using control theory to
balance and manage them in the context of unknown and varying solar charging.
Explore how virtualization allows new uses of battery-solar systems, e.g., for
neighborhoods to collaboratively manage EV charging load to not violate
transformer limits and extend transformer lifetime.

Task 3: Secure ID for Asset Authentication

Utilities manage grid assets through mechanisms such as relays, supervisory control
and data acquisition (SCADA), distributed control systems (DCS), meters and remote
terminal units (RTUs). With new smart grid technologies, the grid is changed into an
interconnected system of 0T devices communicating over a network using a variety of
protocols, thereby exposing the grid to an entirely new class of cyber-attacks. Several of
these attacks target device identity and compromise device integrity through clone
attacks, false data injections attacks, and energy attacks. An important objective is
therefore to design IDMS for grid assets that are resilient to such attacks. Since
blockchains are well suited to ensuring consensus, transparency, and integrity of the
transactions they store, they make a great candidate technology for developing IDMS.
Blockchain offer several benefits when applied to identity management:

1. Decentralized — identity information is references in the ledger and no single entity
owns or controls all device identities

2. Immutable — transactions recorded on blockchain are tamper resistant

3. Open — blockchain networks can be designed to be open, thereby allowing
heterogenous devices to communicate securely over an untrusted network

4. Self-sovereign — identity information of a given device is owned and controlled by
that device, and is not available to or shared with any other entity on the network

Task 5: Private and Safe Integration



The goal of Task 5 is to design and evaluate a DER cooperation scheme that enables
the aggregation of DERs without impacting network reliability while maintaining realistic
assumptions about data availability, communication infrastructure limitations, and
privacy. The objective of subtask 5.1 was to evaluate the impact of DERs on network
reliability and design and validate a DER cooperation scheme that can be used to
reduce impacts to the distribution system. The objective for the DER coordination
scheme was to achieve >10% cost savings for the grid operator compared to a scenario
with no cooperation, where DER owners are performing local cost minimization. Cost
savings for the grid operator can be achieved by preventing necessary upgrades to
voltage regulation equipment and distribution system transformers.

Subtask 5.2 focused on extending the DER cooperation capabilities to ramping,
regulation, and black start use cases. The objective for the signal tracking algorithm
performance was to achieve <10% tracking error for following ramping and regulation
signals. Methods for extending battery system lifetime when following regulation signals
were also investigated, with a goal of extending battery lifetime by a least 10%. The
ability of stationary storage and EVs to provide power during a blackout was also
considered, with a goal to provide at least 4 hours of uptime.

Subtask 5.3 focused on deploying the developed coordination system on a hardware-in-
the-loop (HIL) setup and evaluating algorithm performance using the performance
metrics from the previous two subtasks. Specifically, the objective was to achieve
greater than 10% cost savings for the consumer and to achieve signals tracking errors
of <10% for ramping and regulation signals.

Task 6: Scalable Distributed Privacy for Information and Energy Exchange

One can formulate privacy-preserving control of partitioned energy resources as a
security problem. A client wants to use a partitioned energy resource. Many clients own
partitions of the resource, but it is operated by a central server. The server maintains a
(possibly negative, in case of charging and discharging) minimum rate, maximum rate,
and a maximum amount of the resource that the client can use. The client wants their
usage to remain private; the server should learn the sum of all client’s usages but not
the usage of any individual client. The server wants to ensure that no client uses a rate
outside their allowed bounds, more than the maximum amount, or drains their resource
below zero.

To give a concrete example, consider a community battery installation which sells
partitions of the battery to individuals. Each partition has associated minimum and
maximum power values n and m (a rate limit) and remaining energy value e (a usage
limit). In order to operate their partition of the battery, users send discharge requests to
the operator. The operator checks that each request is valid by checking that the user
doesn’t discharge less than n power, more than m power, and that the user won'’t
expend more than the e energy remaining in their share. The operator then discharges
power equal to the sum of all user requests.



To be practical for real-world deployment, the system (and particularly the client) must
be efficient. Energy systems often run on low-power embedded devices with limited
compute, memory, or bandwidth (e.g., smart meters, energy system controllers). The
system assumes the server is commodity hardware, with resources at least equivalent
to a recent desktop. In summary, a system for privacy-preserving control of partitioned
energy resources has the following goals:

1. Client privacy: the resource operator should only learn the sum of all client
requests.

2. Server integrity: the resource operator should be able to detect and reject invalid
client requests.

3. The system should be computationally efficient, able to run on desktop class
systems and in some configurations, clients can be embedded devices.

Task 7: Use Cases
Task 7 has the following main objectives:

1. We would work with our industry partners on specifying and documenting uses
cases, particularly those that are pertinent to critical energy infrastructure.

2. We would recruit members for an Industry Advisory Board and hold an annual
industry advisory board meeting. The meeting would review and validate the
approaches and outcomes for each Task, offering advice on use cases and
discussing potential for commercialization and engagement opportunities.

3. We would work with industry partners to specify and document commercialization
opportunities, particularly those pertaining to critical infrastructure for the Army or
Navy, and electric utilities that serve military installations and communities.



Technical Approach

Task 2: Resource Visualization

Enabling innovative solutions for networked batteries requires having functional
abstractions of how those batteries can be used, managed and controlled. The
traditional approach to achieving this is to design abstractions for each domain or use
case: there would be an interface to DER for industrial users wishing to reduce peaks,
an interface for arbitrage, and an interface for microgrid operators, and every other use
case.

The Battery Abstraction Layer takes a different approach: distributed energy resources
have a single, common, standard interface that is general enough to use in the majority
of use cases. By having a single, common interface, energy resources are not siloed
into a particular use case and can be easily repurposed across them. A factory, for
example, if operating well below capacity, could apply its energy storage to a larger
arbitrage or demand-response market, because those applications and operators would
use the same interface. Towards this end, the BAL draws inspiration from computer
systems, where the operating system (OS) provides a common programming
abstraction of hardware resources, while hardware manufacturers build devices with
software drivers that provide that abstraction. This makes it possible for third parties to
build applications on the OS which are agnostic to the underlying hardware. In line with
these principles, we propose the Battery Operating System (BOS).

The key resource that BOS introduces and manages is a logical battery. There are two
kinds of logical batteries: physical and virtual. A physical battery is what we think of
today when we think of distributed energy resources. It represents physical energy
storage, controlled and managed by a networked battery management system (BMS).
The BMS provides information and control on the state and activity of the battery.

A virtual battery is the key new concept in BOS. Virtual batteries allows BOS to
aggregate multiple batteries into a single, larger virtual one, or to partition the resources
of a single battery into multiple virtual batteries of different sizes, which in sum are equal
to the original battery. An analogy for virtual batteries is hard disk management in
computer systems: multiple physical drives can be aggregated (via RAID) into a single
logical disk. A single logical disk can be partitioned into multiple logical volumes that
users can use like a regular hard drive. Just as a computer OS manages the
virtualization of disks, systems using the BAL can manage virtual batteries, physical
batteries, and what they can do.

Virtualization allows a system to allocate and manage resources according to each
user's needs. There are two types of virtual batteries: aggregate and partitioned. An
aggregate battery takes several batteries and presents them as a single, larger
battery. A system may, for example, aggregate several smaller batteries as one large
battery for demand response purposes. A partitioned battery takes a single battery
and splits it into multiple smaller ones. For example, a home-owner’s association may
use BAL to pool funds to acquire one large battery array, aggregate it, then partition it
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for the individual homes according to their fund contribution. As shown in Figure 111.2.1 —
Figure I11.2.2, virtualization allows systems using BAL to treat a battery the same without
needing to know if it is actually one battery, part of a larger battery or many smaller
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Figure I11.2.1: Virtual batteries allow a BOS to aggregate multiple batteries into a single
logical battery or partition a battery into multiple logical batteries. These source batteries
B can themselves be logical batteries, or physical ones.

Figure 111.2.2: Fig. 1ll.2.2a shows an example of a networked virtual battery that allows
BOS to interact with a battery using the BAL API over a network, e.g., to a logical
battery on another BOS node. Fig. 1ll.2.2b demonstrates the ability to combine the two
concepts.
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Aggregate Batteries

An aggregate battery takes multiple batteries (logical or physical) and composes them
into a single, larger battery. Three major questions arise in aggregate batteries:
1. What current ranges and capacity should an aggregate battery have, based on its
constituent batteries?
2. If constituent batteries have unbalanced states of charge, how should the
aggregate battery report this?
3. How does an aggregate battery advertise its location or connection point?

We examine each in turn.

Reporting Discharge and Capacity

Consider the following example: we have two batteries, A and B, with the following
properties. We use ampere-hours as the units of capacity to simplify explanation of the
issues that arise.

Battery Discharge Capacity State of Charge
A 60A 110Ah 100%
B 40A 40Ah 100%

Table 111.2.1: Example batter configuration

If we combine these two batteries into a single, larger battery C, what values should
BAL report? One simple solution is to simply sum the values.

Battery Discharge Capacity State of Charge
A 60A 110Ah 100%
B 40A 40Ah 100%
C (A+B) 100A 150Ah 100%

Table 111.2.2: Aggregate battery reporting a simple sum of values. The report is
inaccurate: battery C cannot discharge at 100A for 1.5 hours.

This aggregate battery C reports having a maximum current of 100A and a capacity of
150Ah. This means that it has a C-Rate of 0.67 (L00A/150Ah). However, if battery C is
instructed to discharge at 100A, this will cause both A and B to discharge at the
maximum discharge rates: A will discharge at 60A and B will discharge at 40A. After
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one hour, B will fully discharge. The maximum current then drops to 60A and 50Ah
remains. Therefore, reporting a discharge rate of 100A is misleading: the aggregate
battery can discharge at 100A for only one hour, at which point its maximum discharge
drops to 60A.

However, this discontinuity is dependent on the discharge rate. Smaller discharge rates
can operate continuously over the entire charge. For example, if battery C is instructed
to discharge at 30A, then it can discharge for 5 hours at 30A: battery A discharges 22A
and battery B discharges 8A.

One approach to solve this problem is to report a current curve, based on capacity or
some other property. For example, battery C could report several discharge curves
based on a number of discharge rates. As Section 6 discusses, such complex data
models are not easily supported in existing standards. Therefore, BAL takes a simpler
approach, of reporting a scalar value for the maximum discharge rate.

