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ABSTRACT

Residential electric vehicle charging causes large spikes in electricity demand that risk violating neighborhood
transformer power limits. Battery energy storage systems reduce these transformer limit violations, but operating
them individually is not cost-optimal. Instead of individual optimization, aggregating, or sharing, these batteries
leads to cost-optimal performance, but homeowners must relinquish battery control. This paper leverages vir-
tualization to propose battery sharing optimization schemes to reduce electricity costs, extend the lifetime of a
residential transformer, and maintain homeowner control over the battery. A case study with simulated home
loads, solar generation, and electric vehicle charging profiles demonstrates that joint, or shared, optimization
reduces consumer bills by 56 % and transformer aging by 48 % compared to individual optimization. Hybrid
and dynamic optimization schemes that provide owners with autonomy have similar transformer aging reduc-
tion but are slightly less cost-effective. These results suggest that controlling shared batteries with virtualization
is an effective way to delay transformer upgrades in the face of growing residential electric vehicle charging
penetration.

1. Introduction

is in the utilities’ best interest to implement techniques to prolong
transformer lifetimes instead of upgrading these assets [7].

Increasing residential electric vehicle (EV) penetration can harm
distribution transformers [1]. Since utility companies chose many
transformer sizes before widespread installation of residential EV
chargers, high peak power from charging can lead to capacity violations
and consequently, transformer aging [2-4]. This rapid aging forces
expensive and time-consuming transformer upgrades [5]. As of 2023,
distribution transformer prices in the U.S. have more than doubled, and
the installation wait time exceeds one year [6]. As more EV chargers
are installed in neighborhoods with limited transformer capacities, it
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While controlling EV charging can help reduce peak loads and
protect transformers [1,5,8-13], drivers may not respond perfectly
to charging control signals, which risks unplanned transformer limit
violations [14]. Instead, controlling stationary distributed energy re-
sources, such as stationary battery energy storage systems (BESSs), offers
a solution to protect transformers that is decoupled from drivers’ charg-
ing behavior [15,16]. For example, a homeowner with a BESS can take
advantage of excess solar photovoltaic energy generated to charge the
BESS and then discharge it during an EV charging session to offset peak
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demand. With this type of peak shaving, BESSs not only reduce peak
power costs but also mitigate the large power spikes from EV charging
that can harm transformers.

Many studies on BESSs co-located with EVs focus only on control-
ling a single BESS, with control objectives ranging from transformer
protection [17,18] and cost minimization [19] to voltage control [20].
However, a single centrally controlled BESS does not account for indi-
vidual homeowner needs if implemented in a residential neighborhood
or distribution network [21]. In regions with frequent power outages or
high peak prices, a homeowner buying into a BESS system may want to
retain autonomy over their BESS to maintain reserve power.

Especially in communities, combining, or aggregating, multiple BESS
units creates shared infrastructure from which entire neighborhoods can
benefit [22-25]. Aggregation can increase both BESS utilization and
decrease consumer costs: correctly sized shared systems that take into
account solar and EV system sizes [26,27] have been shown to increase
utilization by over 35 % and decrease costs by over 10 % [28-31].

However, similar to single BESS control, these aggregated systems
are often static. Once a set of batteries is shared, it cannot easily be re-
verted back to individual control, and vice versa. With unpredictable
outages, loads that change seasonally, and variable EV charging pat-
terns, a static aggregation scheme may be suboptimal. In such a system
where adaptability is crucial, there is no consensus on how exactly BESSs
should be split among homeowners and how this split should change
over time.

Battery virtualization is a new approach that simplifies operation and
allows for more flexibility in the battery setup in the face of variable grid
conditions. Virtualization provides an abstraction of a virtual resource
that is equivalent to an underlying physical resource [25,32-34], hiding
complexities of the physical resource and making it easier to interact
with it. Battery virtualization involves treating each physical battery as
an abstract entity that can be partitioned into separate parts or aggre-
gated with other abstract, or software defined, batteries. For example, a
group of homes in a neighborhood can use virtualization to combine all
of their physical batteries and treat them as a single aggregate battery.
Virtualization also enables a hybrid aggregation approach, in which an
owner can maintain control of one battery partition while contribut-
ing another partition to a shared aggregate. If constituent batteries are
added or drop offline [25,32], virtualization recalibrates without in-
terruption. Lastly, virtualization helps the system adapt to seasonality
changes and uncertainty in forecasts when running a model predictive
control (MPC) scheme for BESS control [20,35-38].

Prior work has explored BESS aggregation [22-25] and cost mini-
mization techniques [19] separately. Combining these two approaches
can help protect transformers in the face of increased EV adoption.
Flexible and dynamic BESS sharing as well as aggregation schemes al-
lowing homeowners to retain autonomy over part of their BESS have not
yet been investigated for this purpose.

