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H I G H L I G H T S

∙ Proposes protecting residential transformers by aggregating home battery systems.

∙ Joint optimization of batteries can reduce transformer aging by 48 %.

∙ Joint optimization also reduces costs compared to individual optimization.

∙ Battery virtualization achieves these gains with 75 % battery sharing.
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A B S T R A C T

Residential electric vehicle charging causes large spikes in electricity demand that risk violating neighborhood 

transformer power limits. Battery energy storage systems reduce these transformer limit violations, but operating 

them individually is not cost-optimal. Instead of individual optimization, aggregating, or sharing, these batteries 

leads to cost-optimal performance, but homeowners must relinquish battery control. This paper leverages vir-

tualization to propose battery sharing optimization schemes to reduce electricity costs, extend the lifetime of a 

residential transformer, and maintain homeowner control over the battery. A case study with simulated home 

loads, solar generation, and electric vehicle charging profiles demonstrates that joint, or shared, optimization 

reduces consumer bills by 56 % and transformer aging by 48 % compared to individual optimization. Hybrid 

and dynamic optimization schemes that provide owners with autonomy have similar transformer aging reduc-

tion but are slightly less cost-effective. These results suggest that controlling shared batteries with virtualization 

is an effective way to delay transformer upgrades in the face of growing residential electric vehicle charging 

penetration.

1. Introduction

Increasing residential electric vehicle (EV) penetration can harm 

distribution transformers [1]. Since utility companies chose many 

transformer sizes before widespread installation of residential EV 

chargers, high peak power from charging can lead to capacity violations 

and consequently, transformer aging [2–4]. This rapid aging forces 

expensive and time-consuming transformer upgrades [5]. As of 2023, 

distribution transformer prices in the U.S. have more than doubled, and 

the installation wait time exceeds one year [6]. As more EV chargers 

are installed in neighborhoods with limited transformer capacities, it

is in the utilities’ best interest to implement techniques to prolong 

transformer lifetimes instead of upgrading these assets [7].

While controlling EV charging can help reduce peak loads and 

protect transformers [1,5,8–13], drivers may not respond perfectly 

to charging control signals, which risks unplanned transformer limit 

violations [14]. Instead, controlling stationary distributed energy re-

sources, such as stationary battery energy storage systems (BESSs), offers 

a solution to protect transformers that is decoupled from drivers’ charg-

ing behavior [15,16]. For example, a homeowner with a BESS can take 

advantage of excess solar photovoltaic energy generated to charge the 

BESS and then discharge it during an EV charging session to offset peak
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demand. With this type of peak shaving, BESSs not only reduce peak 

power costs but also mitigate the large power spikes from EV charging 

that can harm transformers.

Many studies on BESSs co-located with EVs focus only on control-

ling a single BESS, with control objectives ranging from transformer 

protection [17,18] and cost minimization [19] to voltage control [20]. 

However, a single centrally controlled BESS does not account for indi-

vidual homeowner needs if implemented in a residential neighborhood 

or distribution network [21]. In regions with frequent power outages or 

high peak prices, a homeowner buying into a BESS system may want to 

retain autonomy over their BESS to maintain reserve power.

Especially in communities, combining, or aggregating, multiple BESS 

units creates shared infrastructure from which entire neighborhoods can 

benefit [22–25]. Aggregation can increase both BESS utilization and 

decrease consumer costs: correctly sized shared systems that take into 

account solar and EV system sizes [26,27] have been shown to increase 

utilization by over 35 % and decrease costs by over 10 % [28–31].

However, similar to single BESS control, these aggregated systems 

are often static. Once a set of batteries is shared, it cannot easily be re-

verted back to individual control, and vice versa. With unpredictable 

outages, loads that change seasonally, and variable EV charging pat-

terns, a static aggregation scheme may be suboptimal. In such a system 

where adaptability is crucial, there is no consensus on how exactly BESSs 

should be split among homeowners and how this split should change 

over time.

Battery virtualization is a new approach that simplifies operation and 

allows for more flexibility in the battery setup in the face of variable grid 

conditions. Virtualization provides an abstraction of a virtual resource 

that is equivalent to an underlying physical resource [25,32–34], hiding 

complexities of the physical resource and making it easier to interact 

with it. Battery virtualization involves treating each physical battery as 

an abstract entity that can be partitioned into separate parts or aggre-

gated with other abstract, or software defined, batteries. For example, a 

group of homes in a neighborhood can use virtualization to combine all 

of their physical batteries and treat them as a single aggregate battery. 

Virtualization also enables a hybrid aggregation approach, in which an 

owner can maintain control of one battery partition while contribut-

ing another partition to a shared aggregate. If constituent batteries are 

added or drop offline [25,32], virtualization recalibrates without in-

terruption. Lastly, virtualization helps the system adapt to seasonality 

changes and uncertainty in forecasts when running a model predictive 

control (MPC) scheme for BESS control [20,35–38].

Prior work has explored BESS aggregation [22–25] and cost mini-

mization techniques [19] separately. Combining these two approaches 

can help protect transformers in the face of increased EV adoption. 

Flexible and dynamic BESS sharing as well as aggregation schemes al-

lowing homeowners to retain autonomy over part of their BESS have not 

yet been investigated for this purpose.

This paper explores how BESS operators can leverage virtualization 

software [32] to seamlessly control a set of aggregated residential BESSs 

to both minimize costs and mitigate transformer loss of life while main-

taining homeowner autonomy. In contrast to existing work that utilizes 

static, aggregated BESSs for transformer protection, we compare the per-

formance of multiple static and dynamic aggregation schemes in a case 

study with simulated load and EV data. Lastly, we test the sensitivity of 

the algorithm to imperfect forecasting by implementing an MPC scheme 

and analyzing results across seasons.

We find that introducing flexibly aggregated BESSs reduces expen-

sive transformer upgrades and decreases operational costs. Our proposed 

algorithms are useful for homeowners, energy aggregators, and utilities 

aiming to avoid these transformer upgrades, decrease electricity costs, 

and increase BESS utilization within a residential neighborhood. These 

cost reductions enable more widespread BESS and EV charger installa-

tions, paving the way for cleaner light-duty electric transportation.

This work makes the following contributions:

• Optimization schemes enabled by virtualization for a group of BESSs

to reduce costs and transformer aging by sharing the batteries,

• A “hybrid” optimization scheme that flexibly combines individual

and joint (shared) control using virtualization,

• A “dynamic” optimization scheme that leverages virtualization to

dynamically balance individual and joint control,

• Identification of the best battery sharing fraction to simultaneously

reduce costs and maintain homeowner autonomy, and

• Analysis of each scheme under imperfect forecasts, with variable

pricing schemes, across seasons, with varying EV penetration, and 

considering battery aging.

The paper is organized as follows: Section 2 explains the optimization 

schemes, Section 3 describes the transformer model, and Sections 4 and 

5 present simulation results. Section 6 discusses the implications of these 

results while Section 7 outlines future work.

2. Control algorithms

This section discusses the optimization strategies, controller, system 

sizing, forecasting, and electricity cost structure. We consider a setting 

where a collection of homes in a neighborhood has solar systems, EV 

chargers, residential BESSs, and various home loads. Fig. 1 displays 

these components for two homes, connected to the distribution grid 

via a transformer. This work analyzes the homes downstream of one 

residential transformer. We assume that solar generation and all loads 

are fixed (i.e., no flexible demand) and that each home’s battery is 

controllable.

We compare five different battery optimization schemes to demon-

strate the effects of virtualization on cost and transformer aging:

• Individual optimization assumes that each home in a neighborhood

has its own battery that it controls to minimize its individual cost,

• Individual optimization with uneven transformer allocation is

similar to the first scheme but allows homes to have an uneven limit 

allocation instead of distributing the limit evenly,

• Joint optimization controls all of the batteries in a neighborhood

as if they were a single aggregate battery,

• Hybrid optimization blends the individual and joint schemes,

and

Fig. 1. Diagram of a residential power system. A set of homes, connected to the 

grid under a single transformer, contains home loads, solar panels, a battery, and 

an EV charger. Each of these loads is connected to the transformer via a circuit 

breaker. The model predictive controller determines the battery’s output.
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• Dynamic partitioning optimization builds on the hybrid scheme

by adding dynamic partition values between retained and shared 

portions of the battery.

We describe the schemes below, with variables listed in Table 1.

Table 1 

Algorithm variables.

Symbol Variable name

𝑛 Number of homes

𝑡 Timestep

𝑇 Total number of timesteps

𝜆 Transformer violation penalty weight

𝐾 Nominal transformer limit [kW]

𝛼 (Dis)charging penalty weight

𝜂 One-way battery efficiency

Δ𝑡 Timestep duration [h]

𝐸 max Maximum battery capacity [kWh]

ℎ Hours between change in partition weights 

𝑇MPC Number of timesteps per MPC iteration

𝐵dischg max , 𝐵chgmax ∈ R 

+ Maximum battery (dis)charge power [kW] 

𝐁dischg 

 ,𝐁chg ∈ R 

𝑇×𝑛 Battery (Dis)charge power [kW]

𝐌 ∈ R 

𝑇×𝑛 Home meter reading [kW]

𝐂 ∈ R 

𝑇 $Electricity cost [ ]
kWh

𝐒 ∈ R 

𝑇×𝑛 Home solar generation [kW] 

𝐋 ∈ R 

𝑇×𝑛 Home load demand [kW] 

𝐄 ∈ R 

(𝑇 +1)×𝑛 Available battery capacity [kWh] 

𝐊𝑈 

 ∈ R 

𝑛 Uneven transformer allocation [kW]

𝐁R,dischg ∈ R 

𝑇×𝑛 Retained discharge power [kW]

𝐁S,dischg ∈ R 

𝑇×𝑛 Shared discharge power [kW]

𝐁R,chg ∈ R 

𝑇×𝑛 Retained charge power [kW]

𝐁S,chg ∈ R 

𝑇×𝑛 Shared charge power [kW]

𝐁R ∈ R 

𝑇×𝑛 Retained net power [kW]

𝐁S ∈ R 

𝑇×𝑛 Shared net power [kW]

𝐖 ∈ R 

𝑇×𝑛 Retained battery fraction

𝐄 

𝑅 ∈ R 

(𝑇+1)×𝑛 Retained battery capacity [kWh]