The discharge rate for an aggregate battery is derived from the C-Rate of its constituent
batteries. The C-Rate of an aggregate battery is the minimum C-Rate of its constituent
batteries. Its capacity is the sum of its constituent batteries, and its maximum discharge
rate is derived from the C-Rate. In our example, this means that battery C has a
maximum discharge of 81A. This comes from the fact that the maximum C-Rate of
battery A is 0.56 (60A/110Ah). If battery A discharges at its maximum rate, it will
discharge in just under two hours. Therefore, the aggregate battery limits battery B such
that it will discharge in the same amount of time, at 21A.

Battery Discharge Capacity State of Charge C-Rate
A 60A 110Ah 100% 0.56
B 40A 40Ah 100% 1
C (A+B) 81A 150Ah 100% 0.56

Table 111.2.3: Aggregate battery reporting based on C-Rate. The report is accurate:
battery C can discharge at 81A for 110 minutes.

Reporting with Unbalanced States of Charge

The second challenge that arises in aggregate batteries: what values should BAL report
if their charges are not balanced? In the steady state and regular operation, BAL keeps
the state of charges of constituent batteries balanced, because doing so allows an
aggregate battery to provide a consistent current over its charge. However, when an
aggregate battery is first created, the constituent batteries may not have identical states
of charge. Also, if one of the constituent batteries loses network connectivity (see
below), it may cease charging and discharging with the others and so have its state of
charge diverge.
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We consider three options:

1. Variable current: Use the minimum C-rate computation to compute the current of
each battery. The advantage of this approach is that it is simple and adds no
further logic. The disadvantage is that the discharge and charge currents of an
aggregate battery change significantly as its charge equalizes. The state of charge
of the aggregate battery is the weighted sum of the constituent batteries based on
their maximum charge.

2. Offline: Take an aggregate battery offline when its state of charge is not balanced
and charge or shift charge to balance it. The advantages of this approach are that
it is simple and requires no logic, and the reported properties of a battery do not
shift significantly over time. The disadvantage is that failures of constituent
batteries can cascade into larger failures, limiting aggregation and reliability.

3. Variable charge: Fix the discharge current of the aggregate battery and derive a
reported aggregate state of charge based on how long the system could sustain
this discharge. This has the advantage that the discharge of an aggregate battery
is constant. It has the disadvantage that the state of charge does not reflect the
actual state of charge of the constituent batteries: charging the aggregate battery
requires less energy than what the state of charge and capacity indicate.

The BAL uses the variable current approach. The offline approach is too fragile to
network failures, which can cause cascading failures in large battery topologies. The
variable charge approach leads to much greater swings and uncertainty than variable
current, leading to variable current being a better choice. Consider the following
example, using variable current:

Battery Discharge Capacity State of Charge C-Rate
A 60A 110Ah 9% 0.56
B 40A 40Ah 100% 1
C (A+B) 50A 150Ah 33% 1

Table 111.2.4: Unbalanced aggregate battery reporting using variable current. Because
A’s state of charge is 9%, battery C can only provide 50A, rather than the 81A in Table
1.2.3.

Battery C can report a higher C-Rate than before, because battery A is no longer limiting
the discharge of the battery. However, its current is capped to 50A so that battery A can
discharge its 10Ah over an hour.

With variable charge, the batteries would report a state of charge of 13% because, with

a fixed maximum discharge of 81A, the aggregate battery will last longest with 40A from
battery B and 41A from battery A. If 41A come from battery A, it can discharge for just
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under 15 minutes (10Ah). If battery B discharges that long, it can discharge 9.75Ah, for
a total of 19.75Ah, or 13% of 150Ah.

Battery Discharge Capacity State of Charge C-Rate
A 60A 110Ah 9% 0.56
B 40A 40Ah 100% 1
C (A+B) 81A 150Ah 13% 0.56

Table 111.2.5: Unbalanced aggregate battery reporting using variable charge. Because
A’s SoC is 9%, to maintain an 81A discharge battery C can only report 13% SoC.

Because variable current is more stable (the current of the matched batteries remains
stable), BAL uses variable current.

To address the uncertainty that variable current introduces, the BAL reports two sets of
values for a virtual battery: the expected values and the current values. The expected
values report the expected charge, discharge and capacity if the virtual battery is
operating optimally. The current values report potentially lower values if constituent
batteries are offline or charge is not balanced.

Reporting Location / Connection Point

The final issue that arises in aggregate batteries is how to report the location and
tolerances of an aggregate battery connection point.

Location can be an important consideration when it is neceesary to keep grid elements
within voltage bounds or maintain other safety limits. In addition to location, information
about the connection point includes the nominal values and bounds for VAR, voltage,
frequency, and wattage.

Reporting location is fundamentally in tension with virtualization: the goal of
virtualization is to abstract away physical properties and break brittle assumptions on
them. Location, however, is fundamentally physical and it represents a point in space. If
the constituent batteries of an aggregate battery are highly distributed, they cannot be
easily summarized as a single location.

We propose that the BAL reports aggregate location as the center point of all of the
constituent connection points, computed with the Floyd-Warshall algorithm. This
approach means that virtual batteries which aggregate geographically dispersed
batteries will appear to be in the “center” of the grid topology, combined with an
indication that this is a center position (i.e., the top of a connection point hierarchy).
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We are currently exploring and evaluating different approaches for reporting bounds
and tolerances. Our current approach involves a “down-up” query model, where values
propagate down from an aggregate to its constituent batteries, then back up to report
actual values.

[Floyd-Warshall algorithm: https://dl.acm.org/doi/10.1145/367766.368168]

Partitioned Batteries

A partitioned battery takes a single logical battery and divides it into multiple, smaller
batteries. Because of normal variations and because the underlying battery may be an
aggregate battery, the values of the underlying battery can change over time even in the
absence of charging and discharging. When this battery is partitioned, this raises the
guestion and policy of how these variations are reflected in the partitions. Furthermore,
when some partitions request charging and others request discharging, the partitioner
needs to map these requests onto the underlying battery and dynamically account for
changes in charge.

Partitioning Policies

Partitioned batteries are defined in terms of fractions of the expected value of a battery.
For example, if a battery has an expected maximum current of 80A, this can be
partitioned into 25% and 75% as two batteries with currents of 20A and 60A. This
proportional splitting is uniform across the properties. The BAL provides three policies
for partitioned batteries:

1. In a proportional battery, the partitions are strict fractions of the underlying
battery. Any variations in the values of the underlying battery are proportionally
reflected in the partitions.

2. In a tranched battery, the partitioned batteries are placed in an ordering of
tranches: there is a top (level A) tranche, a second tranche (level B), and more
tranches as the battery is more finely partitioned. When values of the current
values of a battery go above the expected value, these increases are first given to
the highest tranche. However, when the current values of a battery go below the
expected value, these reductions are first taken from the lowest tranche.

3. In areserved battery, the partitions are placed in an ordering, as with a tranched
battery. However, increases and decreases both affect the bottom partition first. In
a reserved battery, the higher partitions have more reliable and dependable
values.

Table 111.2.6 shows the difference between these three partitioning policies, with
capacity as the variable of interest. A single battery A is partitioned into P1, P2, and P3.
P1 is the top partition and P3 is the bottom partition.
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Battery

A: Expected
A: Actual
P1

P2

P3

Table 111.2.6: If the actual charge of a partitioned battery is lower than its expected

Charge
100

90

50

30

20

Fraction

90%

50%

30%

20%

Proportional

45
27

18

Tranched Reserved
50 50
30 30
10 10

charge, the type of partition determines how this deficit appears: in both the tranched

and reserved batteries the deficit is borne by the bottom battery P3.

Battery

A: Expected
A: Actual
P1

P2

P3

Table 111.2.7: If the actual charge of a partitioned battery is higher than its expected
charge, the type of partition determines how this surplus appears. In the reserved

Capacity

100

110

50

30

20

Fraction

110%

50%

30%

20%

Proportional

55
33

22

Tranched Reserved
60 50
30 30
20 30

battery the surplus is taken by the bottom battery P3, while in the tranched battery the

Battery
A: Expected

A: Actual

P1

P2

P3

surplus is taken by the top battery P1.

Capacity

100

110

50

30

20

Fraction Maximum
110%
50% 62.5
30% 375
20% 25

Reserved

50

35

25
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Table 111.2.8: If Surplus charge on partitioned batteries cannot go above the maximum
charge of a partition. In this example, the excess 10 charge units are first applied to P3,
raising it to 25. The remaining 5 surplus units are applied to P2.

Applied surpluses and deficits are bounded by the 0 and the maximum values of the
partitions. For example, suppose, in Table 111.2.7, the total maximum charge (capacity)
is 125. P3is 20% of this, so its maximum charge (capacity) is 25. If the actual charge of
A is 110, then the surplus will be allocated so we get the results in Table [11.2.8.

The tranched and reserved policies can be useful in different economic models and
markets. Furthermore, these policies can compose. One can construct complex
topologies of batteries, with tranches of aggregates of tranches.

Partition Accounting

A second issue that arises in partitioned batteries: partitions can request discharging
and charging simultaneously. Consider, for example, the following partitioned battery A,
partitioned into P1 and P2. P1 is discharging at 40A and P2 is charging at 60A.

Battery Capacity State of Charge Charge Discharge
P1 80Ah 100% 40A
P2 120Ah 16% 50A
A 200Ah 50% 10A

Table 111.2.9: Behavior of Battery A when its two partitions (P1 and P2) request both
charging and discharging. The underlying battery is the sum of the charge and
discharge, while State of Charge flows from P1 to P2.

In this example, the underlying battery A charges at 10A (the sum of the charge and
discharge requests). The 40A of discharge from P1 is effectively absorbed by P2’s
request. This means that the underlying battery only requests 10A of charging.
However, the state of charge on P1 and P2 need to change to reflect this virtual energy
flow from P1 to P2. Note that this change in their state of charge is entirely in software:
the BAL accounts for this virtual flow. In 2 hours, P1’s state of charge will decrease to
0% and it will stop discharging. This 80Ah of charge will transfer to P2. After 2 hours,
P2’s state of charge will be 100%, having drawn 20Ah from external charging and 80Ah
from P1.