This paper explores how BESS operators can leverage virtualization
software [32] to seamlessly control a set of aggregated residential BESSs
to both minimize costs and mitigate transformer loss of life while main-
taining homeowner autonomy. In contrast to existing work that utilizes
static, aggregated BESSs for transformer protection, we compare the per-
formance of multiple static and dynamic aggregation schemes in a case
study with simulated load and EV data. Lastly, we test the sensitivity of
the algorithm to imperfect forecasting by implementing an MPC scheme
and analyzing results across seasons.

We find that introducing flexibly aggregated BESSs reduces expen-
sive transformer upgrades and decreases operational costs. Our proposed
algorithms are useful for homeowners, energy aggregators, and utilities
aiming to avoid these transformer upgrades, decrease electricity costs,
and increase BESS utilization within a residential neighborhood. These
cost reductions enable more widespread BESS and EV charger installa-
tions, paving the way for cleaner light-duty electric transportation.
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This work makes the following contributions:

Optimization schemes enabled by virtualization for a group of BESSs
to reduce costs and transformer aging by sharing the batteries,

A “hybrid” optimization scheme that flexibly combines individual
and joint (shared) control using virtualization,

A “dynamic” optimization scheme that leverages virtualization to
dynamically balance individual and joint control,

Identification of the best battery sharing fraction to simultaneously
reduce costs and maintain homeowner autonomy, and

Analysis of each scheme under imperfect forecasts, with variable
pricing schemes, across seasons, with varying EV penetration, and
considering battery aging.

The paper is organized as follows: Section 2 explains the optimization
schemes, Section 3 describes the transformer model, and Sections 4 and
5 present simulation results. Section 6 discusses the implications of these
results while Section 7 outlines future work.

2. Control algorithms

This section discusses the optimization strategies, controller, system
sizing, forecasting, and electricity cost structure. We consider a setting
where a collection of homes in a neighborhood has solar systems, EV
chargers, residential BESSs, and various home loads. Fig. 1 displays
these components for two homes, connected to the distribution grid
via a transformer. This work analyzes the homes downstream of one
residential transformer. We assume that solar generation and all loads
are fixed (i.e., no flexible demand) and that each home’s battery is
controllable.

We compare five different battery optimization schemes to demon-
strate the effects of virtualization on cost and transformer aging:

+ Individual optimization assumes that each home in a neighborhood
has its own battery that it controls to minimize its individual cost,

+ Individual optimization with uneven transformer allocation is
similar to the first scheme but allows homes to have an uneven limit
allocation instead of distributing the limit evenly,

+ Joint optimization controls all of the batteries in a neighborhood
as if they were a single aggregate battery,

» Hybrid optimization blends the individual and joint schemes,
and

Fig. 1. Diagram of a residential power system. A set of homes, connected to the
grid under a single transformer, contains home loads, solar panels, a battery, and
an EV charger. Each of these loads is connected to the transformer via a circuit
breaker. The model predictive controller determines the battery’s output.
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+ Dynamic partitioning optimization builds on the hybrid scheme
by adding dynamic partition values between retained and shared
portions of the battery.

We describe the schemes below, with variables listed in Table 1.

Table 1
Algorithm variables.

Symbol Variable name

n Number of homes

t Timestep

T Total number of timesteps

A Transformer violation penalty weight

K Nominal transformer limit [kW]

a (Dis)charging penalty weight

n One-way battery efficiency

At Timestep duration [h]

E o Maximum battery capacity [kWh]

h Hours between change in partition weights
T™MPC Number of timesteps per MPC iteration
B,i‘;f(}'g, Bf;'i eR* Maximum battery (dis)charge power [kW]
Bdischg Behg g RTxn Battery (Dis)charge power [kW]

M e R Home meter reading [kW]

CeRT Electricity cost [k\f/h]

S e RT*n Home solar generation [kW]

L e R Home load demand [kW]

E € RT+Dxn Available battery capacity [kWh]

KU e R" Uneven transformer allocation [KW]

BRdischg ¢ RTxn
Bs,dischg c RTxn

Retained discharge power [kW]
Shared discharge power [kW]

BRchg g RT>" Retained charge power [kW]

BSchg ¢ RT>n Shared charge power [kW]

BR € RT" Retained net power [kW]

BS € RT>" Shared net power [kW]

W e R Retained battery fraction

ER g RT+Dxn Retained battery capacity [kWh]

ES € RT+Dxn Shared battery capacity [kWh]

Z e RT5 Dynamic partitioning transformation matrix
WE eR Dynamic partitioning constant weights