𝐄 

𝑆 ∈ R 

(𝑇+1)×𝑛 Shared battery capacity [kWh]

𝐙 ∈ R 

𝑇× 𝑇 ⋅Δ𝑡
ℎ Dynamic partitioning transformation matrix

𝐖 

𝐶 ∈
𝑇 ⋅Δ𝑡 

 R 
ℎ 

×𝑛 Dynamic partitioning constant weights 

𝐶batt  Battery capital cost 

𝑁 

cyc Maximum cycles under warranty

2.1. Individual optimization

With individual optimization, each homeowner operates their own 

battery. The neighborhood transformer limit 𝐾 is split evenly amongst 

each of the 𝑛 homeowners, incentivizing each home’s power consump-

tion to remain below 

𝐾
𝑛 . Each homeowner controls their battery to

minimize costs (see tariff information in Section 2.10) while ensuring 

their power consumption does not exceed the individual transformer 

limit. The following convex optimization problem solves for the optimal 

charge and discharge battery output for each home independently:

min
𝐁 

dischg , 𝐁 

chg

𝑛
∑

𝑖=0
𝐂 

𝑇 max(𝐌 𝑖 

, 0) ⋅ Δ𝑡 (1)

(

+
𝑇
∑

𝑡=0

( 

𝜆 max 

( 

𝐌𝑡,𝑖 

− 𝐾
𝑛
, 0 

)2
+ 𝛼

(

𝐁chg𝑡,𝑖 + 𝐁 

dischg
𝑡,𝑖

) 

)) 

(2)

s.t. 𝐌 𝑡 

= 𝐋 𝑡 − 𝐒 𝑡 

+ 𝐁 

chg
𝑡 − 𝐁 

dischg
𝑡 ∀𝑡 ∈ [0, 𝑇 ] (3)

𝐄 𝑡+1 = E 𝑡 − Δ𝑡 

 

𝐁 

dischg
𝑡
𝜂

− 𝜂𝐁chg𝑡 ∀𝑡 ∈ [0, 𝑇 ] (4)

( )

0 ≤ 𝐄 𝑡 

≤ 𝐸 max 

∀𝑡 ∈ [0, 𝑇 + 1] (5)

0 ≤ 𝐁 

chg
 

≤ 𝐵 

chg
max ∀𝑡 ∈ [0, 𝑇 ] (6)𝑡

0 ≤ 𝐁 

dischg ≤ 𝐵 

dischg
max ∀𝑡 ∈ [0, 𝑇 ] (7)𝑡

The objective, Eq. (2), has three terms: the total electricity cost for the 

homeowners in the community, the transformer violation penalty, and

a penalty to discourage the solver from finding solutions in which the 

battery charges and discharges simultaneously (since this is impossible 

in practice). There is no net metering, so the positive values of the meter 

are multiplied by the timestep length and the cost at each timestep in

units of $
𝑘𝑊 ℎ 

.

Eq. (3) constrains the utility meter reading to equal the sum of 

the homeowner’s loads and battery output minus their solar genera-

tion. Eqs. (4)–(7) govern the battery state of charge evolution, capacity 

minimum and maximum, and charge and discharge limits, respectively.

2.2. Individual optimization with uneven transformer allocation

The individual optimization scheme penalizes each homeowner for 

exceeding their equal allocation of the total transformer limit. In prac-

tice, not all homes have the same maximum power draw [39]. This 

uneven allocation scheme optimizes the fraction of the transformer limit 

allocated to each home to account for this variability in maximum home 

power draw.

The scheme has a different objective function and two additional con-

straints not found in individual optimization, as listed in the equations 

below:

min
𝐁 

dischg , 𝐁 

chg

𝑛
∑ 

𝑖=0

 

𝐂 

𝑇 max(𝐌 𝑖, 0)Δ𝑡

+
𝑇
∑

𝑡=0

( 

𝜆 max (𝐌 𝑡,𝑖 − 𝐊 

𝐮
𝑖 , 0) 

2 + 𝛼
(

𝐁chg𝑡,𝑖 + 𝐁 

dischg
𝑡,𝑖

)) )

(8)

(

s.t. 𝐊 

𝐮 ≥ 0 (9)

𝑛
∑ 

𝑖=0
𝐊 

𝐮
𝑖 = 𝐾 (10) 

+ remaining constraints from individual optimization

Eq. (8) shows the updated objective function which replaces 𝐾 in the 

objective with 𝐊 

𝐮 , a vector that represents the transformer limit for each 

home in kW. Next, Eqs. (9) and (10) are added constraints to ensure each 

home has a nonnegative limit and that the sum of these limits over all 

the homes is equal to the nameplate limit 𝐾. These changes allow the 

solver to simultaneously find the minimum cost solution and optimal 

transformer limit allocation.

2.3. Joint optimization

With joint optimization, the homeowners aggregate their batteries 

together using virtualization [32]. The controller manages the aggre-

gated battery to prevent the homeowners’ total power consumption from 

exceeding the transformer limit whenever possible.

The joint scheme allows homeowners to collaborate to protect the 

transformer. Depending on the exact home energy consumption pro-

files, the joint scheme can be advantageous compared to the individual 

scheme: if any given home’s battery is underutilized in the individual 

scheme, another home can use it. The problem is as follows:

min
𝐁 

dischg , 𝐁 

chg
𝐂 

𝑇 max(M𝟏, 0) ⋅ Δ𝑡 +
𝑇
∑ 

𝑡=0

 

𝜆 max ((M𝟏) 𝑡 − 𝐾, 0) 

2

+
𝑛
∑ 

=0
𝛼 

(

𝐁 

chg 

𝑡,𝑖 + 𝐁 

dischg
𝑡,𝑖

))

(11)

(

𝑖

s.t. 𝐌 𝑡 

= 𝐋 𝑡 − 𝐒 𝑡 

+ 𝐁 

chg − 𝐁 

dischg ∀𝑡 ∈ [0, 𝑇 ] (12)

𝐄 𝑡+1 = 𝐄 𝑡 − Δ𝑡 

 

𝐁 

dischg
𝑡
𝜂

− 𝜂𝐁chg𝑡 ∀𝑡 ∈ [0, 𝑇 ] (13)

( )

0 ≤ 𝐄 𝑡 

≤ 𝐸 max 

∀𝑡 ∈ [0, 𝑇 + 1] (14)

0 ≤ 𝐁 

chg
𝑡 

0 ≤ 𝐁 

dischg
𝑡 ≤ 𝐵 

dischg
max ∀𝑡 ∈ [0, 𝑇 ] (16)

≤ 𝐵 

chg
max ∀𝑡 ∈ [0, 𝑇 ] (15)
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The aggregate battery aims to minimize the total homeowners’ cost. 

A given customer might be restricted below their fair share of power 

at certain times but can save money by participating in the aggregate. 

The utility bills the aggregate system as a whole: the first term in the 

objective, Eq. (11), multiplies the sum of all the home meters and the ag-

gregate battery output by the TOU cost vector. Similar to the individual 

optimization scheme, the second term in Eq. (11) penalizes transformer 

limit violations, but here the system is penalized when the sum of the 

homes’ net power and aggregate battery output exceeds the limit, in-

stead of when an individual home’s power peak exceeds its allotted 

limit. A penalty is also included in the objective to discourage the solver 

from choosing to charge and discharge the battery variables simultane-

ously. Eq. (12) constrains each home meter to equal load demand minus 

solar generation. Eqs. (13)–(16) govern the battery SOC evolution, 

capacity minimum and maximum, and charge and discharge limits, 

respectively.

2.4. Hybrid optimization

In the hybrid scheme, each homeowner keeps a certain fraction of 

their battery and gives up the remaining fraction to be aggregated into 

a larger battery. This allows the homeowner to participate in joint op-

timization while maintaining control of some of their battery, e.g., for 

blackouts. These fractions are denoted by 𝐄 

𝐑 and 𝐄 

𝐒 for the retained and 

shared partitions, respectively, and weighted by an input 𝐖 between 0 

and 1. In this scheme, these partitions are fixed for the whole time hori-

zon. Virtualization enables this combination of individual optimization 

and joint optimization by treating the shared partitions as one virtual 

battery and each retained partition as additional virtual batteries.

The objective of the hybrid scheme includes terms for the individual, 

joint, and transformer violation objectives. This balances the home-

owner’s goal to act within their financial interest while also sharing part 

of their battery in the interest of the entire community. The problem is 

as follows:

min
𝐁 

R ,𝐁 

S

𝑛
∑ 

𝑖=0
𝐂 

𝑇 max 

( 

𝐌𝑖 + 𝐁 

R
𝑖 , 0 

) 

⋅ Δ𝑡

+
𝑇
∑

𝑡=0

( 

𝐂 

𝑇 max 

(( 

M𝟏 + 𝐁 

S 𝟏
)

𝑡, 0
)2

⋅ Δ𝑡

+ 𝜆 max 

(( 

M𝟏 + 𝐁 

S 𝟏
)

𝑡 − 𝐾, 0
)2

+
𝑛
∑ 

𝑖=0
𝛼 

(

𝐁 

R
𝑡,𝑖 + 𝐁 

S
𝑡,𝑖

)

)

(17)

s.t. 𝐌 𝑡 = 𝐋 𝑡 − 𝐒 𝑡 ∀𝑡 ∈ [0, 𝑇 ] (18)

𝐁 

R = 𝐁 

R,chg − 𝐁 

R,dischg (19)

𝐁 

S = 𝐁 

S,chg − 𝐁 

S,dischg (20)

𝐄 

𝑅
𝑡+1 = E 

𝑅
𝑡 − Δ𝑡 𝜂𝐁R,chg𝑡 −

𝐁 

R,dischg
𝑡
𝜂

∀𝑡 ∈ [0, 𝑇 ] (21)

( )

𝐄 

𝑆
𝑡+1 = E 

𝑆
𝑡 − Δ𝑡 𝜂𝐁S,chg𝑡 −

𝐁 

S,dischg
𝑡
𝜂

∀𝑡 ∈ [0, 𝑇 ] (22)

( )

0 ≤ 𝐄 

𝑅
𝑡 ≤ 𝐖 𝑡 

𝐸 max ∀𝑡 ∈ [0, 𝑇 + 1] (23)