This virtual transfer of charge requires that the entity providing virtualized batteries can
accordingly bill its clients. In the above example, P2’'s charging cost is what will pay P1
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for discharging. This implies that the owner of P2 must pay the owner of P1 at least as
much as P1 expected to receive from the grid. Exploring the exact billing and financial
agreements necessary for these virtual charge flows is an area of future work and
discussion. For example, if P1 promised to discharge as part of a day-ahead market, it
is important that the owner of P1 isn’t able to simply virtually transfer the charge to P2
(at no cost) and claim its responsibilities were met. One approach we are discussing is
for both charges to go through the utility directly, such that a virtual transfer does involve
a flow of funds through the utility directly.

Battery Abstraction Layer API

BOS provides a Battery Abstraction Layer API as a software programming interface for
interacting with batteries. The API is identical for virtual and physical batteries, making
them indistinguishable to software. The BAL follows three design principles:

Flexible: As the BAL defines how many different pieces of software will interact with
batteries, it must provide a general and flexible API. A flexible API that allows many
different use cases will be highly reusable and provide a common basis for more complex
services. It should provide complete-yet-simple functionalities of a physical battery
management system, which includes retrieving basic information like voltage, current,
state of charge, as well as controlling the discharging/charging of a battery. This flexible
API should be implementable for both physical and virtual batteries.

Simple: The API must be simple. Complex APIs are hard to implement and difficult to
write software for. If the API is simple, it is also easier for it to be general, as its core
abstractions do not depend on particular features or capabilities.

Atomicity: To support correct and stable services being built on top of it, the BAL must
allow software to atomically (as a single, indivisible action) request multiple values at
once. This is critical so that services do not try to (incorrectly) compute on values obtained
at different moments in time. For example, software must be able to atomically request
both current and voltage simultaneously. If the voltage and current are measured at
different times, the power calculation can be incorrect. For example, suppose after the
voltage is sampled there is a huge spike in draw, leading to a high current and a voltage
drop. Multiplying the high current with the high (previous) voltage would indicate the
power output is higher than it is.

The Battery Abstraction Layer contains the following two functions:

1. GetStatus(): retrieves a snapshot of the logical battery status, which returns a
structure containing a snapshot of the following information.

o voltage,

o

current,
maximum current,

O

o

state of charge,

O

maximum charge,
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o the timestamp of the snapshot, represented as an interval.

2. SetCharge()/SetDischarge(): sets the amount of current flow into (charge) or out
from (discharge) the battery.

This GetStatus() function satisfies the atomicity principle, as all of those values are
returned on one call of GetStatus. The timestamp interval is to tackle with different
stalenesses of data from different batteries when the virtual battery is an aggregate of
multiple underlying logical batteries. Each physical battery request is an atomic set of
results, but virtual batteries may aggregate the results of more than one physical
battery.

For physical batteries, BOS includes driver software that converts these calls into
messages or commands to the physical battery, for example over a serial port or
network connection to a battery management system (BMS). Virtual batteries are
entirely software.The next two sections describe how virtual batteries set charge or
discharge rates.

Charge / Discharge on Aggregate Batteries

BOS maps operations on virtual aggregate batteries into their constituent batteries. The
charge and discharge amounts are distributed across the constituent batteries based on
their contribution to the aggregate value. For example, consider the batteries in Table
[11.2.3 (repeated here):

Battery Discharge Capacity State of Charge C-Rate
A 60A 110Ah 100% 0.56
B 40A 40Ah 100% 1
C 81A 150Ah 100% 0.56

Table 111.2.10: Aggregate battery reporting based on C-Rate. The report is accurate:
battery C can discharge at 81A for 110 minutes.

Battery C’s discharge of 81A consists of 60A from A and 21A from B. Therefore, if
software calls SetDisharge(50) on battery C, BOS will tell battery A to discharge at 50A
x (60/81) and battery B to 50A x (21/81).

Charge / Discharge on Partitioned Batteries

BOS combines change and discharge operations on partitioned batteries using a simple
sum. The resulting value is passed to the underlying battery. For example, suppose we
have the following partitioned battery as shown in Table I11.2.11.

20



If software tells P1 and P2 to both discharge at 20A, BOS calls SetDischarge on the
source battery with 40A. However, if software tells P1 to charge at 20A and P2 to
discharge at 20A, then BOS stops charging/discharging the source. Instead, over time,
BOS changes its accounting of charge for P1 and P2, shifting charge from P2 to P1.

Battery Fraction Capacity Charge Discharge
Source 200Ah 80A 100A
P1 50% 100Ah 40A 50A
P2 30% 60Ah 24A 30A
P3 20% 40Ah 16A 20A

Table 111.2.11: Example proportional battery

This implies an economic exchange. E.g., P2 is discharging to earn income by providing
power, while P1 is expecting to pay for the power it draws. The entity running BOS must
interact with the local utility as a virtual meter, informing the utility that P1 is drawing
20A whole P2 is discharging 20A.

Battery Topology Configuration

The BOS function family ‘'make_{battery, aggregator, splitter}()" provides the mechanism
for constructing a topology of batteries that all use a common Battery Abstraction Layer
(BAL).

- make_battery(name, kind, interface) -- create a new battery with the given name on
the given interface. The interface can be local or remote (UART, BLE, TCP, etc.);
the battery can be virtual or physical.

- make_aggregator(name, [batteries...]) -- aggregate a list of batteries into one virtual
battery with the given name.

- make_splitter([(name, info)...], name) -- split a battery with the given name into n
different batteries.

Example Physical Battery Driver: JBD BMS

To show how the BAL is implemented on top of a physical battery, we consider the
example of a battery management system (BMS) manufactured by JBD, the SP04S020.
This BMS can be controlled and queried over either a UART or BLE interface. The BMS
provides a rich interface, with many controls and data.

To implement GetStatus(), our implementation reads the Basic Info register of the BMS,
which contains a large set of data values, including voltage, current, state of charge,
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pack cells, FET status, and maximum charge. It translates a subset of the data in this
data structure into the BAL'’s data structure and returns the values.

Figure 111.2.3: lllustration of how BAL is implemented on top of a physical battery

To implement SetCurrent(current), our implementation controls the MOSFET on/off
status of the BMS by writing to the FET status register -- if the target current is positive,
turn on the discharging MOSFET and shut off the charging MOSFET, and vice versa. If
the current is zero, the implementation disables the FET. The BMS does not have a
current regulator. We are working to extend it to have one.

Example BOS Software

We have written two implementations of the BAL API as described above. Both
implementations have documentation in the repository, explaining the software structure
and how to use it.

The first implementation is an initial prototype. It operates in Python and can be found in
the trustder subdirectory of the BatteryOS GitHub repository. It allows software to
construct battery topologies. In addition to virtual and physical batteries, this
implementation adds the abstraction of a networked battery, which is a way to control a
BAL device over a network. This allows a BOS instance to construct virtual batteries
from logical batteries that exist on other BOS nodes. For example, one BOS node that
has three BMSes which it combines into a single aggregate battery can provide access
to this aggregate battery over a network. Another BOS node can create a networked
battery to take control of this aggregate battery, and partition it into multiple batteries.
Networked batteries allow BOS to provide distributed battery resources.

The second, and more complete implementation, is in C. It includes the full set of BAL
and Battery Operating System features, including a full implementation of the
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cybersecurity mechanisms described in our Cybersecurity Design Document as well as
IEC 61850 interoperability. It can be found in the bos_rewrite subdirectory of the
BatteryOS GitHub repository.

Representing a BAL Device in IEC 61850

International Electrotechnical Commission (IEC) 61850 is an international standard
defining communication protocols for intelligent electronic devices at electrical
substations. IEC 61850 defines object models, data models, and mappings to
communication protocols such as HTTP. The Battery Abstraction Layer is a software
API: it defines methods and data structures that software running on a microprocessor
or microcontroller can use. This section describes how the BAL API can be mapped to
IEC 61850 data models: it outlines how a software service can respond to and generate
IEC 61850 messages by interacting with a BAL device.

In IEC 61850, the standard battery energy storage object is a ZBAT node, defined in
IEC 61850 7-420, Section 8.2.2. A ZBAT node has 4 Mandatory and 23 Optional data
objects. This table shows how a software service can represent a BAL device as an IEC
61850 ZBAT device.

Task 3: Secure ID for Asset Authentication

We started our research by searching for blockchain-based identity management
systems. Many of the approaches we discovered were notional and did not accompany
any published work and/or code repositories. We then narrowed our search to systems
that had actual technical implementation and assessed their application to grid cyber-
physical network. We discovered that most of the published work required a decentralized
trusted identity implying that identity proofing of devices was based on existing trusted
credentials. This was a serious limitation since one of our key design criteria for the
identity management system is to support self-sovereign identity meaning, only the
device/asset should own and control its own identity. After a comprehensive survey of
literature on blockchains and identity management, we decided that an entirely new
approach was needed to support self-sovereign identity for grid assets. We developed
two components, which when put together, make up the core of the Secure ID system —
1) Keymaker, an algorithm to enable self-sovereign identity for grid assets, and 2)
Keychecker, an algorithm to verify that a device indeed is what they claim to be. Both
algorithms were then implemented as a set of smart contracts, protocol and library
functions that enable grid assets to be verified by the rest of the network.

Keymaker and Keychecker

Keymaker allows device identity to be created and identity-related data, or in our case
shards, to be distributed to nodes on the network. It does so by:
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e Creating multiple shards of a device identity / device key, and
e Distributing shards to adjacent nodes on the network

Keychecker allows a device identity to be socially verified by other devices on the network
by:
e Enabling adjacent network nodes to combine shards

Simply speaking, Keymaker and Keychecker protocols allow self-sovereign device
identity to be socially verified by other devices on the network. The cryptographic
underpinnings of Keymaker include 1) Shamir Secret Sharing (SSS), and 2) Symmetric-
key Encryption.

Shamir's Secret Sharing is an ideal and perfect (k , n) -threshold scheme. In such a
scheme, the aim is to divide a secret S (for example, identity of a grid asset) into n pieces
of data S1, ..., Sn (known as shards or shares) in such a way that:

1. Knowledge of any k or more Si pieces makes S easily computable. That is, the
complete secret S can be reconstructed from any combination of k pieces of data.