Chatt Battery capital cost

Neye Maximum cycles under warranty

2.1. Individual optimization

With individual optimization, each homeowner operates their own
battery. The neighborhood transformer limit K is split evenly amongst
each of the n horneowners incentivizing each home’s power consump-
tion to remain below X. Each homeowner controls their battery to
minimize costs (see tarlff information in Section 2.10) while ensuring
their power consumption does not exceed the individual transformer
limit. The following convex optimization problem solves for the optimal
charge and discharge battery output for each home independently:

n

D (CT max(M,,0) - A @

i=0

T
+ Z </1 max (M,,
=0

min
Bdischg’ Bchg

- %,o)2 +a (B +Bf§““g))> @

st M, =L, - S, + B¢ _ pdischs vie[0,T] (3
Bdischg

E, =E —Ar < d - anhg> vie[0,T] (4)

0<E < Epx vt e [0,T +1] )

chg chg
0< B < Bhax

dischg dischg
0 < B 1 < Bmax

vVt €[0,7T) 6)
Vvt € [0,T] 7

The objective, Eq. (2), has three terms: the total electricity cost for the
homeowners in the community, the transformer violation penalty, and
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a penalty to discourage the solver from finding solutions in which the
battery charges and discharges simultaneously (since this is impossible
in practice). There is no net metering, so the positive values of the meter
are multiplied by the timestep length and the cost at each timestep in
units of kW_h

Eq. (3) constrains the utility meter reading to equal the sum of
the homeowner’s loads and battery output minus their solar genera-
tion. Eqgs. (4)—(7) govern the battery state of charge evolution, capacity

minimum and maximum, and charge and discharge limits, respectively.

2.2. Individual optimization with uneven transformer allocation

The individual optimization scheme penalizes each homeowner for
exceeding their equal allocation of the total transformer limit. In prac-
tice, not all homes have the same maximum power draw [39]. This
uneven allocation scheme optimizes the fraction of the transformer limit
allocated to each home to account for this variability in maximum home
power draw.

The scheme has a different objective function and two additional con-
straints not found in individual optimization, as listed in the equations
below:

n

min cT C' max(M;,0)At
Bdischg  gchg =0
. P

v l':M*

</l max (M,; — K%, 0 +« <Bf1,.‘g + B?§S°h3>> > ®)
0

s.t. ©

n
YK =K (10
i=0
+ remaining constraints from individual optimization

Eq. (8) shows the updated objective function which replaces K in the
objective with K", a vector that represents the transformer limit for each
home in kW. Next, Egs. (9) and (10) are added constraints to ensure each
home has a nonnegative limit and that the sum of these limits over all
the homes is equal to the nameplate limit K. These changes allow the
solver to simultaneously find the minimum cost solution and optimal
transformer limit allocation.

2.3. Joint optimization

With joint optimization, the homeowners aggregate their batteries
together using virtualization [32]. The controller manages the aggre-
gated battery to prevent the homeowners’ total power consumption from
exceeding the transformer limit whenever possible.

The joint scheme allows homeowners to collaborate to protect the
transformer. Depending on the exact home energy consumption pro-
files, the joint scheme can be advantageous compared to the individual
scheme: if any given home’s battery is underutilized in the individual
scheme, another home can use it. The problem is as follows:

T
L min " max(M1,0) - At + ) </1 max (M1), — K, 0)?
Bdischg  gchg =
n
+Ya <Bffjg + Bff“hg)> 11)
i=0
s.t. M, = L, — S, + Behs _ pdischs V1 €10,T] 12)
Bdischg
E, =E - At ( ! - 'leChg> vVt € [0,T] 13)
n
0<E; < Epax Vi€ [0,T +1] a4

0 < B < phE vie[0.T]  (15)

0 < BYishs < plische vt €[0,T] (16)
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The aggregate battery aims to minimize the total homeowners’ cost.
A given customer might be restricted below their fair share of power
at certain times but can save money by participating in the aggregate.
The utility bills the aggregate system as a whole: the first term in the
objective, Eq. (11), multiplies the sum of all the home meters and the ag-
gregate battery output by the TOU cost vector. Similar to the individual
optimization scheme, the second term in Eq. (11) penalizes transformer
limit violations, but here the system is penalized when the sum of the
homes’ net power and aggregate battery output exceeds the limit, in-
stead of when an individual home’s power peak exceeds its allotted
limit. A penalty is also included in the objective to discourage the solver
from choosing to charge and discharge the battery variables simultane-
ously. Eq. (12) constrains each home meter to equal load demand minus
solar generation. Egs. (13)-(16) govern the battery SOC evolution,
capacity minimum and maximum, and charge and discharge limits,
respectively.