0 ≤ 𝐄 

𝑆
 

≤ (1 − 𝐖 

 

)𝐸 max ∀𝑡 ∈ [0, 𝑇 + 1] (24)𝑡 𝑡

0 ≤ 𝐁 

R,chg
𝑡 

≤ 𝐖 𝑡𝐵 

chg
max ∀𝑡 ∈ [0, 𝑇 ] (25)

0 ≤ 𝐁 

S,chg
𝑡 

0 ≤ 𝐁 

R,dischg
𝑡 

≤ 𝐖 𝑡𝐵 

dischg
max ∀𝑡 ∈ [0, 𝑇 ] (27)

≤ (1 − 𝐖 𝑡)𝐵
chg
max ∀𝑡 ∈ [0, 𝑇 ] (26)

0 ≤ 𝐁 

S,dischg
𝑡 ≤ (1 − 𝐖 𝑡)𝐵

dischg
max ∀𝑡 ∈ [0, 𝑇 ] (28)

The first term in Eq. (17) mirrors the objective of the individual 

optimization scheme, while the second term is similar to the objec-

tive for joint optimization. The transformer penalty only occurs if the

home loads, solar, and shared battery exceed the limit, i.e., the retained 

portion does not factor into the penalty, giving homeowners complete 

autonomy over it. The constraints here, Eqs. (18) and (21)–(28), are also 

similar to both prior schemes, but they are duplicated for each of the 

retained and shared partitions. The charge/discharge and energy con-

straints ensure each partition is only allotted 𝐖 or 1 − 𝐖 of the power 

and energy limits. Eqs. (19) and (20) set the net battery power equal to 

the charge minus the discharge power for each partition.

2.5. Dynamic partitioning

While the hybrid scheme takes a static value 𝐖, virtualization allows 

for this weight to change over time. For example, if the occupants of 

one home go on vacation for a week then return, it is suboptimal if 

their retained battery fraction remains constant over a whole month. In 

traditional, static optimization, this fraction is fixed over time. However, 

with virtualization, this fraction can be dynamic as the virtualization 

software handles the re-partitioning of the batteries while respecting 

battery power constraints. We test a case in which 𝐖 is allowed to vary 

every two hours. The optimization problem is the same as in the hybrid 

case, with the following additional constraints:

0 ≤ W ≤ 1 (29)

W = 𝐙W 

𝐶 (30)

Eq. (29) restricts 𝐖 to between 0 and 1, while Eq. (30) (using h = 2) 

ensures that 𝐖 can only change once every two hours.

2.6. Model predictive control

While a convex optimization solver can easily solve the above prob-

lems, the battery output is only optimal given perfect foresight of the 

solar, load, and EV charging profiles. In real time operation, these pro-

files are not known. We use moving horizon MPC that updates initial 

values if the system deviates from its forecast. At each MPC iteration, the 

controller solves for the next day given solar and load forecasts and out-

puts the desired battery trajectory. Then, the controller selects the initial 

battery power command and sends this value to the battery. After one 

timestep, the next iteration begins with a new initial battery SOC that is 

read from the battery. This process repeats until the end of the overall 

optimization horizon. With this moving window, the controller corrects 

for changes in the system, either due to deviations between forecasts and 

actual values or experimental factors such as sensor bias or error. In the 

results section, we compare the MPC with a perfect foresight controller, 

which is a one-shot optimization over the entire time horizon.

2.7. System sizing

In simulation, we model the batteries as the Tesla Powerwall 2. 

We assume each homeowner owns a single Tesla Powerwall 2 with a 

maximum capacity of 13.5 kWh and a maximum (dis)charge output of 

5 kW [40]. We use a fixed transformer size of 25 kVA as it represents a 

transformer size commonly found in residential communities [2].

We select the number of homes located downstream of the trans-

former based on the home loads. Since older transformers were typically 

sized before high prevalence of EV chargers, we adopt a heuristic to se-

lect a realistic number of homes under each transformer. The heuristic 

proceeds as follows. First, we randomly sample homes from the dataset. 

Next, we add these sampled homes, one at a time, until the maximum 

sum of their loads (excluding EV charging) over a month exceeds the 

nominal transformer limit; this is called a “violation”. This set of homes 

forms the neighborhood behind the transformer for a particular trial.

2.8. Battery aging considerations

Although a complex battery aging model is out of the scope for this 

work, we examine the sensitivity of the total system costs to battery ag-

ing. Specifically, we add a term to the objective function that represents
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a cost in $ per roundtrip charge and discharge cycle. This cost per cycle 

is derived from the cost of purchasing a new Powerwall, 𝐶 

batt [41] di-

vided by the number of total cycles allowed under warranty [42]. This 

represents the effective cost per cycle for the Powerwall. The objective 

term is as follows in Eq. (31):

𝐶 

batt

𝑁 

cyc

(

∑𝑇
𝑡=0 𝐁 

chg
𝑡 + 

∑𝑇
𝑡=0 𝐁 

dischg
𝑡

) 

Δ𝑡

2𝐸 

max
(31)

2.9. Forecasting

We use a naive forecaster that provides the solar generation and 

home load demand (excluding EVs) at each home for the upcoming day 

by averaging values from the previous four days. The naive forecaster is 

inaccurate for EV loads as charging times for EVs can be short and some-

what sporadic. As a result, we assume that the EV charging profiles are 

known in advance. This assumes that homeowners will know one day in 

advance (the MPC time horizon) when they plan to charge their vehicle.

2.10. Costs

For the main simulations, we adopt the Pacific Gas & Electric’s 

(PG&E) Home Charging EV2-A time-of-use (TOU) rate plan as a tariff 

structure for each home [43]. The pricing scheme, effective as of April 

2024, is representative of the costs for homeowners located in San Jose 

with Level 2 EV charging. We also run a simulation that uses the EV-B 

and TOU-D PG&E rate structures [43]. For all schemes, we analyze the 

total costs of a community of homes using the same tariff structure. We 

do not determine the individual cost distribution for each home as the 

exact methods used for distributing the costs are outside the scope of this 

paper. This cost distribution would factor in homes’ baseline loads, EV 

charger utilization, time of peak loads, to name a few inputs. Lastly, this 

work only considers operational costs of the system and does not factor 

in capital costs of purchasing a BESS, a solar array, or an EV charger.

3. Transformer model

We model the lifetime and aging of an oil-type, ONAN (natural cool-

ing) residential distribution transformer using equations from the IEEE 

C57.96 standard [44]. We focus on oil-type transformers rather than 

dry-type transformers as they are common in residential settings [1]. 

We obtain the model parameters for a 25 kVA low voltage transformer, 

such as power loss at 100 % load and weight of the coils, from a 

datasheet [45]. As power flow analysis is outside the scope of this work, 

we assume a power factor of 1 and thus treat the nominal 25 kVA limit 

as 25 kW. Table 2 lists the variables in the transformer aging equations.

Table 2

Transformer aging variables.

Symbol Variable name

ΔΘ 

𝑇𝑂,𝑈 Ultimate top oil temperature rise [ 

◦ C]

ΔΘ 

𝑇𝑂,𝑅 Rated top oil temperature rise [ 

◦ C]

𝐿 

𝑃𝑈 Load [per unit]

𝑅 Ratio of rated load loss to no-load loss [unitless] 

𝑛 Empirical constant 

𝜏 

𝑇𝑂 Oil time constant [s] 

𝜏 

𝑇 𝑂,𝑅 Oil time constant at rated load [s] 

𝑚 Empirical constant

ΔΘ 

𝑇𝑂 Top oil temperature rise [ 

◦ C] 

ΔΘ 

𝐻 Hottest spot temperature rise [ 

◦ C]

ΔΘ 

𝐻,𝑅 Hottest spot temperature rise at rated load [ 

◦ C]

Θ𝐻 

 Hottest spot temperature [ 

◦ C] 

Θ 

𝐴 Ambient temperature [ 

◦ C] 

𝐹 AA Rate of accelerated aging [unitless]

𝐿𝑇 normal Normal transformer lifetime [h]

𝐹 EQA 

 Equivalent aging factor [unitless] 

%𝐿𝑂𝐿 Percent loss of life

A transformer’s lifetime is correlated with its hottest spot tempera-

ture (HST), Θ 

𝐻 , or the point in the coils with the highest temperature.

Exceeding a threshold temperature for long periods of time causes in-

creased aging, so the nominal power limit corresponds to a hottest spot 

temperature that can be held without abnormal detrimental aging ef-

fects. We measure the transformer’s aging via percent loss of life over a 

certain elapsed time period. Calculating the percent loss of life requires 

tracking the hottest spot temperature evolution over time using these 

equations:

ΔΘ 

𝑇 𝑂,𝑈
𝑡+1 = ΔΘ 

𝑇 𝑂,𝑅

⎛

⎜

⎜

⎜

( 

𝐿𝑃𝑈
𝑡+1

) 2
𝑅 + 1

𝑅 + 1 

⎞

⎟

⎟

⎟

𝑛

(32)

⎝ ⎠

𝜏 

𝑇𝑂
𝑡+1 = 𝜏 

𝑇 𝑂,𝑅 

ΔΘ 

𝑇 𝑂,𝑈
𝑡+1

ΔΘ 

𝑇 𝑂,𝑅 − 

ΔΘ 

𝑇𝑂
𝑡

ΔΘ 

𝑇 𝑂,𝑅

(

ΔΘ 

𝑇 𝑂,𝑈
𝑡+1

ΔΘ 

𝑇 𝑂,𝑅

) 

1 

𝑛 

− 

(

ΔΘ 

𝑇𝑂
𝑡

ΔΘ𝑇𝑂,𝑅

)
1
𝑛

(33)

( ) ( )

 

 

 

ΔΘ 

𝑇𝑂
𝑡+1 = 

(

ΔΘ𝑇 𝑂,𝑈 

𝑡+1 − ΔΘ 

𝑇𝑂
𝑡 

) 

( 

1 − exp 

(

−𝑡
𝜏 

𝑇𝑂
𝑡+1

))

+ ΔΘ 

𝑇𝑂
𝑡 (34)

ΔΘ 

𝐻
𝑡+1 = ΔΘ 

𝐻,𝑅 

( 

𝐿𝑃𝑈
𝑡+1

) 2𝑚
(35)

Θ 

𝐻
𝑡 = Θ 

𝐴
𝑡 + ΔΘ 

𝑇𝑂
𝑡 + ΔΘ 

𝐻
𝑡 (36)

Eqs. (32)–(34) govern the change in top oil temperature due to trans-

former loading, and Eq. (35) calculates the hottest spot temperature rise 

due to loading. Eq. (36) yields the hottest spot temperature at each time 

step by summing the ambient temperature, top oil rise, and hottest spot 

temperature rise.