2. Knowledge of any k — 1 or fewer Si pieces leaves S completely undetermined, in
the sense that the possible values for S seem as likely as with knowledge of 0
pieces. That is, the secret S cannot be reconstructed with fewer than k pieces.

The essential idea of the scheme is based on Lagrange interpolation theorem, specifically
that k points is enough to uniquely determine a polynomial of degree less than or equal
to k — 1. For instance, 2 points are sufficient to define a line, 3 points are sufficient to
define a parabola, 4 points to define a cubic curve and so forth. A (3, 5)-threshold scheme
is depicted in the diagram below.

Symmetric-key encryption uses the same cryptographic keys for both the encryption of
plaintext and the decryption of ciphertext. The keys may be identical, or there may be a
simple transformation to go between the two keys. The keys, in practice, represent a
shared secret between two or more parties that can be used to maintain a private
information link. Symmetric-key encryption is sometimes also referred to as Authenticated
Encryption since it effectively verifies that two parties possess the same encryption key.

Secure ID contracts when executed performs the following steps:

1. Generate random key

2. Split random key into n+1 shards using SSS

3. Encrypt identity key using random key as an encryption key for symmetric
encryption algorithm used is NaCl's ‘secretbox’, which consists of the XSalsa20
stream cipher, and a poly1305 message authentication code

4. Append each shard with resulting cipher

5. Distribute n shards to network nodes and store one shard on the originating device
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This allows us to protect device identity from being shared with others over the network
while also allowing the device to be authenticated by other devices on the network.

( . l Authenticated
" Identity / Key ' Encryption
Random Key SSS Shard 1 | == | Cipher

Shard 2 | == Cipher

LS

Shard n ‘+ Cipher

L™

Figure 111.3.1: Execution steps for secure ID contracts

Task 5: Private and Safe Integration

Task 5.1: Design and simulate DER cooperation for private and safe integration with
learning

Learning power flow proxies

DER cooperation strategies require a power flow model to account for how power
injections affect power flows and voltages within a network. However, for distribution
systems, these physics-based models may not always be up-to-date or accurate and
may not be available to the entity that is performing the DER cooperation. To address
this, approximate network models can be learned directly from real world
measurements of power flow quantities and used as a proxy for the physics-based
power flow model in the DER cooperation algorithm.

We first evaluated the accuracy of different data-driven power flow models and then
analyzed their performance when incorporated into grid optimization problems. The
data-driven mapping is between real and reactive power injections and voltage
magnitude and phases in a distribution system. The models evaluated included linear
regression models, piecewise linear models, support vector regression, and several
different neural network models. The results from this analysis were previously reported
in the Design Document for subtask 5.1. While results showed that nonlinear models
can obtain higher accuracy than linear regression models, the accuracy of the linear
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approximations was not significantly worse and was determined to be sufficient for most
applications. Therefore, in the rest of this work, linear data-driven power flow
approximations were used.

Grid Simulation Suite

To evaluate the impact of DERs on network reliability and to verify the performance of a
DER cooperation scheme, we designed a comprehensive distribution grid simulation
suite including five distribution networks (Table 111.5.1). The simulation suite includes
five distribution networks across a range of climates, urban, suburban, and rural areas.
The characteristics of these networks are listed in Table 111.5.1. The simulation suite is
linked to datasets for residential and commercial power consumption and PV generation
and EV charging profiles. The power flow analysis of the networks is performed using
OpenDSS. After intelligently combining the load profiles, DERs, and network
information, the simulation suite runs a power flow study that can be used to quantify
metrics on grid reliability. In our case, we evaluate metrics for the number of grid
upgrades needed to sustain the quantity of DERs estimated to be present in 2050.

Name IEEE 123 lowa Downtown SF | Shore SF Tracy

Type Suburban Suburban | Urban Urban Suburban

Peak Month August July January January August

Location Sacramento, | Ames, IA San Francisco, | San Francisco, | Tracy, CA
CA CA CA

# of nodes 123 240 426 19 162

# of transformers 96 178 171 12 74

% of commercial 9 6 21 100 13

customers

Peak power 4.293 6.104 8.304 8.68 1.626

consumption (MW)

Average daily energy 10.607 36.624 68.746 49.824 11.211

consumption (MWh)

Demand penetration % 23 23 23 23 23

EV penetration % 50 50 50 50 50

PV penetration % 64 33 45 45 64

Storage penetration % 27 14 19 19 27

Table 111.5.1: Characteristics of the various simulated networks. Some networks come from
reference [5.1].

The net load profiles must be assigned to each node of the network to perform the
power flow simulation. The uncontrollable load profiles include a base demand profile
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and rooftop PV generation. The controllable portion is determined by the operation of
each local device controller under their prescribed set of storage or EV charging
constraints. Therefore, the net load includes four components: a base demand profile,
rooftop PV generation, EV charging, and stationary storage operation, each
parameterized by a penetration percentage. The specific penetration values for each of
the four components is based on the year the simulation takes place, which is chosen to
be 2050 for this report. The penetration of rooftop PV generation is defined as the
percent of total energy consumption that is generated by rooftop PV. EV charging
penetration is defined as the percentage of cars in the network that are EVs. Storage
penetration is the percentage of the average daily network energy consumption that can
be stored in stationary storage. The details on how these resources are assigned to
nodes in the network were described in detail in the Design Document for subtask 5.1.
Each node in the simulation suite is assigned a time-of-use (TOU) electricity rate
structure depending on whether it is a residential or commercial node.

Local control with autonomous operation

The main performance metric for subtask 5.1 is to achieve cost savings of >10%
compared with no coordination. Here we focus on cost savings for the grid operator,
which includes the prevention of voltage regulation equipment upgrades and
transformer upgrades. Two metrics are used to quantify the need for these upgrades
after the addition of DERs. The first metric measures the length of time a node has
voltage magnitude deviations of more than +5%. The second metric quantifies the
number of overloaded transformers (greater than rated apparent power for >2 hours).

In this section, we describe a local controller (LC) scheme which is used to determine
the power injection profile of the EV chargers and stationary storage units placed in the
network under no network cooperation. Nodes in the network with an EV charger or
stationary storage unit can measure consumption and generation in real-time and
perform local computations. The LC can control the net load of the customer by setting
the storage or EV charging rate, subject to constraints. The LC at each node makes its
decisions based on forecasts of future uncontrollable net load. The LC algorithm is
operated in a receding horizon fashion where the solution of an optimization problem is
calculated every 15 minutes and the power injection setpoints are sent to the DER to
operate for the next 15 minutes.

The LC optimization was previously described in detail in the Design Document for
subtask 5.1. The objective minimizes the cost of energy and excessive wear on the
battery. The constraints define battery capacity limits, the dynamics of the battery, and
constraints on the charge capacity of each EV at the end of the charging period.

A simulation study was performed on the five networks for their peak load month to
evaluate the number of grid upgrades needed by 2050 under the operation of these
local controllers. Table 111.5.2 shows the hours the network has a voltage violation and
the number of overloaded transformers. Even the highest possible adoption of
distributed storage with intelligent storage and EV charging management is insufficient
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to protect the grid from increased penetration of DERs. All networks need significant
upgrades to accommodate the projected penetration of DERs.

Network Hours of voltage violation Number of overloaded transformers
IEEE 123 55 19

lowa 8 27

Downtown SF 15 32

Shore SF 1.75 5

Tracy 6 15

Table 111.5.2: Results of the power flow simulation study on the five chosen networks.

DER cooperation scheme

We describe a DER cooperation scheme for reducing the number of grid upgrades
required to support the growing penetration of DERs. The scheme includes two layers:
(1) a global day ahead scheduler that calculates power injection bounds for each
customer ensuring voltage and transformer constraint satisfaction and (2) local
controllers for each customer that manage local DERs subject to the global bounds.
This coordination scheme significantly reduces the need for data exchange between the
two control layers and does not require knowledge of DER objectives or detailed DER
data. The architecture is similar one developed in previous work [5.2]. The two layers
communicate values called supply and demand bounds with each other. These values
are estimated for the next day during the day-ahead scheduling phase. Then the LCs
enter the operating phase in which they calculate power injection setpoints for the DERs
under their control. The two phases of the algorithm are shown in Figure 111.5.1.

Demand bounds Supply bounds DER setpoints

LC estimates of Modified demand Determined via local

maximum power bounds which MPC optimization

consumption or satisfy network constrained within

generation for each constraints when the given supply

time period for the followed bounds

next day

( J \ J

! V

Day-ahead scheduling phase Operating phase

Figure I11.5.1: Summaries of the key values communicated between the layers of the
cooperation scheme along with the corresponding phase in which the value appears.

Each day estimated bounds on the maximum power consumption or generation for
each time period and each node in a network are sent to the global controller (GC). The
GC then solves an optimization to determine a new set of upper and lower power
injection bounds for each LC that ensure voltage and transformer constraint satisfaction.
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These modified bounds (supply bounds) are sent back to each LC. Both steps are
completed within the day-ahead scheduling phase of the cooperation scheme. Upon
receiving the supply bounds for the day, each LC enters an operating phase where it
solves a model predictive control (MPC) optimization problem to determine the power
setpoint of each DER. The local optimization minimizes its own objective and deviation
from the supply bounds subject to the DER constraints. The flexible loads considered by
our scheme include EV chargers and battery storage.

Global controller

To coordinate the operation of DERs across a distribution network, limits on the real
power of each customer or node in the network are provided in a day-ahead schedule.
These limits aim to prevent operation that will harm the distribution grid voltages or
transformers. Each node will request to a global controller a range of their expected
maximum and minimum real power consumption or generation for the following day,
which are called demand bounds. Since, the demand bounds may not form an
acceptable operating point for the network, the global controller returns modified
demand bounds for each node. These modified bounds (supply bounds) represent the
range of available supply of power capacity in the network. The global controller solves
an optimization problem to determine the supply bounds at each node for the next day.
The supply bounds are then sent to the local controllers. If each local controller can
confine the power injection of their resources to their assigned supply bounds, the
network constraints will be satisfied under a few conditions (e.g., the linear models from
power injection to voltage and transformer power are accurate).