2.4. Hybrid optimization

In the hybrid scheme, each homeowner keeps a certain fraction of
their battery and gives up the remaining fraction to be aggregated into
a larger battery. This allows the homeowner to participate in joint op-
timization while maintaining control of some of their battery, e.g., for
blackouts. These fractions are denoted by ER and ES for the retained and
shared partitions, respectively, and weighted by an input W between 0
and 1. In this scheme, these partitions are fixed for the whole time hori-
zon. Virtualization enables this combination of individual optimization
and joint optimization by treating the shared partitions as one virtual
battery and each retained partition as additional virtual batteries.

The objective of the hybrid scheme includes terms for the individual,
joint, and transformer violation objectives. This balances the home-
owner’s goal to act within their financial interest while also sharing part
of their battery in the interest of the entire community. The problem is
as follows:

n

min ’z:(“) CT max (M, +BR,0) - Ar
T
+y (cT max ((M1+B%1),,0)> - At
t=0

+ Amax ((M1+B51), - K,0)’

n

+ Za(B§i+B§i)> a”)

i=0

st. M,=L, -8, Vie[0,T]  (18)

BR = BR,Chg _ BR,dischg (19)

BS = BS,chg _ BS,dischg (20)
BR,dischg

ER =EF - A1 (r,Bf"Chg - ’T> vie[0T] (21
BS,dischg

ES =ES-Mr (an’Chg - ’T) vie[0,T] (22)

0 <ER <W,Ep. vie[0,T+1]  (23)

0<E’ <(1-W)Epay vie[0,T+1] (24

0 < B < w, e Vie[0,T]  (25)

0<B" < (1-W,)BSE

max

vt € [0,T] (26)

0 < BRdischs < yy plische vie0.T]  (27)

S,dischg dischg
0< B, < -W)B .«

Vvt € [0,T] (28)

The first term in Eq. (17) mirrors the objective of the individual
optimization scheme, while the second term is similar to the objec-
tive for joint optimization. The transformer penalty only occurs if the
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home loads, solar, and shared battery exceed the limit, i.e., the retained
portion does not factor into the penalty, giving homeowners complete
autonomy over it. The constraints here, Egs. (18) and (21)-(28), are also
similar to both prior schemes, but they are duplicated for each of the
retained and shared partitions. The charge/discharge and energy con-
straints ensure each partition is only allotted W or 1 — W of the power
and energy limits. Egs. (19) and (20) set the net battery power equal to
the charge minus the discharge power for each partition.

2.5. Dynamic partitioning

While the hybrid scheme takes a static value W, virtualization allows
for this weight to change over time. For example, if the occupants of
one home go on vacation for a week then return, it is suboptimal if
their retained battery fraction remains constant over a whole month. In
traditional, static optimization, this fraction is fixed over time. However,
with virtualization, this fraction can be dynamic as the virtualization
software handles the re-partitioning of the batteries while respecting
battery power constraints. We test a case in which W is allowed to vary
every two hours. The optimization problem is the same as in the hybrid
case, with the following additional constraints:

0<W<1 (29)
W =ZW¢ (30)

Eq. (29) restricts W to between 0 and 1, while Eq. (30) (using h = 2)
ensures that W can only change once every two hours.

2.6. Model predictive control

While a convex optimization solver can easily solve the above prob-
lems, the battery output is only optimal given perfect foresight of the
solar, load, and EV charging profiles. In real time operation, these pro-
files are not known. We use moving horizon MPC that updates initial
values if the system deviates from its forecast. At each MPC iteration, the
controller solves for the next day given solar and load forecasts and out-
puts the desired battery trajectory. Then, the controller selects the initial
battery power command and sends this value to the battery. After one
timestep, the next iteration begins with a new initial battery SOC that is
read from the battery. This process repeats until the end of the overall
optimization horizon. With this moving window, the controller corrects
for changes in the system, either due to deviations between forecasts and
actual values or experimental factors such as sensor bias or error. In the
results section, we compare the MPC with a perfect foresight controller,
which is a one-shot optimization over the entire time horizon.

2.7. System sizing

In simulation, we model the batteries as the Tesla Powerwall 2.
We assume each homeowner owns a single Tesla Powerwall 2 with a
maximum capacity of 13.5 kWh and a maximum (dis)charge output of
5 kW [40]. We use a fixed transformer size of 25 kVA as it represents a
transformer size commonly found in residential communities [2].

We select the number of homes located downstream of the trans-
former based on the home loads. Since older transformers were typically
sized before high prevalence of EV chargers, we adopt a heuristic to se-
lect a realistic number of homes under each transformer. The heuristic
proceeds as follows. First, we randomly sample homes from the dataset.
Next, we add these sampled homes, one at a time, until the maximum
sum of their loads (excluding EV charging) over a month exceeds the
nominal transformer limit; this is called a “violation”. This set of homes
forms the neighborhood behind the transformer for a particular trial.