From the hottest spot temperature, we then calculate the rate of 

accelerated aging, equivalent aging factor, and the percent loss of life:

𝐹 

AA
𝑡 = exp 

( 

15, 000
383 

− 15, 000
Θ 

𝐻
𝑡 + 273

) 

(37)

𝐹 

EQA = 

∑𝑇
𝑡=1 Δ𝑡𝐹 

𝐴𝐴
𝑡

∑ 𝑇 

𝑡=1 

Δ𝑡
(38)

%𝐿𝑂𝐿 = 100 𝐹 

EQA 𝑇
𝐿𝑇 normal

(39)

The rate of accelerated aging 𝐹 

AA is a function of hottest spot tempera-

ture Eq. (37). Integrating 𝐹 

AA over the simulation period and dividing 

by total simulation time yields the equivalent aging factor 𝐹 

EQA shown 

in Eq. (38). Lastly, the percent loss of life shown in Eq. (39) relates the 

equivalent aging factor with the rated lifetime, 𝐿𝑇 normal.

4. Case study

To simulate each optimization scheme, we analyze a dataset with 48 

unique homes in San Jose, California in 2018. We use simulated home 

load data from NREL ResStock [46]; each home has a solar PV array 

and home loads. We generate Level 2 home EV charging data to assign 

to each home from the NREL OCHRE residential energy model [47]. We 

assume a perfect power factor and that the battery is able to execute 

commands exactly (i.e., there is no error or bias in the battery’s setpoint 

and sensor readings).

To calculate the cost of electricity for consumers, we construct a cost 

vector C based on PG&E’s EV2-A TOU rate plan [43]. The total simula-

tion time horizon is four weeks, and we separately simulate four weeks 

in January and July 2018 beginning on a Monday (January 8 and July 2, 

respectively). The MPC horizon is one day. These and other simulation 

parameter values are listed in Table 3. In this table, the battery capac-

ity and power limit parameters indicate those of each individual battery, 

not the aggregate. The transformer penalty weight, 𝜆, is set to 𝜆 = 100 to 

balance the system electricity costs with the transformer penalty value. 

The final electricity costs reported do not include this penalty value.
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Table 3 

Parameter values.

Parameter Value Parameter Value

𝑇 

MPC 24 ΔΘ 

𝑇𝑂,𝑅 65 

◦ C 

𝑇 1344 𝜏 

𝑇 𝑂,𝑅 8.738 s 

𝜆 100 R 3.625

𝛼 0.01 Θ 

𝐴 25 

◦ C 

Δ𝑡 0.5 h ΔΘ 

𝐻,𝑅 15 

◦ C

𝜂 0.9487 𝐿𝑇 

normal 180,000 h 

𝐸 

max 13.5 kWh 𝐶 

batt $5550

𝐵 

dischg
max 

5 kW 𝑁 

cyc 1400

𝐵 

chg
max 5 kW

For each simulation month, we run 50 trials, sampled as described 

in Section 2.7. This sampling yields a different number of homes in each 

trial for January and July. Based on this random selection of homes, 

we observe between 6 and 22 homes located downstream of the trans-

former. In particular, in January, each trial has an average of 12.6 homes 

with a standard deviation of 2.7 homes, and in July, each trial has an 

average of 16.1 homes with a standard deviation of 3.4 homes.

5. Results

To highlight the impact of virtualization on battery control, we com-

pare the individual, joint, hybrid, and dynamic schemes to a system 

without a battery. Analyzing both transformer protection and cost re-

duction metrics reveals differences in each scheme’s performance. We 

also examine the effect of changing battery partition sizes in the hybrid 

case. Next, we analyze the sensitivity of the schemes to different pric-

ing plans, imperfect forecasts, different seasons, varying EV penetration 

levels, and battery aging costs. Finally, we present experimental results 

from a small-scale physical testbed.

5.1. Meter and transformer impacts of battery aggregation

While the individual scheme, in which each homeowner controls 

their own BESS, shows a drastic improvement over a system with no 

BESSs, it still does not fully utilize the full BESS potential. Fig. 2 com-

pares the aggregate meter values for the system in the first week of 

July 2018 for a single trial. On each of the plots (individual scheme 

in Fig. 2(a) and joint scheme in Fig. 2(b)), the black curve shows the ag-

gregate (summed) net meter for the collection of homes in the trial. The 

gray curve shows the net meter with no BESSs present in the system. The 

shaded areas indicate the BESS behavior that makes up the difference 

between the black and gray curves (green shading is charging while red 

shading is discharging). As shown in the green shaded areas, the BESS 

takes advantage of excess solar to charge. It uses this to discharge in the 

evening to offset high evening loads (shaded red).

The joint scheme maintains the aggregate meter under the trans-

former limit for the entire simulation period, but the individual scheme 

violates the limit in the first few hours of the week, as shown by the black 

curve exceeding the blue transformer limit line. This result is highlighted 

in the direct comparison in Fig. 2(c). The joint scheme utilizes the full 

aggregate BESS capacity to minimize excess solar generation that would 

otherwise be curtailed. The individual scheme cannot capture this ex-

cess solar. For example, on 7/6, the joint scheme BESS uses all of the 

excess solar, which the individual scheme cannot achieve.

Fig. 3 displays the HST and percent loss of life during the first week 

of July 2018 for the same single trial. While there is a cumulative low 

loss of life without a BESS, the HST often spikes more than 20 

◦ C above 

the individual and joint schemes with a BESS, whose HST remains below 

70 

◦ C during this week. The individual and joint schemes have similar 

losses of life, underscoring that just adding BESSs to a system without ag-

gregation still has a substantial effect on transformer protection. Lastly, 

this plot demonstrates that loss of life is monotonically increasing: no 

loading pattern can decrease loss of life.

Fig. 2. Aggregate meter comparison between (a) individual, (b) joint, and (c) 

both schemes for the first week in July 2018. The gray curve indicates the ag-

gregate meter (sum of net meters of all homes) before adding the BESSs, and 

the black curve indicates the meter after adding the BESSs. (c) Overlays the no 

BESS, individual, and joint optimization, highlighting that the joint scheme best 

utilizes available solar generation. By sharing the BESSs, the joint scheme can 

maintain the meter under the transformer limit for the whole week, while the 

individual scheme cannot.

Fig. 3. (a) HST with no BESS compared to individual and joint optimization. For 

this week of simulation in July 2018, having no BESS substantially raises HST 

values during the load peaks. (b) Percent loss of life for no BESS, individual, and 

joint optimization. The HST spikes correlate directly to larger increases in loss

of life.

5.2. Transformer loss of life and cost reduction metrics

Given similarities in transformer protection, the main difference be-

tween the individual and joint schemes lies in the total electricity costs. 

Fig. 4 shows the loss of life (a) and total costs (b) for each scheme for 

four weeks of July 2018. Each scheme is effective in protecting the
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transformer, but aggregating the batteries with the joint, hybrid, and 

dynamic schemes introduces cost savings of between 27 % and 56 % 

over the individual scheme.

Although the median value of loss of life with no BESS is low at 

0.36 %, almost 25 % of the trials in the no BESS case exceed 2 % loss 

of life in July. Continuing at this rate of degradation, these transformers 

will reach their end of life in just over four years, well below the expected 

lifetime of 20 years [44]. For the schemes with a battery, the loss of 

life incurred in July is negligible, since the battery allows the aggregate 

meter to remain at or below the transformer nameplate capacity.

The differences in costs for each scheme are more distinct. The joint 

scheme offers a 76 % median cost decrease compared to the no BESS 

system cost. The median costs slightly rise across the joint, hybrid, 

and dynamic cases from $1082 to $1119 and $1158, respectively. The 

joint case has the lowest total cost because it utilizes the battery most

efficiently with complete sharing.

However, the hybrid and dynamic schemes retain a portion of the 

battery that is not shared. This provides a crucial component for home-

owner peace of mind: the ability to autonomously control their battery. 

For example, in a blackout scenario, a homeowner might want to leave 

some charge in reserve. Or, they might want the ability to participate 

in lucrative demand response programs. Given similar transformer aging 

and costs, the hybrid and dynamic schemes are almost as effective as the 

joint scheme but with the added benefit of a retained battery partition.

In the individual scheme with uneven transformer limits, each home 

has unique but static transformer limit allocation. Despite the flexibility, 

this scheme does not perform better than with an equal limit: trans-

former loss of life is slightly worse. Since homes better utilize their 

transformer limit, the aggregate meter reads closer to the transformer 

nameplate limit, elevating the HST and accelerating aging. As costs 

are primarily driven by battery availability, a higher transformer al-

location does not translate into cost savings in the absence of battery 

aggregation.

Finally, the dynamic scheme has slightly lower costs than the hybrid 

scheme due to the time-varying partition weights. With these dynamic 

weights, underutilized retained partitions are converted into shared 

partitions to reduce costs.

Fig. 4. (a) Percent loss of life over the month of July 2018 comparing each 

scheme. (b) Total system electricity costs for July 2018. The boxplots indicate 

results from 50 trials. Including a BESS decreases transformer aging substan-

tially, and introducing aggregation through virtualization has a strong effect on 

cost reduction. Joint optimization, or complete sharing, performs the best in 

both transformer and cost metrics.

5.3. Sensitivity of hybrid scheme to partition fractions

In Fig. 4, the hybrid scheme is shown with fixed, 50 % partitions for 

the shared and retained battery partitions. This means each homeowner 

retains half and shares half of their battery. To examine the effect of 

changing this fixed partition value, Fig. 5 varies the fraction of shared 

battery from 0 % (individual scheme) to 100 % (joint scheme).

Sharing only 75 % of the battery yields similar total costs to 100 % 

sharing. The median cost for 75 % sharing is only 14 % worse than the 

median for 100 % sharing. For many homeowners, this difference may be 

irrelevant when considering the benefits of complete control over 25 % 

of their battery. For example, the homeowners could recoup this 14 % 

cost differential by using their 25 % retained partition to participate in 

lucrative demand response programs.