Local controller with cooperation

Each customer participating in the DER cooperation scheme has a local controller (LC).
The LC is similar to the one described previously but can communicate with the GC
once per day. In this report we consider only storage and EV charging, but other
controllable devices can be included. The LC performs different operations in the day-
ahead scheduling phase and in an operating phase. In the scheduling phase, customers
who participate in the DER cooperation scheme provide the GC with demand bounds in
a day-ahead manner or have the GC select them based on historical data. When using
historical data, forecasts and scenarios of the net load for the next day are predicted for
each node, which are used to calculate the demand bounds. Customers who provide
their own demand bounds can calculate them using a local optimization. During the
operating phase, each LC operates in a rolling horizon fashion. It solves an MPC
optimization problem where the objective is to minimize local costs while remaining
within the supply bounds provided by the day-ahead scheduler. This optimization
problem is nearly identical to the autonomous LC optimization except only a single
forecast of the load is used and the cost function has an additional penalty on the power
consumed above or below the supply bounds. Its minimization allows the LCs to respect
the bounds sent from the GC. The output of this optimization is the battery and EV
charging power setpoint for the next 15-minute period.
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Evaluation of DER cooperation scheme

The results of the DER cooperation experiments for each network are compared to
results from autonomous LC operation in Table 111.5.3. In addition to the two grid stability
metrics, we also compare the percentage increase in electricity costs due to the DER
cooperation scheme. Results show the increase in electricity costs is small at a
maximum of 4% for the Downtown SF network and only 2.6% for the IEEE 123 bus
network. However, the potential cost savings due to reducing the number of grid
upgrades needed to prevent voltage violations and prevent transformers from

overloading is significant. The total hours of time the network has a voltage violation is

reduced by at least 50% for the lowa and Tracy networks and at best 71% for the Shore
SF network. Furthermore, the number of overloaded transformers in the network
reduces by at least 7.4% for the lowa network and at best 40% for the Shore SF
network. When considering the cost savings due to preventing transformer upgrades
alone, the DER cooperation algorithm can provide a greater than 10% benefit over no
cooperation for most networks, thus, satisfying the project metric goal for this task. The
benefits of reducing the need for voltage regulation upgrades further improves the cost
savings for the grid operator.

Network Hours of voltage violation Number of overloaded % increase in
transformers electricity costs
Autonomous LCs | Bounds Autonomous LCs | Bounds
IEEE 123 5.5 1.75 19 15 2.6
lowa 8 4 27 25 3.1
Downtown SF | 15 5 32 26 4.0
Shore SF 1.75 0.5 5 3 3.9
Tracy 6 3 15 12 3.2

Table 111.5.3: Comparison of the simulation results between autonomous LCs and LCs
using the bounds DER cooperation scheme.

Task 5.2: Extend cooperation capabilities to ramping, regulation and black start

Subtask 5.2 focused on extending the cooperation capabilities to ramping, regulation,
and black start. A summary of the performance metrics for this subtask and the
achieved results are shown in Table TIII.5.4.

Metric

Metric goal

Average metric performance

Total cost reduction

>10% compared to

no coordination

11% per consumer (can increase with more storage capacity)

Ramp tracking error

<10%

2.644%

Regulation tracking
error

<10%

6.132%
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Uptime hours during >4 hours of uptime 31.4% of the time. The percentage can increase
>4 hours . ;
blackout with more storage capacity.

This can be achieved by skipping the lowest cost 12.85% of
>10% regulation signals, which leads to a loss in total savings of <1%.
Skipping additional signals will lead to >10% battery lifetime increase.

Battery system
lifetime increase

Table I11.5.4: Summary of metrics for Subtask 5.2

Signal tracking algorithm

The algorithm used for the ramp and regulation signal tracking is an adaptation of the
algorithm presented in [5.3]. The algorithm was previously described in previous reports
for Subtask 5.2.

Simulation Methodology

The simulations performed for subtask 5.2 use the previously described distribution grid
simulation suite and the 2-layer bounds algorithm. The methodology for performing the
simulations is as follows: (1) place DERs across the nodes in the distribution grid, (2)
determine maximum power ramp and regulation signals that can be followed by the
aggregation of DERs at each node with and without bounds, (3) run signal tracking
algorithm for the aggregation of DERs within each node, (4) evaluate impacts on grid
voltages and transformers, cost savings, and signal tracking error.

Four different simulation scenarios are considered: (i) Uncoordinated scenario - signal
following events use the maximum power output of the DERs and occur randomly
throughout the day. (ii) Worst case scenario - The maximum power signal coincides with
extreme grid events, (iii) Bounded signal following scenario - the signal power is limited
such that the DERs will not violate their assigned bounds and events are assigned
when the DERs are idle (not performing arbitrage or grid reliability). (iv) Local cost
minimization only — no signal following events. The scheduling of signal tracking events
for the bounded signal following scenario is a simplification of the process used in [5.4]
where we simply select time periods for events without specifying the type or value of
the event. This means the time periods selected are those in which there are no other
uses for the DERSs.

All four scenarios were run on several networks using the placement of DERs that
correspond to the year 2050. Figure F6 shows the % of nodes in the network with
voltage violations and the % of transformers with overloading at some point in the
simulation. As shown, signal following can cause major reliability issues in the worst-
case scenario. When signal follow events are distributed randomly throughout the
simulation, signal following generally will not cause significantly more issues than
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autonomous local cost minimization. However, bounding the signal following and DER

operation can provide significant improvement in reliability and prevent the worst-case
signal following events.
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Figure 111.5.2: Nodes with voltage violations and overloaded transformers under the
different regulation signal scenarios.

Consumer Cost Savings

When evaluating the potential cost savings of ramp and regulation signal following, we
use PJM clearing prices for ancillary services. To determine the cost savings earned
through signal following, the total signal power capacity for each event is multiplied by
the price. For the Sacramento network with the bounds scenario, the batteries have a
capacity around 3 MWh and the daily EV charging energy is around 4.5 MWh. The total
cost savings over the simulation year from participating in signal follow events was
$56,064 with approximately $25,000 coming from the EV portion and the rest from the
stationary storage. For consumers who own both a stationary storage and an EV
charger, this accounts for approximately a 14% increase in cost savings. From results
from subtask 5.1, it was found that the opportunity cost associated with missed
arbitrage opportunities due following the bounds leads to a loss of cost savings of
approximately 3%. Thus, the total cost savings to the consumer in this scenario is 11%,
which exceeds the metric of >10% for this task.

Ramp and Regulation Signal Tracking

Next, ramping and regulation signal following accuracy are evaluated in the Sacramento
network with the bounds scenario. When all signal tracking events are assumed to be
alternating ramp up and ramp down events, the average tracking accuracy was 2.644%,
which is less than the metric of <10% ramp signal tracking accuracy. When all signal
tracking events are regulation signals, the average tracking accuracy was 6.132%,
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which is less than the metrics of <10% regulation signal tracking accuracy. Figure 111.5.3
shows an example regulation signal being tracking in the Sacramento network.
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Figure 111.5.3: DERs in the Sacramento network tracking a regulation signal (tracking
error of 6.365%).

Uptime Hours During a Blackout

The ability of stationary storage and EVs to provide power during a blackout is limited by
the total capacity of resources connected to the system at the time. We consider the
projections for stationary storage capacity, EVs, and rooftop PV in 2050. When evaluating
the Sacramento network, stationary storage alone is only sufficient to provide power to
the grid for 1.68 hours on average. When including vehicle to grid charging, the availability
of EVs must be considered. Using the EV charging data, we find that only about 15.4%
of EVs are plugged in on average. Although EVs have significantly more capacity than
stationary storage, they have low availability and can only provide an additional 0.78
hours of uptime during a blackout on average. PV reduces the amount of energy needed
by up to 100% depending on the time of day and season. The average 4-hour window
during which there is PV generation reduces the energy needed to be provided by the
stationary storage and EVs by 34.2%, increasing the uptime of the stationary storage and
EVs during a black out to 3.73 hours on average. Additionally, in early morning hours
(12am — 5am), average EV availability is higher at 28.6% and the average power
consumed is much lower at only 64.8%. Thus, the uptime during a blackout from 12am -
5am is 4.83 hours. Other hours have lower EV availability, so have fewer uptime hours.
From the experiments on the Sacramento network, the uptime hours during a blackout of
the stationary storage plus EVs plus solar is greater than 4 hours 31.4% of the time, which
means the metric for >4 uptime hours during a blackout can be met.

Battery System Lifetime

Finally, we examine the impacts of regulation signal following on battery lifetime. Battery
lifetime is generally a function of the number of cycles and the cycle depth of discharge.
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If the depth of discharge is limited to 80%, the primary factor affecting the battery
lifetime is the number of cycles. If we assume the lifetime of a battery ends once it
reaches 20% capacity fade, then the lifetime is approximately 7000 cycles. In the
Sacramento network bounds scenario from subtask 5.1 without any signal tracking, the
average number of cycles per day for the stationary storage was 1.78, leading to a
lifetime of 10.774 years. However, with regulation signal following, the storage units
follow an average of 5.45 hours of regulation signals per day, resulting in 6.58 cycles
per day and an average lifetime of only 2.92 years. Increasing the lifetime by 10%
requires reducing the average cycles per day to less than 5.97, which can be done by
reducing 12.85% of regulation signals. If the value of the regulation signal is
independent of the number of cycles in the regulation signal, we can achieve this goal
by ignoring the lowest profit 12.85% of regulation signals. The trade-off is that the
battery will not be compensated for the skipped regulation signal. Using PJM price data,
we calculated that a regulation signal should only be followed if the compensation is
>$5/MW. This leads to a loss of regulation signal profits of only 5.94% making the total
consumer savings due to regulation signal following drop to 13.17%. By ignoring the
lowest profit 12.85% of regulation signals, which leads to a loss in total savings of <1%,
we can increase the battery system lifetime by 10%, which meets the metric of >10%
battery system lifetime increase.

Task 5.3: Implement and test DER cooperation capabilities

This section focuses on deploying the developed system on a hardware-in-the-loop
(HIL) setup and evaluating algorithm performance using metrics from subtask 5.1 and
5.2. A summary of the completed performance metrics is shown in Table 111.5.5.