2.8. Battery aging considerations

Although a complex battery aging model is out of the scope for this
work, we examine the sensitivity of the total system costs to battery ag-
ing. Specifically, we add a term to the objective function that represents
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a cost in $ per roundtrip charge and discharge cycle. This cost per cycle
is derived from the cost of purchasing a new Powerwall, cbatt 417 di-
vided by the number of total cycles allowed under warranty [42]. This
represents the effective cost per cycle for the Powerwall. The objective
term is as follows in Eq. (31):

T chg T dischg
Cbatt (Z;:O Bt + Zr:O Bt ) At
Neye 2 Emax

(31

2.9. Forecasting

We use a naive forecaster that provides the solar generation and
home load demand (excluding EVs) at each home for the upcoming day
by averaging values from the previous four days. The naive forecaster is
inaccurate for EV loads as charging times for EVs can be short and some-
what sporadic. As a result, we assume that the EV charging profiles are
known in advance. This assumes that homeowners will know one day in
advance (the MPC time horizon) when they plan to charge their vehicle.

2.10. Costs

For the main simulations, we adopt the Pacific Gas & Electric’s
(PG&E) Home Charging EV2-A time-of-use (TOU) rate plan as a tariff
structure for each home [43]. The pricing scheme, effective as of April
2024, is representative of the costs for homeowners located in San Jose
with Level 2 EV charging. We also run a simulation that uses the EV-B
and TOU-D PG&E rate structures [43]. For all schemes, we analyze the
total costs of a community of homes using the same tariff structure. We
do not determine the individual cost distribution for each home as the
exact methods used for distributing the costs are outside the scope of this
paper. This cost distribution would factor in homes’ baseline loads, EV
charger utilization, time of peak loads, to name a few inputs. Lastly, this
work only considers operational costs of the system and does not factor
in capital costs of purchasing a BESS, a solar array, or an EV charger.

3. Transformer model

We model the lifetime and aging of an oil-type, ONAN (natural cool-
ing) residential distribution transformer using equations from the IEEE
C57.96 standard [44]. We focus on oil-type transformers rather than
dry-type transformers as they are common in residential settings [1].
We obtain the model parameters for a 25 kVA low voltage transformer,
such as power loss at 100 % load and weight of the coils, from a
datasheet [45]. As power flow analysis is outside the scope of this work,
we assume a power factor of 1 and thus treat the nominal 25 kVA limit
as 25 kW. Table 2 lists the variables in the transformer aging equations.

Table 2
Transformer aging variables.

Symbol Variable name
AQTOU Ultimate top oil temperature rise [°C]
A@TOR Rated top oil temperature rise [°C]
LY Load [per unit]
Ratio of rated load loss to no-load loss [unitless]
n Empirical constant
770 0il time constant [s]
7TO-R Oil time constant at rated load [s]
Empirical constant
A@TO Top oil temperature rise [°C]
NG Hottest spot temperature rise [°C]
AR Hottest spot temperature rise at rated load [°C]
o Hottest spot temperature [°C]
e Ambient temperature [°C]
FAA Rate of accelerated aging [unitless]
LT ma  Normal transformer lifetime [h]
FEQA Equivalent aging factor [unitless]
%LOL Percent loss of life
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A transformer’s lifetime is correlated with its hottest spot tempera-
ture (HST), ©®, or the point in the coils with the highest temperature.
Exceeding a threshold temperature for long periods of time causes in-
creased aging, so the nominal power limit corresponds to a hottest spot
temperature that can be held without abnormal detrimental aging ef-
fects. We measure the transformer’s aging via percent loss of life over a
certain elapsed time period. Calculating the percent loss of life requires
tracking the hottest spot temperature evolution over time using these
equations:

2 n
TO,U (L'}jrl{) R+1
U TO,R
A0, " = A® B (32)
(55)- (55
2070% | =\ aeTor
:—(]) — ;TO.R 1 ] (33)
20700\ % ( aer0 \
2070k | | aetor
TO _ TO.U TO —t TO
a079 = (809" - 201?) (1 —exp <%>> + 6] 349
Tr+1
H H,R (7 PU\2m
A9 =A0"R (L) (35)
0 =0/ + 2070 + AO] (36)

Egs. (32)-(34) govern the change in top oil temperature due to trans-
former loading, and Eq. (35) calculates the hottest spot temperature rise
due to loading. Eq. (36) yields the hottest spot temperature at each time
step by summing the ambient temperature, top oil rise, and hottest spot
temperature rise.