Understanding this critical point of 75 % sharing is important in im-

plementing this algorithm in a real system. These results reveal that 

there needs to be more than 50 % sharing to achieve the cost bene-

fits of joint optimization, but 100 % sharing is not necessary to reach 

these cost minimums.

Fig. 5. Sensitivity to different partition fractions for the hybrid scheme for July 

2018 over 50 trials. While there is a large spread between trials, sharing only 

25 % does not decrease costs, but sharing 50 % or more has substantial cost 

reductions. Complete (100 %) battery sharing yields the lowest costs.

5.4. Dynamic partitioning with varying electricity pricing plans

When every home is subscribed to the same TOU rate structure, the 

dynamic scheme improves transformer loss of life but increases costs 

slightly compared to the hybrid scheme. In practice, homes in a neigh-

borhood may be subscribed to different rate structures depending on 

their load usage patterns. When peak price periods are not consistent 

among homes, dynamic partitioning offers flexibility to share battery 

partitions when other homes need them and retain partitions for homes 

experiencing peak pricing.

To test this, we run a modified version of the individual, hybrid, 

and dynamic schemes in which each home is assigned a random price 

structure among the EV2-A, EV-B, and TOU-D structures. The individual 

term calculating the cost of the individual home meter (the first term 

in Eq. (17)) is subject to this randomly chosen price structure while the 

pricing for the joint term remains the EV2-A structure.

Fig. 6(a) compares the three price structures, which vary by both 

peak price value and timing. Fig. 6(b) plots the average retained parti-

tion weight (i.e., the partition of the battery kept by the homeowners) 

for the dynamic scheme, separating each group of homeowners by their 

pricing structure. All three groups’ weights step up or down each time 

a pricing structure changes. This reflects the dynamic scheme’s ability 

to re-adjust the partitions so the operation is cost-optimal. The retained 

weight is higher during peak times when the prices are highest, which is 

expected as homes need a greater fraction of the battery to offset home 

loads during peak periods.

Fig. 7(a) shows the transformer loss of life for each scheme com-

pared to the no BESS scenario. The dynamic scheme yields the lowest
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Fig. 6. (a) Prices for one weekday for PG&E EV2-A, EV-B, and TOU-D rate 

structures. Both the magnitude and timing of peak pricing vary between the 

rate structures. (b) Average retained partition weight for each timestep for the 

dynamic scheme. The weights change corresponding to changes in the rate 

structures.

transformer loss of life. Fig. 7(b) examines the individual partition costs 

for each scheme, indicated with hatching to differentiate from the to-

tal costs shown in Fig. 4. For the hybrid and dynamic scheme, this is 

calculated by the optimal value of the first term in Eq. (17).

It is expected that the hybrid scheme has higher costs than the indi-

vidual scheme, since only 50 % of each home’s battery is represented 

in this cost calculation while the individual scheme utilizes 100 %. 

However, although the dynamic scheme shares only 38 % and retains 

62 % of the battery on average across all homes and trials, it still achieves

Fig. 7. (a) Loss of life for no BESS, hybrid with 50 % weights, and dynamic 

schemes for 50 trials on July 18 with homes on varying rate structures. (b) Sum 

of individual meter costs for each scheme, representing the first term in the 

objective function for hybrid and dynamic schemes. The dynamic scheme has 

similar costs to the individual scheme due to its temporal flexibility.

similar costs as the individual scheme. This result demonstrates the 

value of virtualization’s temporal flexibility. By changing partitions over

time, the dynamic scheme can retain only the minimum necessary bat-

tery fraction and share the remainder, leading to similar costs as the 

individual scheme but better transformer protection.

5.5. Sensitivity to imperfect forecasts

All the simulation results above represent optimization algorithms

with perfect foresight, meaning the problem is solved with knowledge 

of exact solar and load profiles over the simulation horizon. In practice, 

this is not the case as forecasts are often imperfect. MPC adjusts for this 

by re-solving the optimization problem at each timestep with a short 

forecast horizon and updating the SOC based on actual solar and load 

values once they occur.

Fig. 8 shows the transformer aging and cost for the schemes using 

MPC instead of perfect foresight. We do not test MPC on the dynamic 

scheme as its performance depends on perfect load and solar foresight 

over the entire time horizon. Overall, transformer aging and costs follow

the same patterns as seen with perfect foresight control. The individual 

scheme is not as cost-effective as the joint scheme. However, the indi-

vidual scheme is still preferable to the no BESS system, even with the 

slightly worse performance of MPC.

Fig. 8(c) shows the percent cost increase for each scheme using MPC 

compared to the cost using perfect foresight. Cost increases for individ-

ual and individual with uneven limit are around 10 %. The cost increase 

spread grows with the schemes that incorporate battery sharing, but the 

median differences are still less than 25 %. This discrepancy is because 

with a shared battery, an inaccurate forecast for one home may affect 

the entire shared battery, but with the individual scheme, the inaccurate 

forecast would be confined to just a single home. This phenomenon ex-

plains the larger cost increase spread for the joint and hybrid schemes. 

The deviations for transformer aging are also small; the greatest aging

Fig. 8. (a) Percent loss of life over the month of July 2018 comparing each 

scheme solved with MPC. (b) Total system electricity costs for July 2018 with 

MPC. (c) Percent cost increases for each scheme using MPC compared to perfect 

foresight. The boxplots indicate results of 50 trials. Using MPC has minimal 

impact on transformer aging and a small impact on costs, with a 25 % median 

increase for joint optimization.
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increase for July 2018 is 5 % for joint optimization. We also find that 

these results hold across seasons such that battery sharing with MPC is 

still cost-optimal compared to the No BESS case.

The MPC cost increases correspond to a range between a $91.96 

increase for the hybrid scheme to $269.31 for the individual scheme. 

Although the joint scheme has the greatest percentage median cost 

increase, in unnormalized dollars, the individual scheme has the greatest 

increase. The results show that even with a cost increase, MPC imple-

mentation is still cheaper than with no BESS. Better forecasting can 

mitigate these increases even further. Ultimately, the cost increases only 

amount to between $5.75 and $18.50 per home compared to perfect 

foresight, indicating that deploying these algorithms in a real system is 

economically viable.

5.6. Seasonality effects

The July simulation results are not necessarily representative of sys-

tem behavior during the rest of the year. To ensure the optimization 

yields similar transformer protection and cost savings, Fig. 9 presents 

results for each optimization scheme for January 2018.

In January, owning a BESS is still effective, but the cost savings are 

not as drastic. Although transformer loss of life is an order of mag-

nitude worse than July, the aging still remains under 0.08 % for all 

schemes. On the cost side, individual and joint optimization only offer 

a 21 % and a 30 % cost reduction, respectively, compared to no BESS. 

Although January loads are lower because there is no need for air con-

ditioning, lower solar generation is the main reason for the discrepancy 

between January and July. Less excess solar means there are fewer op-

portunities for the BESSs to charge for free from solar and discharge 

to offset power at expensive peak times. Regardless, these results prove 

that BESS optimization is worthwhile across the whole calendar year, 

though its impact (cost reduction or transformer protection) varies over 

the seasons.

5.7. Sensitivity to EV penetration and battery aging

The results from Sections 5.1 to 5.6 assume both 100 % EV pene-

tration (i.e., every home has one EV charger) and no economic effects 

from battery aging. However, in real neighborhoods, some homes may 

not have an EV and the cost of battery degradation may be substantial.

Fig. 9. (a) Percent loss of life over the month of January 2018 comparing each 

scheme. (b) Total system electricity costs for January 2018. The boxplots in-

dicate results of 50 trials. Due to limited solar, loss of life is worse and cost 

reduction is not as effective compared to July performance.

We test the algorithm’s sensitivity to both EV penetration and a cost 

on battery aging. Fig. 10 compares the costs for each scheme between 

the original simulation, a simulation with 50 % EV penetration, and a 

simulation that includes a battery degradation cost per cycle.

As expected, the costs are lower in each scheme with 50 % EV pen-

etration. Joint optimization still yields the lowest cost as it best utilizes 

available solar generation. However, the battery aging costs do not fol-

low a consistent pattern across all schemes. In the individual scheme, 

adding a cost per cycle increases the median cost by 15.1 %, but the costs 

only increase by 2.5 % and 8.2 % in the hybrid and dynamic schemes, 

respectively. This result suggests that the impact of battery aging costs 

is relatively smaller in these hybrid battery sharing schemes.

Fig. 10. Comparison of July 2018 costs for each scheme between original, 50 % 

EV penetration, and included battery aging cost simulations. The boxplots in-

dicate results of 50 trials. With 50 % EV penetration, the median costs are 

consistently lower than with 100 % EV penetration across all schemes. Adding 

a battery aging cost has a greater effect when the batteries are not shared (i.e., 

in the individual schemes).

5.8. Small-scale physical system demonstration

The results presented in Sections 5.1 to 5.7 are based on simulated 

home load, solar, and EV data. In real world implementation, factors 

such as communication delays and setpoint errors can affect the efficacy 

of the battery commands. To quantify these delays and errors, we design 

a small DC testbed study using a 20 Ah LiFePo4 battery and a 1.6 Ah 

lithium-ion battery connected to a power supply that emulates the grid 

and an electronic load that emulates home loads in a community. This 

study highlights how battery injection reduces the power pulled from 

the grid through the transformer and shows battery response time to 

setpoint commands.

To illustrate setpoint errors and battery response times, we run a

30 second experiment with varying battery setpoint commands under

a constant load of 0.8 A. Fig. 11 shows the system response to battery

injection. The current being pulled through the transformer, shown in 

Fig. 11(c), highlights the grid’s response to changing battery setpoint 

commands. On average, the grid takes 1.00 s to respond to the setpoint 

commands while the batteries take 0.92 and 1.44 s, respectively. The 

setpoint errors are relatively minor for both batteries and the grid with 

RMSE values of 0.08 A, 0.06 A, and 0.24 A, respectively. In any real 

world electrical system, perturbations around the setpoint are antici-

pated. Overall, the communication delays are negligible under the time 

intervals simulated in this study.