Metric Metric goal Average metric performance

Total consumer cost >10% compared to | 11% per consumer. Can increase with more storage
reduction no coordination capacity.

Ramp tracking error <10% 8.99%

Regulation tracking error | <10% 9.27%

Table I11.5.5: Summary of metrics for subtasks 5.1 and 5.2, applied to subtask 5.3

HL simulation setup

The HIL simulations use the distribution grid simulation suite and the 2-layer bounds
algorithm developed and discussed in subtask 5.1 and published in [5.2, 5.6], and the
Bounded Signal Following scenario described for subtask 5.2. A brief overview of the
simulation methodology is as follows: (1) place DERs across the nodes in the
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distribution grid, (2) determine maximum power ramp and regulation signals that can be
followed by the aggregation of DERs located at each node with and without bounds, (3)
run signal tracking algorithm for the aggregation of DERs within each node, (4) evaluate
the cost savings and signal tracking error. The HIL component falls within step (3) of the
simulation methodology, where a single home is replaced with the HIL system. First, the
HIL controller is assigned the portion of the ramp or regulation signal to track, a baseline
power profile, and its cost minimization objective function. Additionally, the HIL
controller has been tuned to its associated device characteristics such as its efficiency
and power operating region. The controller then runs the signal tracking algorithm for
the first time-step in the given signal tracking simulation horizon and sends the power
setpoint to the HIL system. The HIL system will then adjust the power setpoint for the
DER to match that requested by the controller and hold that setpoint for the duration of
the timestep (5 seconds). Finally, the HIL system will measure the device power
injection and SOC if applicable and send the information to the controller, which will
update its signal tracking algorithm and repeat for the next time-step.

The data used for the baseline device power consumption profiles are from real
consumer devices from Pecan Street. The HIL controller was implemented on a
Raspberry Pi, which communicated to either a smart switch for the space heater, large
lights, refrigerator, or a battery inverter. The computation time for the signal tracking
algorithm is <0.03 seconds and the communication delay for the smart switch response
was approximately 0.5 seconds, demonstrating suitability for real time control.

Figure 111.5.4 shows a sample of a ramp down signal being tracked by the space heater
with a fan. Since the space heaters are discrete loads with only on/off capability, the
signal tracking controller splits the ramp signal into a binary series of on and off
commands. This is repeated for the other hardware devices tested in the HIL setup. The
total network simulation includes 13000 other devices that follow similar commands
from the signal tracking algorithm, and the aggregate of these devices and the HIL
power profiles form the total network signal tracking as seen on the right plot in Figure
[11.5.4. The tracking error from the HIL test is compared to an equivalent scenario in the
software simulation to determine the additional error due to the hardware test. This error
is extrapolated to the other virtual devices in the simulation use case to get the
aggregate signal tracking error. Across all hardware devices and tested signals, the
average ramp signal tracking error was 8.99% compared to 2.64% in the software
simulation.

For the regulation signal tracking HIL tests, the signal tracking algorithm also splits the
regulation signal into a series of on/off commands to be followed by the HIL system, and
the rest of the devices proceed similarly. The sources of tracking error are the same as
for the ramp signal tests. Across all hardware devices and tested signals, the average
regulation signal tracking error was 9.27% compared to 6.13% in the software
simulation.
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Figure 111.5.4: Left — HIL system tracking signal and space heater with a fan power
profile. Right — Aggregate network ramp down signal tracking.

The cost reduction for the consumers in the network is based on energy cost savings
from arbitrage on the TOU electricity tariff. For energy arbitrage, the maximum cost
reduction is achieved by charging all DERs to their maximum capacity before the peak
price period and discharging fully during the peak price period. As long as the energy is
charged and discharged over this period, the exact signal accuracy does not impact the
cost savings. Thus, the signal tracking error introduced by the HIL setup does not
noticeably impact the total consumer side cost reduction, which is still 11% on average.

Task 6: Scalable Distributed Privacy for Information and Energy Exchange

Weft follows the same security model as Prio.! The resource operator has a server,
responsible for controlling the energy resource and sending commands to it. There is at
least one additional server, operated by a third party, e.g., the Internet Security
Research Group (ISRG)?. Weft assumes the third party does not collude with the
resource operator. This is a practical assumption, as organizations such as the Internet
Security Research Group provide this as a service. For example, in a deployment of
secure aggregation used for COVID-19 exposure natifications, the servers were
controlled by the NIH and ISRG. The clients know their own requests and the state of
their partition of the energy resource, but they should not learn any information about

1 Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. CoRR, abs/1703.06255, 2017.

2 Introducing isrg prio services for privacy respecting metrics.
https://www.abetterinternet.org/post/introducing-prio-services/, Nov 2020.
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other clients. The servers should learn whether each request is valid and the sum of the
power across all client’s requests, but no other client information. Weft assumes that the
clients and servers communicate over authenticated, encrypted channels.

The clients know their own requests and the state of their partition of the energy
resource, but they should not learn any information about other clients. The servers
should learn whether each request is valid and the sum of the power across all client’s
requests, but no other client information. Weft assumes that the clients and servers
communicate over authenticated, encrypted channels.

Servers are trusted for request integrity, meaning they will not modify client requests.
However, servers are untrusted for request privacy, meaning they may try to learn
information about client requests. This information may be from the request itself, by
relating different requests, from the timing of requests, etc. Clients are trusted for
neither integrity nor privacy; they may attempt to learn other client’s information or
submit malformed requests.

Like prior work on secure aggregation in the non-colluding third-party model, Weft uses
secret sharing to preserve client privacy, following the standard share-aggregate-reveal
paradigm in Prio. A client submits a power request by splitting the request into secret
shares and sending one share to each server. Using the additive homomorphism of the
sharing scheme, the servers aggregate the shares of different clients, hiding the client’s
private data in the sum. The resource operator recombines the aggregated shares to
learn the true aggregate.

Standard RESTful APIs for energy resources allow clients to control a resource by
setting its charge/discharge value. This value replaces the prior one. While this can be
achieved with secret shares (simply cache values and reaggregate on a new value), it
leaks information and therefore violates privacy. Whenever a request comes in from a
client, the resource operator sees how the aggregate changes and can compute how
the client’s request changed.

To avoid this information leak, Weft encodes requests as schedules, an array of power
values, similarly to prior work.2 Each element in the schedule specifies the value for a
time interval. The energy resource defines this interval and the length of a schedule. For
example, a schedule with an interval of one minute and a schedule of one day would
consist of 1,440 values. Shortly before the start of each epoch, a client sends its
schedule for that epoch. The client generates a secret share of its schedule by secret
sharing each value. Schedules do not leak information because they decouple changes
from the timing of messages, and can be aggregated by the servers element-wise. To
ensure the client request is valid, the servers must check two things: a rate constraint

3 NanWang, Sid Chi-Kin Chau, and Yue Zhou. Privacy-preserving energy storage sharing with
blockchain and secure multi-party computation. CoRR, abs/2111.02005, 2021.
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and an integral constraint. More formally, for some minimum (possibly negative) rate n,
some maximum rate m, and a maximum usage e, these constraints over a schedule S
are:

1. Rate Constraint: n < S[i]<mforall0 <i <|S|.
2. Integral Constraint: 0 < Z{zOS[i] <e forall0<j <|S].

The minimum rate, maximum rate, and maximum usage may all be different values for
each client, and we assume that they are known to the servers and resource operator.

To ensure that client requests are valid, the system uses zero-knowledge range proofs
over secret shared data and their integrals. The client constructs zero-knowledge proofs
over their schedule S, which proves that S satisfies both the rate and integral
constraints. They send the proofs to the servers, who jointly verify them over their secret
shares. If the proofs are valid, the servers are convinced that S satisfies both
constraints. If any proof is invalid, the servers reject S.

Zero-knowledge proofs

There are three techniques for the proof. The first proof is based on bit-splitting. This
type of proof can be extended to support arbitrary ranges. The size of these proofs is
dominated by the bits being sent, because Prio requires them to be encoded as a 32-bit
value. Empirically, we find that sending 100,000 16-bit values requires ~6.4 MB of data
sent from the client to each server.

The second proof is based on sorting and can decrease the amount of client to server
communication when sending large power schedules with smaller values. The client first
creates a second version of their schedule, by appending all values from 0 to 2°, and
sorting. The client sends the encoded version of their original schedule, and this
modified version, to the servers. They also send a proof that the two schedules are
equivalent, and that the second schedule is correctly sorted. The servers check these
proofs and reveal the first and last value in the sorted schedule. If these values are 0
and 2, all the values must be in range. For this proof technique to be efficient, the bit-
width of the values must be small, and the size of the schedule must be large.
Empirically, we find that sending 100,000 16-bit values requires ~3.0 MB of data sent
from the client to each server.

The third technique is an extension of techniques from another work called Prio+.
However, this requires extra computation and communication between the servers to
convert each bit back into a 32-bit value so the Prio proofs can be verified. This reduces
client to server communication to ~1.9 MB but incurs ~6 MB communication cost
between the two servers.

Results
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Using the three proof techniques, Weft can support clients with limited computation,
limited memory, or limited communication. We measure client costs on a desktop-class
machine as well as a microcontroller-based embedded system. We measure server
costs on only the desktop.

The embedded system has an nRF52840 microcontroller, a system-on-a-chip (SoC)
integrating a 64 MHz 32-bit Cortex-M4 microcontroller with a Bluetooth 3.0/802.15.4
radio [5]. The system has 1MB of flash for code and 256kB of RAM. The desktop has an
Intel i19-129000KF processor with 8 performance and 8 efficiency cores. Each
performance core can run at up to 5.2GHz. The system has 30MB of shared L3 and
14MB total L2 cache. Main memory is DDR4-3200.

The primary variable we manipulate is the schedule size, in terms of number of values.
Larger schedules can cover longer periods of time or have finer time resolution. A 1,440
element schedule covers a day at 1 minute granularity; an 5.760 element schedule is
every 15 seconds, while 86,400 is every second.