From the hottest spot temperature, we then calculate the rate of
accelerated aging, equivalent aging factor, and the percent loss of life:

15,000 15,000
FAA = ex . - 37)
! p< 383 ef +273>

T AA
Do AtF,

FEQA _ - (38)
2. At
EQA
gror = 100 FT (39)
normal

The rate of accelerated aging FA# is a function of hottest spot tempera-
ture Eq. (37). Integrating FAA over the simulation period and dividing
by total simulation time yields the equivalent aging factor FEQA shown
in Eq. (38). Lastly, the percent loss of life shown in Eq. (39) relates the
equivalent aging factor with the rated lifetime, LT, /a1

4. Case study

To simulate each optimization scheme, we analyze a dataset with 48
unique homes in San Jose, California in 2018. We use simulated home
load data from NREL ResStock [46]; each home has a solar PV array
and home loads. We generate Level 2 home EV charging data to assign
to each home from the NREL OCHRE residential energy model [47]. We
assume a perfect power factor and that the battery is able to execute
commands exactly (i.e., there is no error or bias in the battery’s setpoint
and sensor readings).

To calculate the cost of electricity for consumers, we construct a cost
vector C based on PG&E’s EV2-A TOU rate plan [43]. The total simula-
tion time horizon is four weeks, and we separately simulate four weeks
in January and July 2018 beginning on a Monday (January 8 and July 2,
respectively). The MPC horizon is one day. These and other simulation
parameter values are listed in Table 3. In this table, the battery capac-
ity and power limit parameters indicate those of each individual battery,
not the aggregate. The transformer penalty weight, 4, is set to 4 = 100 to
balance the system electricity costs with the transformer penalty value.
The final electricity costs reported do not include this penalty value.
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Table 3
Parameter values.

Parameter ~ Value Parameter ~ Value

TMPC 24 AQTO-R 65°C

T 1344 ¢TOR 8.738s

A 100 R 3.625

a 0.01 o4 25°C

At 0.5h A@H-R 15°C

n 0.9487 Lnormal 180,000 h
Emax 13.5kWh bt $5550
Blischs 5 kW Nexe 1400

B 5 kW

'max

For each simulation month, we run 50 trials, sampled as described
in Section 2.7. This sampling yields a different number of homes in each
trial for January and July. Based on this random selection of homes,
we observe between 6 and 22 homes located downstream of the trans-
former. In particular, in January, each trial has an average of 12.6 homes
with a standard deviation of 2.7 homes, and in July, each trial has an
average of 16.1 homes with a standard deviation of 3.4 homes.

5. Results

To highlight the impact of virtualization on battery control, we com-
pare the individual, joint, hybrid, and dynamic schemes to a system
without a battery. Analyzing both transformer protection and cost re-
duction metrics reveals differences in each scheme’s performance. We
also examine the effect of changing battery partition sizes in the hybrid
case. Next, we analyze the sensitivity of the schemes to different pric-
ing plans, imperfect forecasts, different seasons, varying EV penetration
levels, and battery aging costs. Finally, we present experimental results
from a small-scale physical testbed.

5.1. Meter and transformer impacts of battery aggregation

While the individual scheme, in which each homeowner controls
their own BESS, shows a drastic improvement over a system with no
BESSs, it still does not fully utilize the full BESS potential. Fig. 2 com-
pares the aggregate meter values for the system in the first week of
July 2018 for a single trial. On each of the plots (individual scheme
in Fig. 2(a) and joint scheme in Fig. 2(b)), the black curve shows the ag-
gregate (summed) net meter for the collection of homes in the trial. The
gray curve shows the net meter with no BESSs present in the system. The
shaded areas indicate the BESS behavior that makes up the difference
between the black and gray curves (green shading is charging while red
shading is discharging). As shown in the green shaded areas, the BESS
takes advantage of excess solar to charge. It uses this to discharge in the
evening to offset high evening loads (shaded red).

The joint scheme maintains the aggregate meter under the trans-
former limit for the entire simulation period, but the individual scheme
violates the limit in the first few hours of the week, as shown by the black
curve exceeding the blue transformer limit line. This result is highlighted
in the direct comparison in Fig. 2(c). The joint scheme utilizes the full
aggregate BESS capacity to minimize excess solar generation that would
otherwise be curtailed. The individual scheme cannot capture this ex-
cess solar. For example, on 7/6, the joint scheme BESS uses all of the
excess solar, which the individual scheme cannot achieve.