6. Discussion

The results show that all of the optimization schemes reduce trans-

former aging substantially over the course of the month-long simulation 

periods. Joint, hybrid, and dynamic schemes highlight the impact of 

battery sharing on both reducing costs and mitigating transformer aging.

Virtualization is crucial to achieving maximum cost reduction in joint 

optimization. However, with only 50 % sharing, the hybrid scheme re-

duces the total community cost incurred during the month of July 2018 

by 57 %. Sharing 75 % of their batteries allows homeowners to be within
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Fig. 11. (a) Battery 1 command and actual current. (b) Battery 2 command and 

actual current. (c) Command and actual current provided by the grid, which is 

equal to 0.8 A minus the current from batteries 1 and 2. The commands sent to 

batteries 1 and 2 are annotated. While there is a settling time delay, it is only 

1 s on average.

14 % of the optimal lowest cost while still maintaining control over a 

modest fraction of their batteries.

The effect of variable solar generation across seasons is substantial. 

Reduced solar generation in January leads to diminished cost savings, 

but the role of batteries is still prominent. These seasonality effects may 

also change in different geographical locations depending on solar and 

other variable energy generation penetration.

There are slight differences in transformer protection between opti-

mization schemes. The patterns vary seasonally: in the summer, battery 

sharing leads to slightly better transformer protection, while in the 

winter battery sharing is slightly worse for the transformer. This phe-

nomenon results from varying battery utilization among the schemes. 

Operating at the transformer limit results in greater aging than operat-

ing well below the limit, even if the system never exceeds the limit in 

either case. The difference between the individual scheme and individ-

ual with uneven transformer limit allocation scheme also occurs because 

of this utilization pattern. By optimizing each home’s limit allocation, 

each home is more likely to operate closer to its limit, thus pushing the 

aggregate meter toward the nameplate limit.

Overall, complete sharing of batteries (joint optimization) is the most 

effective scheme for minimizing community costs and mitigating trans-

former aging. The results show a 76 % and 30 % decrease in costs 

compared to the no BESS case in July and January 2018, respectively. In 

the worst case of joint optimization in January 2018, the 0.07 % loss of 

life over the month would still yield a transformer lifetime of 119 years.

While the hybrid and dynamic schemes have comparable transformer 

protection to pure joint optimization, they are less cost-effective. Partial 

sharing of the batteries mitigates the worst of the peak loads to effec-

tively reduce aging, but without complete sharing, there is still some 

underutilized storage accounting for the higher total costs.

The schemes are robust to both varying EV penetration and a battery 

aging cost. Similar trends hold when testing sensitivity to those parame-

ters: joint optimization is still the most cost-effective, but by leveraging 

virtualization, hybrid and dynamic optimization are preferable to the 

individual cases while still allowing homeowner autonomy.

6.1. Implementation considerations

Each of the schemes provides value for transformer aging when com-

pared to systems without batteries, but the flexibility of the hybrid and 

dynamic schemes can better meet various goals and requirements of

community members. To implement these schemes in practice, there 

are many additional considerations including imperfect load and solar 

forecasting, cost structure, battery aging, and algorithm scalability.

First, the MPC algorithm is susceptible to inaccurate solar or load 

forecasts, making the batteries charge at inopportune times. This can 

occur in two scenarios: when actual loads are greater than forecasted 

loads or when actual solar generation is less than forecasted genera-

tion. This inaccurate forecasting can lead to suboptimal battery behavior 

that momentarily violates the transformer limit. Ultimately, minimizing 

transformer aging and costs with MPC is sensitive to forecasting ac-

curacy, and further work will explore MPC performance with a more 

accurate forecast.

Deploying the joint, hybrid, or dynamic schemes also requires a new 

electricity cost structure. This raises questions about cost fairness, bat-

tery partition sizes, and responsibility for system upgrades, operation, 

and maintenance costs. The utility must decide how to bill shared grid 

imports and exports and divide costs fairly among homeowners. To 

implement a new cost structure, each home needs its own meter to ac-

curately measure load, solar, and battery output. A central aggregator 

could serve as a global controller and communicate with the utilities and 

homeowners about pricing, but the exact cost structure is dependent on 

existing local distribution grid infrastructure.

Battery aging is another concern in real world implementation. In 

each scheme, we find that the battery generally completes one full 

discharge and charge cycle per 24 h. This usage in the individual scheme 

is covered under Tesla’s warranty policy: ten years of coverage with un-

limited battery cycling for solar backup and load shifting or a 1400 

charge and discharge cycle limit for other uses [42]. If homeowners 

use their battery partition for other programs such as grid frequency 

response or ancillary services, then battery usage should be restricted to 

using 140 full cycles per year, or 38 % of the battery capacity per day.

When adding a cost per cycle to the simulation, the total electricity 

cost increases for each scheme, from 2.5 % to 21.2 % depending on the 

scheme. This reflects that when adding a cost per cycle, it is financially 

advantageous for the system to complete fewer cycles to prolong the bat-

tery lifetime, even if doing so increases electricity costs. However, this 

cost increase associated with battery degradation still does not exceed 

the costs for the system with no batteries at all, indicating that batteries 

are still economically preferred.

While we test the algorithm on a small, 25 kVA residential trans-

former, the optimization schemes can be applied to systems with larger 

transformers, which may add more batteries and more decision vari-

ables in the optimization problem. Solving for a longer time horizon or a 

smaller time granularity also increases the number of decision variables. 

Since the optimization problem is convex, it is scalable to a larger prob-

lem and does not pose time constraints when solving at fast frequency 

with MPC. Virtualization software can also be scaled to large systems; 

in a simulation of 600 virtual batteries, latency from the virtualization 

software accounts for only half of the total system latency [32]. Lastly, 

incorporating a transformer penalty that only relies on the transformer 

nameplate limit and not on device-specific parameters also facilitates 

deployment in a variety of physical systems.

In real world implementation, virtualization is imperative to dis-

tribute battery charge and discharge instructions to each constituent 

physical battery. Virtualization serves multiple roles in this distribution 

process, such as allowing the system to re-calibrate if one battery drops 

offline and enabling the system to change battery partition weights fre-

quently, as in the dynamic partitioning scheme. Without virtualization, 

homeowners could either control an individual battery and risk under-

utilizing an expensive asset, or they could buy into a centralized, shared 

battery with no individual autonomy. Virtualization makes this combi-

nation possible while ensuring the system is robust in the face of system 

outages, additions, or changes.

Each of these implementation challenges is critical for home and EV 

owners, policymakers, utilities, and aggregators to consider. While utili-

ties and aggregators may be concerned with the scalability and flexibility
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of the algorithm to deploy it in heterogeneous distribution systems, 

homeowners may be more focused on their direct costs of buying a 

battery and buying into a shared battery system. On the other hand, 

policymakers need to understand implementation challenges and asso-

ciated costs to help design rebates or incentive programs that aim to 

ensure equitable deployment. All of these stakeholders must collaborate 

to fairly and successfully deploy this shared battery system.

6.2. Limitations

Battery sharing algorithms have limitations. This work does not focus 

on cost allocation fairness, forecasting accuracy and prediction models, 

and battery control execution.

The question of how to fairly allocate the benefits of battery shar-

ing still remains. This paper only provides an assessment of total system 

cost and does not report a breakdown of costs among homeowners. In an 

aggregation scheme, splitting the cost savings equally among all home-

owners would not be fair to homeowners who are already able to manage 

their loads individually. Two other potential options are scaling the sav-

ings based on a home’s peak power or total energy throughput. Future 

work will explore the differences in cost allocation schemes, including 

which type of homeowner benefits from each scheme.

Our simulation also has the limitation of a simplified perfect fore-

sight prediction model for EV charging. In reality, EV drivers may not 

know their exact charging needs one day in advance. A deviation from 

this prediction has the potential to exacerbate transformer aging with a 

high load, especially if multiple EVs in a neighborhood charge simulta-

neously. If hardware and computational capabilities allow, a short MPC 

timestep (i.e., quickly correcting forecasting errors) could rectify this 

problem. Alternatively, a smart charger or other peak load management 

system could serve as a backup to curtail load in case of incorrect EV 

demand forecasting.

Lastly, we only examine the effect of long latencies or battery set-

point control errors in a small DC testbed. In a grid-scale system, the 

residential batteries may not be perfectly controlled. While the MPC 

corrects for setpoint errors, long latencies could reduce the algorithm’s 

performance if they are beyond the seconds scale as observed in the DC 

testbed. To mitigate these effects, engineers should perform extensive 

physical testing with the algorithm to understand any latencies across 

different battery management systems.

7. Conclusion

This work presents a comparison between different battery sharing 

optimization schemes enabled by battery virtualization. The schemes 

aim to reduce consumer electricity bills and mitigate residential trans-

former aging. We find that sharing the batteries results in both lower 

costs and similar transformer protection than a scheme where owners 

optimize their batteries individually. While the joint scheme offers the 

highest battery utilization, the hybrid and dynamic schemes, or com-

binations of the individual and joint schemes, yield similar costs and 

transformer protection while still allowing homeowners to keep part of 

the battery for themselves. By employing virtualization, the dynamic 

scheme improves individual costs further by changing the retained and 

shared partition to maximize utilization. Lastly, the proposed model pre-

dictive controller allows for real time implementation that is robust to 

forecast error.

Future work will explore higher fidelity forecasting methods, sim-

ulations on different configurations of batteries and transformers, and 

experiments on physical battery systems in homes. To test and im-

plement our algorithms in a neighborhood, a central controller or 

aggregator must also decide how to fairly allocate cost savings. Both 

fair pricing and best practices for collaboration between aggregators, 

utilities, and homeowners are other areas of future research.

Ultimately, residential battery virtualization empowers homeowners 

to optimize their batteries to protect shared neighborhood transformers 

and reduce costs for the entire community. As EV sales continue to

grow and more homeowners install Level 2 EV chargers, residential 

distribution transformer overload will become a more pressing prob-

lem. Our BESS optimization schemes offer the flexibility for homeowners 

to install chargers without compromising neighborhood transformer 

lifetimes.