To prove a schedule with 10,000 elements, the sorting strategy uses a peak of 2.4MB of
RAM, the bit-splitting strategy uses 191kB. Figure 3b shows that commitment proofs
require 524MB of RAM for the same schedule. Bit-splitting is the most RAM-efficient
approach, using only 8% the RAM of sorting and 0.04% the RAM of commitment proofs.
The 191kB required for bit-splitting approaches the RAM available on the nRF52840. In
practice, its 256kB has to be shared between applications, the kernel, and networking
stack. In our execution environment, an application is limited to 96kB of RAM. This is
sufficient to prove a 4,000 element schedule, so a day-long schedule with an interval of
22 seconds. A 1,440 element schedule uses 45kB.

Peak memory has stepwise growth. For commitment proofs, this because of a
requirement that the number of proofs being aggregated is a power of two. For the bit-
splitting and sorting strategies, this is because libprio internally uses power of two sized
Fast Fourier transforms (FFTs).Bit-splitting’s bumps are smaller because the FFT for a
schedule size n scales with Vn from the G-gate optimization.*

A Prio-based system can prove the validity of a 10,000 element schedule with the bit-
splitting strategy in 0.36 seconds. Using the sorting strategy, it can prove the same
schedule in 0.09 seconds. Server verification of the two Prio-based proofs strategies
takes 0.085 and 0.065 seconds respectively. Proving time generally scales linearly,
though there are some jumps when the FFT size goes to the next power of two.

4 Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear pcps. Cryptology ePrint Archive, Paper 2019/188, 2019.
https://eprint. iacr.org/2019/188.
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Using commitment proofs (Figure 4b), the most computationally intensive approach, a
client can prove the validity of its schedule in 73.59 seconds, while it takes a server 9.99
seconds to verify the proofs. Unlike bit-splitting and sorting, which scale smoothly,
commitment proofs have a step function. This is because of a Bulletproofs requirement
(which commitment proofs extends) that aggregated proofs are a power of two; the step
function is when the number of proofs bumps to the next power of 2.

These schedules are huge: with 1m intervals, 10,000 elements is 6.94 days. For a one-
day schedule with 1m intervals, a client takes 0.027 seconds to prove with bit-splitting
and 0.011 seconds to prove with sorting. A server takes 0.004 seconds to verify these
proofs.

A schedule of 1,440 elements takes 66s to compute for a bit-splitting client running as a
Tock process on the nRF52840 microcontroller, while a maximum-sized schedule of
4,000 elements takes 4.5 minutes; as the schedule is for a day, this is an acceptable
cost. A microcontroller-based embedded client has sufficient resources to generate
proofs for schedules using Prior and the bit-splitting strategy.

Commitment proofs are the most communication efficient strategy, sending 41.5 KB for
a schedule of 10,000 values. This is close to optimal — the values in the schedule
themselves require 40 KB of data. For a 1,440 element schedule, commitment proofs
send 7.1kB. The sorting strategy requires 0.66 MB for a 10,000 element schedule and
159kB for a 1,440 element schedule. The bit-splitting strategy, which can execute on an
embedded microcontroller, requires the most communication. It sends 1.13MB for a
10,000 element schedule and 183kB for 1,440 elements. Sending a private schedule
once a day is too expensive for LPWAN protocols such as LoRaWAN, but NB-loT or
LTE-M could support it and short-range protocols such as WiFi or Thread could easily
support it.

The sorting strategy’s communication cost has a step function due to the FFT size
scaling to the next power of two. Bit-splitting and commitment proofs do not see this
behavior because the communication cost is dominated by the secret shares of the data
they transmit (bits and values), which scale linearly with the schedule size.

Task 7: Use Cases

The overarching approach used for Task 7 encompassed three steps: 1) examining
academic literature to identify potential use cases, 2) collaborating with the Task 2 team
to refine use cases as they were tested, and 3) discussing with industry partners about
their most relevant needs for DERSs.

In the literature, the idea of a community battery or shared DERs appeared as a way for
all community members to benefit from DERs [1]. BAL, our virtualization software, can
readily support this use case. However, BAL’s real advantages lie in satisfying
additional system needs such as flexibility and adaptability. If a collection of batteries
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grows, or a battery suddenly goes offline, BAL can adapt to this new situation since it
virtualizes all system components.

After implementing the virtualization software in Task 2, including demonstrating
aggregation, partitioning, and dynamic partitioning use cases in a physical system, we
began to refine the use cases to satisfy specific objectives. We first prioritized the
objective of utilizing DERs for cost minimization of electricity bills for individual
homeowners and a collective of homeowners. Once we had implemented that
algorithm, we added to that objective by beginning to consider protecting neighborhood
transformers using battery aggregation.

To finalize the list of use cases, we discussed with collaborators such as VMware, the
US Navy, and PG&E. These groups emphasized the need for reliable, resilient, and
shareable DER systems. Specifically, VMware’s campus microgrid has an “islanding”
mode, in which the battery must serve critical loads first and shed expendable loads
when the microgrid was isolated. We met this need by developing a use case that
partitions the battery into separate sections each meant for a specific type of load,
sorted by priority.

Overall, for Task 7, we leveraged literature, academic, and industry sources to

formulate our use cases, and we were able to iterate on the cases once we tested them
in Task 2.
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IV. Accomplishments and Conclusions

Task 2: Resource Virtualization
Our major accomplishments under Task 2 are:

e Demonstrating it is possible to virtualize battery energy storage systems by
aggregating and partitioning them,

e Developing, evaluating, and testing the algorithms and policies for how aggregate
and partitioned batteries behave,

e Releasing an open-source implementation of the Battery Abstraction Layer that
can control both local (e.g., through a direct BMS interface) and Internet-
connected batteries (e.g., through a RESTful web API), and

e Demonstrating how battery virtualization and the BAL can build new, flexible use
cases for battery energy storage, including cost savings and protecting
transformers from EV charging.

Together, these satisfy the objectives for the task. The Battery Abstraction Layer has
been designed and implemented. The Battery Abstraction Layer was deployed on a
battery testbed including both in-use residential batteries and batteries in lab settings,
demonstrating new use cases for battery systems. Finally, we have demonstrated how
the Battery Abstraction Layer can be integrated with solar charging, using batteries to
protect local transformers from EV charging spikes. The completion of this final
objective is described in a submitted manuscript, titled “Extending Transformer Lifetime
with Distributed Battery Control”.

Task 3: Secure ID for Asset Authentication

We have developed a system architecture of Secure 1D, which is a set of protocols,
algorithms, distributed identity store, smart contracts, and off-chain API endpoints that
together enable distributed identity management while preserving privacy of nodes
participating in the distributed network. Each device that intends to have a Secure ID
credential must do so by running as a node on the Secure ID’s blockchain network. As a
participating node on the blockchain, the device has access to an off-chain API that
allows it to invoke smart contracts that perform various identity-related operations on the
network, most notably identity verification (based on Keychecker). The current work is
developed on Ethereum test network with smart contracts implemented in solidity
programming language. Figure 1V.3.1 shows various components (system architecture)
of the Secure ID system:

1. Command line interface
The edge device interacts with Secure ID via a command-line interface that
communicates with the network via a collection of off-chain APl endpoints.
2. Consent and Control API
When building a decentralized self-sovereign identity, consent must be
incorporated into the system. This ensures whether identity data will remain
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private or not. Through deliberately designed consent, each transaction of
identity data (represented by an API invocation request) will only be executed
with the edge devices’ consent. This creates full device autonomy—in which they
will have full control of where and how their identity data is shared or exchanged.
The consent and control API offers basic identity management system operations
such as registration, deregistration, and verification. Consent and control layer is
designed to demonstrate how fundamental identity operations can be executed
while maintaining identity sovereignty. The API layer is not designed to
comprehensively support all identity-related operations.

. Serverless functions
API requests from Consent and Control API are dispatched to a layer a
serverless functions that act as proxy for smart contract functions on the Secure
ID blockchain.

. Smart Contracts
Identity verification, registration, and deregistration are implemented as smart
contracts. Smart contract function layer is a code-based implementation of the
Keymaker algorithm.

. Event Log DB
All events in the off-chain system are logged in an Event Log DynamoDB for
troubleshooting and forensic purposes.

Secure ID System Architecture
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Figure 1V.3.1: Secure ID System Architecture

Task 3.4: Lab testing of the Proof-of-Concept

We implemented the above architecture using AWS cloud resources and a Raspberry
Pi microcontroller. We deployed Keymaker and Keychecker smart contracts on 4x
Elastic Cloud Compute (EC2) instance with each instance emulating a DER asset
alongside a Raspberry Pi 4 microcontroller that acted as a proxy for Sonnen Battery
installed in SLAC Gismo Lab. Each of these nodes ran as a node on a Hyperledger
Fabric (HLF) Test Network. 3 of the 5 nodes ran as verifiers. One node served as an
orderer enabling “ordering service” of HLF, which literally orders transactions into blocks
so the peer nodes can then validate and commit it to their ledgers. One Certificate
Authorities (CA) node to connect the whole network via certificate's chain of trust. Each
of the peer nodes had its own Couch DB instance for data persistence. The composition
of the HLF testnet is listed below:

Deployed Hyperledger Fabric (HLF) Testnet

* 5 nodes (1x Raspberry Pi 4, 4x EC2 Instances)

+ 3 verifiers (3x EC2 Instances)

» 1 orderer node (1x EC2 Instance)

* 1 CA node (1x EC2 Instance)

» 5 Couch DB Instances (1 for each of the 5 nodes)

The test comprised of running the following Smart Contracts in the environment detailed
above:

Contract Name Purpose Number of Runs

Provision_Identity | Created the identity key-pair 5 (one identity key pair for
without any association to a given | each peer on the HLF
device network)

Keymaker Assigns an identity key-pair to a 5 (one identity key pair
given device and performs key associated with each peer
sharding using the Keymaker on the HLF network)
protocol

Distribute Shares 4 shards per key across 5 (shards distributed for
the network each peer on the HLF

network)

Keychecker Collects 3 shards per verification 300 (60 verification runs
request and performs identity for each peer on the HLF
verification using the Keychecker network)
protocol

Table IV.3.1: Environment for lab testing of the proof-of-concept of secure ID
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Running 300 executions of the Keychecker smart contract resulted in several notable
outcomes. First and foremost, the smart contract was able to accurately verify the
identity of each device involved in the executions, without any instances of false
positives or false negatives. This suggests that the contract is highly reliable and
effective at its intended purpose. Additionally, the executions were completed quickly
and efficiently, with minimal delay or error. We observed an average execution time of
2.67 seconds for the Keycheker protocol and an average latency of 5.48 seconds
indicating that the smart contract is well-designed. Given this was meant to serve as a
proof-of-concept for the Secure ID system, we did not run stress tests to demonstrate
how the system performs as we scale up the number of device. Overall, the results of
these executions demonstrate the feature-completeness of the Secure 1D system and
how it may be used to in real-world environments allowing DERs and utility-owned grid
assets to communicate securely over a decentralized and untrusted network.