Fig. 3 displays the HST and percent loss of life during the first week
of July 2018 for the same single trial. While there is a cumulative low
loss of life without a BESS, the HST often spikes more than 20 °C above
the individual and joint schemes with a BESS, whose HST remains below
70 °C during this week. The individual and joint schemes have similar
losses of life, underscoring that just adding BESSs to a system without ag-
gregation still has a substantial effect on transformer protection. Lastly,
this plot demonstrates that loss of life is monotonically increasing: no
loading pattern can decrease loss of life.
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Fig. 2. Aggregate meter comparison between (a) individual, (b) joint, and (c)
both schemes for the first week in July 2018. The gray curve indicates the ag-
gregate meter (sum of net meters of all homes) before adding the BESSs, and
the black curve indicates the meter after adding the BESSs. (c) Overlays the no
BESS, individual, and joint optimization, highlighting that the joint scheme best
utilizes available solar generation. By sharing the BESSs, the joint scheme can
maintain the meter under the transformer limit for the whole week, while the
individual scheme cannot.
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Fig. 3. (a) HST with no BESS compared to individual and joint optimization. For
this week of simulation in July 2018, having no BESS substantially raises HST
values during the load peaks. (b) Percent loss of life for no BESS, individual, and
joint optimization. The HST spikes correlate directly to larger increases in loss
of life.

5.2. Transformer loss of life and cost reduction metrics

Given similarities in transformer protection, the main difference be-
tween the individual and joint schemes lies in the total electricity costs.
Fig. 4 shows the loss of life (a) and total costs (b) for each scheme for
four weeks of July 2018. Each scheme is effective in protecting the
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transformer, but aggregating the batteries with the joint, hybrid, and
dynamic schemes introduces cost savings of between 27 % and 56 %
over the individual scheme.

Although the median value of loss of life with no BESS is low at
0.36 %, almost 25 % of the trials in the no BESS case exceed 2 % loss
of life in July. Continuing at this rate of degradation, these transformers
will reach their end of life in just over four years, well below the expected
lifetime of 20 years [44]. For the schemes with a battery, the loss of
life incurred in July is negligible, since the battery allows the aggregate
meter to remain at or below the transformer nameplate capacity.

The differences in costs for each scheme are more distinct. The joint
scheme offers a 76 % median cost decrease compared to the no BESS
system cost. The median costs slightly rise across the joint, hybrid,
and dynamic cases from $1082 to $1119 and $1158, respectively. The
joint case has the lowest total cost because it utilizes the battery most
efficiently with complete sharing.

However, the hybrid and dynamic schemes retain a portion of the
battery that is not shared. This provides a crucial component for home-
owner peace of mind: the ability to autonomously control their battery.
For example, in a blackout scenario, a homeowner might want to leave
some charge in reserve. Or, they might want the ability to participate
in lucrative demand response programs. Given similar transformer aging
and costs, the hybrid and dynamic schemes are almost as effective as the
joint scheme but with the added benefit of a retained battery partition.

In the individual scheme with uneven transformer limits, each home
has unique but static transformer limit allocation. Despite the flexibility,
this scheme does not perform better than with an equal limit: trans-
former loss of life is slightly worse. Since homes better utilize their
transformer limit, the aggregate meter reads closer to the transformer
nameplate limit, elevating the HST and accelerating aging. As costs
are primarily driven by battery availability, a higher transformer al-
location does not translate into cost savings in the absence of battery
aggregation.

Finally, the dynamic scheme has slightly lower costs than the hybrid
scheme due to the time-varying partition weights. With these dynamic
weights, underutilized retained partitions are converted into shared
partitions to reduce costs.

4 a)
L 21
=
u—
o 4 -
0
0
o — —
4
0.004 4
= == ==
0.000 T T T T T :
No BESS Indiv. Indiv. Uneven Limit Joint Hybrid Dynamic
b)
5000 A
4000 A
@
+ 30001
o
© 2000 %l
1000
0+ ; ; : : : :
No BESS Indiv. Indiv. Uneven Limit Joint Hybrid Dynamic

Fig. 4. (a) Percent loss of life over the month of July 2018 comparing each
scheme. (b) Total system electricity costs for July 2018. The boxplots indicate
results from 50 trials. Including a BESS decreases transformer aging substan-
tially, and introducing aggregation through virtualization has a strong effect on
cost reduction. Joint optimization, or complete sharing, performs the best in
both transformer and cost metrics.
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5.3. Sensitivity of hybrid scheme to partition fractions

In Fig. 4, the hybrid scheme is shown with fixed, 50 % partitions for
the shared and retained battery partitions. This means each homeowner
retains half and shares half of their battery. To examine the effect of
changing this fixed partition value, Fig. 5 varies the fraction of shared
battery from 0 % (individual scheme) to 100 % (joint scheme).

Sharing only 75 % of the battery yields similar total costs to 100 %
sharing. The median cost for 75 % sharing is only 14 % worse than the
median for 100 % sharing. For many homeowners, this difference may be
irrelevant when considering the benefits of complete control over 25 %
of their battery. For example, the homeowners could recoup this 14 %
cost differential by using their 25 % retained partition to participate in
lucrative demand response programs.