CRediT authorship contribution statement

Sonia Martin: Writing – review & editing, Writing – original 

draft, Visualization, Software, Methodology, Investigation, Formal anal-

ysis, Conceptualization. Obidike Nnorom, Jr.: Writing – review & 

editing, Writing – original draft, Validation, Software, Methodology, 

Investigation, Formal analysis, Data curation, Conceptualization. Philip 

Levis: Writing – review & editing, Supervision, Project administra-

tion, Funding acquisition, Conceptualization. Ram Rajagopal: Writing 

– review & editing, Supervision, Project administration, Funding acqui-

sition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests:

Sonia Martin reports financial support was provided by US 

Department of Energy. Obidike Nnorom, Jr. reports financial support 

was provided by Building Technologies Office. If there are other authors, 

they declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work 

reported in this paper.

Acknowledgments

This work is supported by the U.S. Department of Energy, Office 

of Electricity under Award Number DEOE0000919 and the Building 

Technologies Office IBUILD Graduate Research Fellowship. Some of the 

computing for this project was performed on the Sherlock computing 

cluster, supported by Stanford University and the Stanford Research 

Computing Center.

Data availability

Data will be made available on request. 

References

[1] Hilshey AD, Hines PDH, Rezaei P, Dowds JR. Estimating the impact of electric 

vehicle smart charging on distribution transformer aging. IEEE Trans Smart Grid 

2013;4(2):905–13. https://doi.org/10.1109/TSG.2012.2217385

[2] Muratori M. Impact of uncoordinated plug-in electric vehicle charging on residential 

power demand. Nat Energy 2018;3(3):193–201. https://doi.org/10.1038/s41560-

017-0074-z

[3] Gong Q, Midlam-Mohler S, Marano V, Rizzoni G. Study of PEV charging on res-

idential distribution transformer life. IEEE Trans Smart Grid 2012;3(1):404–12. 

https://doi.org/10.1109/TSG.2011.2163650

[4] Soleimani M, Kezunovic M. Economic analysis of transformer loss of life mitigation 

using energy storage and PV generation, In: 2020 IEEE/PES transmission and dis-

tribution conference and exposition (T&D); 2020. p. 1–5. https://doi.org/10.1109/ 

TD39804.2020.9299895

[5] Sarker MR, Olsen DJ, Ortega-Vazquez MA. Co-optimization of distribution trans-

former aging and energy arbitrage using electric vehicles. IEEE Trans Smart Grid 

2017;8(6):2712–22. https://doi.org/10.1109/TSG.2016.2535354

[6] Kaufman A. The U.S. is running low on the machines needed to avoid 

blackouts; May 2023. https://www.huffpost.com/entry/transformer-shortage_n_ 

64645004e4b0005c6055c541

[7] Li Y, Jenn A. Impact of electric vehicle charging demand on power distribution grid 

congestion. Proc Natl Acad Sci USA 2024;121(18):e2317599121. https://doi.org/ 

10.1073/pnas.2317599121

[8] Powell S, Kara EC, Sevlian R, Cezar GV, Kiliccote S, Rajagopal R. Controlled work-

place charging of electric vehicles: the impact of rate schedules on transformer aging. 

Appl Energy 2020;276:115352. https://doi.org/10.1016/j.apenergy.2020.115352

[9] Li S, Hu W, Cao D, Zhang Z, Huang Q, Chen Z, et al. EV charging strategy consid-

ering transformer lifetime via evolutionary curriculum learning-based multiagent 

deep reinforcement learning. IEEE Trans Smart Grid 2022;13(4):2774–87. https: 

//doi.org/10.1109/TSG.2022.3167021

[10] Affonso CDM, Kezunovic M. Technical and economic impact of PV-BESS charging 

station on transformer life: a case study. IEEE Trans Smart Grid 2019;10(4):4683–92. 

https://doi.org/10.1109/TSG.2018.2866938

Applied Energy 396 (2025) 126283 

11 

https://doi.org/10.1109/TSG.2012.2217385
https://doi.org/10.1038/s41560-017-0074-z
https://doi.org/10.1038/s41560-017-0074-z
https://doi.org/10.1109/TSG.2011.2163650
https://doi.org/10.1109/TD39804.2020.9299895
https://doi.org/10.1109/TD39804.2020.9299895
https://doi.org/10.1109/TSG.2016.2535354
https://www.huffpost.com/entry/transformer-shortage_n_64645004e4b0005c6055c541
https://www.huffpost.com/entry/transformer-shortage_n_64645004e4b0005c6055c541
https://doi.org/10.1073/pnas.2317599121
https://doi.org/10.1073/pnas.2317599121
https://doi.org/10.1016/j.apenergy.2020.115352
https://doi.org/10.1109/TSG.2022.3167021
https://doi.org/10.1109/TSG.2022.3167021
https://doi.org/10.1109/TSG.2018.2866938


S. Martin, O. Nnorom Jr., P. Levis et al.

[11] Visakh A, Thomas B, Selvan MP. Controlled charging of electric vehicles to reduce 

the aging of distribution transformers, In: 2022 22nd national power systems confer-

ence (NPSC); 2022. p. 24–9. https://doi.org/10.1109/NPSC57038.2022.10069054

[12] Rossi F, Diaz-Londono C, Li Y, Zou C, Gruosso G. Smart electric vehicle charging 

algorithm to reduce the impact on power grids: a reinforcement learning based 

methodology. IEEE Open J Veh Technol 2025;6:1072–84. https://doi.org/10.1109/ 

OJVT.2025.3559237

[13] Sarmokadam S, Suresh M, Mathew R. Power flow control strategy for prosumer 

based EV charging scheme to minimize charging impact on distribution network. 

Energy Rep 2025;13:3794–809. https://doi.org/10.1016/j.egyr.2025.03.032

[14] Latinopoulos C, Sivakumar A, Polak JW. Response of electric vehicle drivers to dy-

namic pricing of parking and charging services: risky choice in early reservations. 

Transp Res Part C Emerg Technol 2017;80:175–89. https://doi.org/10.1016/j.trc. 

2017.04.008

[15] Navidi T, El Gamal A, Rajagopal R. Coordinating distributed energy resources for 

reliability can significantly reduce future distribution grid upgrades and peak load. 

Joule 2023;7(8):1769–92. https://doi.org/10.1016/j.joule.2023.06.015

[16] Endara ID, Macas DM, Valverde MP, García JM. Design of load management methods 

using distributed storage and their impact on the aging level of distribution trans-

formers. In: Peng Z, editor. Technological advancements and future directions in 

green energy: selected papers from ICGET 2024. Cham: Springer Nature Switzerland; 

2025. p. 19–31.

[17] Datta U, Kalam A, Shi J. Smart control of BESS in PV integrated EV charging station 

for reducing transformer overloading and providing battery-to-grid service. J Energy 

Storage 2020;28:101224. https://doi.org/10.1016/j.est.2020.101224

[18] Hong S-K, Lee SG, Kim M. Assessment and mitigation of electric vehicle charg-

ing demand impact to transformer aging for an apartment complex. Energies 

2020;13(10):2571. https://doi.org/10.3390/en13102571

[19] Li J, Wu Z, Zhou S, Fu H, Zhang X-P. Aggregator service for PV and battery energy 

storage systems of residential building. CSEE J Power Energy Syst 2015;1(4):3–11. 

https://doi.org/10.17775/CSEEJPES.2015.00042

[20] Moradi Amani A, Sajjadi SS, Somaweera WA, Jalili M, Yu X. Data-driven model pre-

dictive control of community batteries for voltage regulation in power grids subject 

to EV charging. Energy Rep 2023;9:236–44. https://doi.org/10.1016/j.egyr.2022. 

12.089

[21] Raghuveer RM, Bhalja BR, Agarwal P. Real-time Energy management system for an 

active distribution network with multiple EV charging stations considering trans-

former’s aging and reactive power dispatch. IEEE Trans Ind Appl 2025:1–13. https: 

//doi.org/10.1109/TIA.2025.3552367

[22] Ntube N, Li H. Stochastic multi-objective optimal sizing of battery energy storage 

system for a residential home. J Energy Storage 2023;59:106403. https://doi.org/ 

10.1016/j.est.2022.106403

[23] Hafiz F, Rodrigo de Queiroz A, Fajri P, Husain I. Energy management and opti-

mal storage sizing for a shared community: a multi-stage stochastic programming 

approach. Appl Energy 2019;236:42–54. https://doi.org/10.1016/j.apenergy.2018. 

11.080

[24] Henni S, Staudt P, Weinhardt C. A sharing economy for residential communities with 

PV-coupled battery storage: benefits, pricing and participant matching. Appl Energy 

2021;301:117351. https://doi.org/10.1016/j.apenergy.2021.117351

[25] Lee S, Shenoy P, Ramamritham K, Irwin D. AutoShare: virtual community solar and 

storage for energy sharing. Energy Inform 2021;4(1):10. https://doi.org/10.1186/ 

s42162-021-00144-w

[26] Khanal S, Khezri R, Mahmoudi A, Kahourzadeh S. Optimal capacity of solar photo-

voltaic and battery storage for grid-tied houses based on energy sharing. IET Gener 

Transm Distrib 2023;17(8):1707–22. https://doi.org/10.1049/gtd2.12824

[27] Merrington S, Khezri R, Mahmoudi A. Optimal sizing of grid-connected rooftop pho-

tovoltaic and battery energy storage for houses with electric vehicle. IET Smart Grid 

2023;6(3):297–311. https://doi.org/10.1049/stg2.12099

[28] Walker A, Kwon S. Analysis on impact of shared energy storage in residential com-

munity: individual versus shared energy storage. Appl Energy 2021;282:116172. 

https://doi.org/10.1016/j.apenergy.2020.116172

[29] Kang H, Jung S, Kim H, Hong J, Jeoung J, Hong T. Multi-objective sizing and real-

time scheduling of battery energy storage in energy-sharing community based on

reinforcement learning. Renew Sustain Energy Rev 2023;185:113655. https://doi. 

org/10.1016/j.rser.2023.113655

[30] Barbour E, Parra D, Awwad Z, González MC. Community energy storage: a smart 

choice for the smart grid? Appl Energy 2018;212:489–97. https://doi.org/10.1016/ 

j.apenergy.2017.12.056

[31] Roberts MB, Bruce A, MacGill I. Impact of shared battery energy storage systems 

on photovoltaic self-consumption and electricity bills in apartment buildings. Appl 