Task 5: Private and Safe Integration

Subtask 5.1 focused on the design and validation of a DER cooperation scheme which
ensures network reliability. To evaluate the impact of DERs on network reliability and
validate the proposed coordination scheme, a grid simulation suite was designed. This
grid simulation suite combines distribution system simulation in OpenDSS with datasets
for residential/commercial power consumption, PV generation, and EV charging profiles.
This simulation suite allows us to evaluate metrics for the number of grid upgrades
needed to sustain future quantities of DERs under different scenarios.

A DER coordination scheme was designed to reduce the number of grid upgrades
needed to support the growing penetration of DERs. The coordination scheme
incorporates a global day ahead scheduler which ensures that voltage and transformer
constraints are respected, and local controllers for managing local DERs. Data-driven
proxies of the power network model were used in the DER coordination scheme. The
proposed coordination approach was compared to a scenario with no coordination,
showing a greater than 10% benefit in terms of the avoided costs of transformer
upgrades.

Subtask 5.2 focused on extending the coordination capabilities to ramping, regulation
and black start applications. A signal tracking algorithm was designed for ramping and
regulation. For ramping signals, the average signal tracking accuracy of the proposed
approach was 2.6%, and for regulation signals the accuracy was 6.1%, exceeding the
task goals of <10% signal tracking accuracy. Results also show an average cost
savings for the consumer of 11% from signal following (which can improve with
additional storage capacity). For black start capabilities, we investigated how stationary
storage, EV chargers and rooftop PV can provide the grid with power during a blackout.
We find that the uptime hours during a blackout of the stationary storage, EVs, and PV
is greater than 4 hours 31.4% of the time, which means the project metric for >4 uptime
hours during a blackout can be met. Finally, we examined the impacts of regulation
signal following on battery lifetime. Results show that battery system lifetime can

45



improve by 10% by ignoring a certain fraction of regulation signals which provide the
least profit.

Subtask 5.3 focused on testing the proposed system on a hardware-in-the-loop (HIL)
setup using the same performance metrics from subtask 5.1 and 5.2. The HIL controller
was implemented on a Raspberry Pi, which communicates with different hardware
devices. Across all hardware devices and tested signals, the average ramp signal
tracking error was 8.99% compared to 2.64% in software simulation, and the average
regulation signal tracking error was 9.27% compared to 6.13% in simulation. In both
cases, results satisfy the performance metric objectives for this task.

Task 6: Scalable Distributed Privacy for Information and Energy Exchange

Wetft is a cryptosystem that provides distributed privacy for a shared battery energy
system. It builds on the ideas in Task 2, providing privacy mechanisms for a partitioned
battery. Using modern cryptographic techniques, Wetft is able to provide strong privacy
guarantees to clients. Using Weft, the controller of a partitioned battery learns that each
client’s request is valid, the sum of their requests (the actual power output of the
battery), and the sum of their battery partitions (the actual energy capacity of the
battery).

This privacy has limitations; for example, if the battery is discharging at its maximum
rate, the owner knows that every partition is discharging at its maximum rate. Similarly,
if the battery is fully charged, the owner knows every partition is fully charged. This
information leakage is fundamentally unavoidable, as the owner must generate
commands to its own battery. Therefore, Weft meets the Client Privacy objective as
stated in the Objectives section for Task 6.

Using zero knowledge proofs, Wetft is able to verify that values provided by clients are
valid and correct without learning their values. It meets the Server Integrity objective.

Weft demonstrates how very lightweight, modern cryptographic mechanisms can be
used to provide private and sound control of a shared battery resource. The privacy
component of Weft — additive secret shares — is trivial computationally. Its overhead is
entirely from its need for proofs across those private values. Weft meets the
computational efficiency objective.

Task 7: Use Cases

The accomplishments for Task 7 included compiling a list of relevant use cases for
DERs and forming an industry advisory board. The industry advisory board had
members from various universities as well as a variety of companies: VMware, Hitachi,
AutoGrid, Siemens, and Nevermore Security. We hosted an advisory board meeting in
which we discussed the most pertinent problems for DER owners. Some takeaways
were that flexibility and privacy are of utmost importance to users. If DERs are shared
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among homeowners, it is crucial that specific homeowners’ data remains secure and
private.

Throughout the work in Task 7, we came to two main conclusions about the nature of
DER operations in the real world. One conclusion stems from our collaboration with
VMware, whose Palo Alto campus contains two 1 MWh batteries, a solar photovoltaic
installation, and the ability to operate independently as a microgrid. Given the campus’
various needs of resiliency, 24/7 carbon-free power, and electricity bill reduction, our
battery abstraction layer (BAL) virtualization software has the potential to help the
company. In spring of 2023, we visited the campus to learn more about the battery and
microgrid operation. One major takeaway from the visit was that when the microgrid
was installed, VMware was promised that it would come with software that would
maintain operation autonomously. However, in reality, a VMware employee must
monitor the system most of the time and reset it after a fault. In addition, the batteries
often discharge during the day and are not utilized to provide carbon free power, which
would best happen by charging via the solar array during the daytime and discharging in
the evening. This conclusion, that physical systems are plagued by reliability issues, is
something that we have focused on in our software implementation.

In addition to industrial needs, we have also identified a second conclusion from the
unique needs of military installations. During the project, we met with members of the
Department of Defense and the Navy to discuss how the Stanford team could assist
with their DER development needs. From this meeting, we learned that the military
bases are committed to decarbonizing but lack the hardware and software expertise to
install microgrids and associated components themselves. They are also deeply
committed to using DERs, and especially batteries, for resiliency both on stationary
installations and for expeditionary forces. We learned that this focus on resiliency is key:
even more so than emissions or cost minimization, military installations need backup
systems to run during a grid outage.

In summary, we have identified that resiliency and reliability are key concerns for both
industry and military partners. Virtualization software can be a critical component in
resiliency efforts. Companies and the military generally will need to use their batteries
for other cost-saving methods instead of just keeping a battery fully charged waiting for
a grid outage. Thus, using virtualization to first aggregate a set of batteries and then
create partitions for resiliency and cost-savings is a useful commercialization pathway.

To meet the objectives of the subtasks of Task 7, we first identified the resiliency and
reliability use cases for our various potential test sites, including VMware and the Naval
Installation (7.1). For 7.2, we formed an industry advisory board and hosted a meeting.
Lastly, for 7.3, we worked with the electric utility company and the Navy to identify
commercialization opportunities. The papers resulting from Task 2 were also outputs of
the work completed in Task 7.3.

Our future work includes continuing to implement the use cases in Task 2, with a focus
on transformer protection. Our use cases have the potential to be a foundation for many
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additional DER implementations in smart grids that include electric vehicles, distribution
grid resiliency, and flexible loads.
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APPENDIX A: Product or Technology Production

Task 2: Resource Virtualization
Publications

https://sing.stanford.edu/site/publications/100 (Software defined grid energy storage)

Software code

https://github.com/Stanford-New-Energy-Systems/BatteryOS

Task 3: Secure ID for Asset Authentication
Project Resources

We have created a repository of additional resources to share code, documentation, and
demo of the Secure ID system.

https://github.com/orgs/Secure-ldentity/repositories

Iltem URL

Github Organization for https://qgithub.com/orgs/Secure-ldentity/repositories
Secure-ID

Hyperledger Fabric Network v1 | https://github.com/Secure-

(single DB instance for all Identity/HyperledgerFabricNetwork

peers)

Hyperledger Fabric Network v2 | https://github.com/Secure-ldentity/HLFNetwork-V2
(separate CouchDB instances
for each peer)
Implementation of Keymaker https://github.com/Secure-Identity/keymaker
protocol in Go Lang
Handoff documents including https://github.com/Secure-ldentity/TrustDER-
architecture diagrams, videos, | handoff

project poster, presentations,
and technical documentation
Overview of Secure ID (video) | https://www.youtube.com/watch?v=9XgmZtdISBQ
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https://github.com/Secure-Identity/TrustDER-handoff
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Task 5: Private and Safe Integration
Publications

Navidi, T., El Gamal, A., & Rajagopal, R. (2023). Coordinating distributed energy
resources for reliability can significantly reduce future distribution grid upgrades and
peak load. Joule, 7(8), 1769-1792.

Navidi, T., Gamal, A. E., & Rajagopal, R. (2023). Coordination of DERs for Grid
Reliability via Day-ahead Demand-Supply Power Bounds. arXiv preprint
arXiv:2307.00188.

Navidi, T. (2023). Coordination of Distributed Energy Resources for Distribution Grid
Reliability (Doctoral dissertation, Stanford University).

Task 6: Scalable Distributed Privacy for Information and Energy Exchange
Publications

https://sing.stanford.edu/site/publications/104 (Privacy-Preserving Control of Partitioned
Energy Resources)

Software code

https://github.com/emlaufer/battery-privacy

Task 7: Use Cases
Publications

Sonia Martin, Obi Nnorom, Oskar Triebe, Liana Patel, Philip Levis, and Ram Rajagopal.
2022. Software defined battery-solar systems: poster abstract. In Proceedings of the 9th
ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation (BuildSys '22). Association for Computing Machinery, New York, NY,
USA, 291-292. https://doi.org/10.1145/3563357.3567750

Sonia Martin, Nicholas Mosier, Obi Nnorom, Yancheng Ou, Liana Patel, Oskar Triebe,
Gustavo Cezar, Philip Levis, and Ram Rajagopal. 2022. Software defined grid energy
storage. In Proceedings of the 9th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation (BuildSys '22). Association for
Computing Machinery, New York, NY, USA, 218-227.
https://doi.org/10.1145/3563357.3564082
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