Energy 2019;245:78–95. https://doi.org/10.1016/j.apenergy.2019.04.001

[32] Martin S, Mosier N, Nnorom O, Ou Y, Patel L, Triebe O, et al. Software defined grid 

energy storage, In: Proceedings of the 9th ACM international conference on systems 

for energy-efficient buildings, cities, and transportation, BuildSys ’22. New York, 

NY, USA: Association for Computing Machinery; 2022. p. 218–27. https://doi.org/ 

10.1145/3563357.3564082

[33] Bashir N, Guo T, Hajiesmaili M, Irwin D, Shenoy P, Sitaraman R, et al. Enabling 

sustainable clouds: the case for virtualizing the energy system, In: Proceedings of 

the ACM symposium on cloud computing. Seattle WA USA: ACM; 2021. p. 350–8. 

https://doi.org/10.1145/3472883.3487009

[34] Souza A, Bashir N, Murillo J, Hanafy W, Liang Q, Irwin D, et al. Ecovisor: a virtual 

Energy system for carbon-efficient applications, In: Proceedings of the 28th ACM 

international conference on architectural support for programming languages and 

operating systems; vol. 2. Vancouver BC Canada: ACM; 2023. p. 252–65. https:// 

doi.org/10.1145/3575693.3575709

[35] Kumar R, Wenzel MJ, Ellis MJ, ElBsat MN, Drees KH, Zavala VM. A stochastic model 

predictive control framework for stationary battery systems. IEEE Trans Power Syst 

2018;33(4):4397–406. https://doi.org/10.1109/TPWRS.2017.2789118

[36] Clarke WC, Manzie C, Brear MJ. An economic MPC approach to microgrid control, 

In: 2016 Australian control conference (AuCC); 2016. p. 276–81. https://doi.org/ 

10.1109/AUCC.2016.7868202

[37] Zamani V, Cortés A, Kleissl J, Martínez S. Integration of PV generation and storage 

on power distribution systems using MPC, In: 2015 IEEE power & energy society 

general meeting; 2015. p. 1–5. https://doi.org/10.1109/PESGM.2015.7286588

[38] Nair UR, Sandelic M, Sangwongwanich A, Dragičević T, Costa-Castelló R, Blaabjerg 

F. An analysis of multi objective energy scheduling in PV-BESS system under predic-

tion uncertainty. IEEE Trans Energy Convers 2021;36(3):2276–86. https://doi.org/ 

10.1109/TEC.2021.3055453

[39] Pezeshki H, Wolfs PJ, Ledwich G. Impact of high PV penetration on distribution 

transformer insulation life. IEEE Trans Power Del 2014;29(3):1212–20. https://doi. 

org/10.1109/TPWRD.2013.2287002

[40] Tesla. Tesla Powerwall 2 datasheet. Technical Report. Jun. 2019.

[41] Tesla’s Powerwall 2 and solar roof tiles: our review. https://unboundsolar.com/ 

solar-information/tesla-powerwall-for-solar

[42] Tesla. Tesla Powerwall Limited Warranty (USA) Jan. 2025. https://energylibrary. 

tesla.com/docs/Public/EnergyStorage/Powerwall/General/Warranty/en-

us/Powerwall-Warranty-EN.pdf

[43] PG&E. Electric rates: current and historic electric rates Apr. 2024. https: 

//www.pge.com/tariffs/en/rate-information/electric-rates.html#accordion-

a84c67dc1e-item-e10eec0cc5

[44] IEEE guide for loading mineral-oil-immersed transformers and step-voltage reg-

ulators. IEEE std C57.91-2011 (revision of IEEE std C57.91-1995). 2012:1–123. 

https://doi.org/10.1109/IEEESTD.2012.6166928

[45] Larson Electronics. 25 KVA pad mount transformer - 12470Y/7200 grounded 

wye primary, 240/120V secondary - mineral oil fluid/ONAN. https: 

//www.larsonelectronics.com/product/292915/25-kva-pad-mount-transformer-

12470y-7200-grounded-wye-primary-240-120v-secondary-mineral-oil-fluid-onan

[46] Wilson E, Parker A, Fontanini A, Present E, Reyna J, Adhikari R, et al. End-use load 

profiles for the U.S. building stock: methodology and results of model calibration, 

validation, and uncertainty quantification. Technical Report NREL/TP-5500-80889, 

1854582, MainId: 78667 Mar. 2022 https://doi.org/10.2172/1854582

[47] Blonsky M, Maguire J, McKenna K, Cutler D, Balamurugan SP, Jin X. OCHRE: 

the object-oriented, controllable, high-resolution residential energy model for dy-

namic integration studies. Appl Energy 2021;290:116732. https://doi.org/10.1016/ 

j.apenergy.2021.116732

Applied Energy 396 (2025) 126283 

12 

https://doi.org/10.1109/NPSC57038.2022.10069054
https://doi.org/10.1109/OJVT.2025.3559237
https://doi.org/10.1109/OJVT.2025.3559237
https://doi.org/10.1016/j.egyr.2025.03.032
https://doi.org/10.1016/j.trc.2017.04.008
https://doi.org/10.1016/j.trc.2017.04.008
https://doi.org/10.1016/j.joule.2023.06.015
http://refhub.elsevier.com/S0306-2619(25)01013-X/sbr0080
http://refhub.elsevier.com/S0306-2619(25)01013-X/sbr0080
http://refhub.elsevier.com/S0306-2619(25)01013-X/sbr0080
http://refhub.elsevier.com/S0306-2619(25)01013-X/sbr0080
http://refhub.elsevier.com/S0306-2619(25)01013-X/sbr0080
https://doi.org/10.1016/j.est.2020.101224
https://doi.org/10.3390/en13102571
https://doi.org/10.17775/CSEEJPES.2015.00042
https://doi.org/10.1016/j.egyr.2022.12.089
https://doi.org/10.1016/j.egyr.2022.12.089
https://doi.org/10.1109/TIA.2025.3552367
https://doi.org/10.1109/TIA.2025.3552367
https://doi.org/10.1016/j.est.2022.106403
https://doi.org/10.1016/j.est.2022.106403
https://doi.org/10.1016/j.apenergy.2018.11.080
https://doi.org/10.1016/j.apenergy.2018.11.080
https://doi.org/10.1016/j.apenergy.2021.117351
https://doi.org/10.1186/s42162-021-00144-w
https://doi.org/10.1186/s42162-021-00144-w
https://doi.org/10.1049/gtd2.12824
https://doi.org/10.1049/stg2.12099
https://doi.org/10.1016/j.apenergy.2020.116172
https://doi.org/10.1016/j.rser.2023.113655
https://doi.org/10.1016/j.rser.2023.113655
https://doi.org/10.1016/j.apenergy.2017.12.056
https://doi.org/10.1016/j.apenergy.2017.12.056
https://doi.org/10.1016/j.apenergy.2019.04.001
https://doi.org/10.1145/3563357.3564082
https://doi.org/10.1145/3563357.3564082
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/3575693.3575709
https://doi.org/10.1145/3575693.3575709
https://doi.org/10.1109/TPWRS.2017.2789118
https://doi.org/10.1109/AUCC.2016.7868202
https://doi.org/10.1109/AUCC.2016.7868202
https://doi.org/10.1109/PESGM.2015.7286588
https://doi.org/10.1109/TEC.2021.3055453
https://doi.org/10.1109/TEC.2021.3055453
https://doi.org/10.1109/TPWRD.2013.2287002
https://doi.org/10.1109/TPWRD.2013.2287002
http://refhub.elsevier.com/S0306-2619(25)01013-X/sbr0200
https://unboundsolar.com/solar-information/tesla-powerwall-for-solar
https://unboundsolar.com/solar-information/tesla-powerwall-for-solar
https://energylibrary.tesla.com/docs/Public/EnergyStorage/Powerwall/General/Warranty/en-us/Powerwall-Warranty-EN.pdf
https://energylibrary.tesla.com/docs/Public/EnergyStorage/Powerwall/General/Warranty/en-us/Powerwall-Warranty-EN.pdf
https://energylibrary.tesla.com/docs/Public/EnergyStorage/Powerwall/General/Warranty/en-us/Powerwall-Warranty-EN.pdf
https://www.pge.com/tariffs/en/rate-information/electric-rates.html#accordion-a84c67dc1e-item-e10eec0cc5
https://www.pge.com/tariffs/en/rate-information/electric-rates.html#accordion-a84c67dc1e-item-e10eec0cc5
https://www.pge.com/tariffs/en/rate-information/electric-rates.html#accordion-a84c67dc1e-item-e10eec0cc5
https://doi.org/10.1109/IEEESTD.2012.6166928
https://www.larsonelectronics.com/product/292915/25-kva-pad-mount-transformer-12470y-7200-grounded-wye-primary-240-120v-secondary-mineral-oil-fluid-onan
https://www.larsonelectronics.com/product/292915/25-kva-pad-mount-transformer-12470y-7200-grounded-wye-primary-240-120v-secondary-mineral-oil-fluid-onan
https://www.larsonelectronics.com/product/292915/25-kva-pad-mount-transformer-12470y-7200-grounded-wye-primary-240-120v-secondary-mineral-oil-fluid-onan
https://doi.org/10.2172/1854582
https://doi.org/10.1016/j.apenergy.2021.116732
https://doi.org/10.1016/j.apenergy.2021.116732

	Optimizing software defined battery systems for transformer protection
	1 Introduction
	2 Control algorithms
	2.1 Individual optimization
	2.2 Individual optimization with uneven transformer allocation
	2.3 Joint optimization
	2.4 Hybrid optimization
	2.5 Dynamic partitioning
	2.6 Model predictive control
	2.7 System sizing
	2.8 Battery aging considerations
	2.9 Forecasting
	2.10 Costs

	3 Transformer model
	4 Case study
	5 Results
	5.1 Meter and transformer impacts of battery aggregation
	5.2 Transformer loss of life and cost reduction metrics
	5.3 Sensitivity of hybrid scheme to partition fractions
	5.4 Dynamic partitioning with varying electricity pricing plans
	5.5 Sensitivity to imperfect forecasts
	5.6 Seasonality effects
	5.7 Sensitivity to EV penetration and battery aging
	5.8 Small-scale physical system demonstration

	6 Discussion
	6.1 Implementation considerations
	6.2 Limitations

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References