Understanding this critical point of 75 % sharing is important in im-
plementing this algorithm in a real system. These results reveal that
there needs to be more than 50 % sharing to achieve the cost bene-
fits of joint optimization, but 100 % sharing is not necessary to reach
these cost minimums.
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Fig. 5. Sensitivity to different partition fractions for the hybrid scheme for July
2018 over 50 trials. While there is a large spread between trials, sharing only
25 % does not decrease costs, but sharing 50 % or more has substantial cost
reductions. Complete (100 %) battery sharing yields the lowest costs.

5.4. Dynamic partitioning with varying electricity pricing plans

When every home is subscribed to the same TOU rate structure, the
dynamic scheme improves transformer loss of life but increases costs
slightly compared to the hybrid scheme. In practice, homes in a neigh-
borhood may be subscribed to different rate structures depending on
their load usage patterns. When peak price periods are not consistent
among homes, dynamic partitioning offers flexibility to share battery
partitions when other homes need them and retain partitions for homes
experiencing peak pricing.

To test this, we run a modified version of the individual, hybrid,
and dynamic schemes in which each home is assigned a random price
structure among the EV2-A, EV-B, and TOU-D structures. The individual
term calculating the cost of the individual home meter (the first term
in Eq. (17)) is subject to this randomly chosen price structure while the
pricing for the joint term remains the EV2-A structure.

Fig. 6(a) compares the three price structures, which vary by both
peak price value and timing. Fig. 6(b) plots the average retained parti-
tion weight (i.e., the partition of the battery kept by the homeowners)
for the dynamic scheme, separating each group of homeowners by their
pricing structure. All three groups’ weights step up or down each time
a pricing structure changes. This reflects the dynamic scheme’s ability
to re-adjust the partitions so the operation is cost-optimal. The retained
weight is higher during peak times when the prices are highest, which is
expected as homes need a greater fraction of the battery to offset home
loads during peak periods.

Fig. 7(a) shows the transformer loss of life for each scheme com-
pared to the no BESS scenario. The dynamic scheme yields the lowest
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Fig. 6. (a) Prices for one weekday for PG&E EV2-A, EV-B, and TOU-D rate
structures. Both the magnitude and timing of peak pricing vary between the
rate structures. (b) Average retained partition weight for each timestep for the
dynamic scheme. The weights change corresponding to changes in the rate
structures.

transformer loss of life. Fig. 7(b) examines the individual partition costs
for each scheme, indicated with hatching to differentiate from the to-
tal costs shown in Fig. 4. For the hybrid and dynamic scheme, this is
calculated by the optimal value of the first term in Eq. (17).

It is expected that the hybrid scheme has higher costs than the indi-
vidual scheme, since only 50 % of each home’s battery is represented
in this cost calculation while the individual scheme utilizes 100 %.
However, although the dynamic scheme shares only 38 % and retains
62 % of the battery on average across all homes and trials, it still achieves
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Fig. 7. (a) Loss of life for no BESS, hybrid with 50 % weights, and dynamic
schemes for 50 trials on July 18 with homes on varying rate structures. (b) Sum
of individual meter costs for each scheme, representing the first term in the
objective function for hybrid and dynamic schemes. The dynamic scheme has
similar costs to the individual scheme due to its temporal flexibility.
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similar costs as the individual scheme. This result demonstrates the
value of virtualization’s temporal flexibility. By changing partitions over
time, the dynamic scheme can retain only the minimum necessary bat-
tery fraction and share the remainder, leading to similar costs as the
individual scheme but better transformer protection.

5.5. Sensitivity to imperfect forecasts

All the simulation results above represent optimization algorithms
with perfect foresight, meaning the problem is solved with knowledge
of exact solar and load profiles over the simulation horizon. In practice,
this is not the case as forecasts are often imperfect. MPC adjusts for this
by re-solving the optimization problem at each timestep with a short
forecast horizon and updating the SOC based on actual solar and load
values once they occur.

Fig. 8 shows the transformer aging and cost for the schemes using
MPC instead of perfect foresight. We do not test MPC on the dynamic
scheme as its performance depends on perfect load and solar foresight
over the entire time horizon. Overall, transformer aging and costs follow
the same patterns as seen with perfect foresight control. The individual
scheme is not as cost-effective as the joint scheme. However, the indi-
vidual scheme is still preferable to the no BESS system, even with the
slightly worse performance of MPC.

Fig. 8(c) shows the percent cost increase for each scheme using MPC
compared to the cost using perfect foresight. Cost increases for individ-
ual and individual with uneven limit are around 10 %. The cost increase
spread grows with the schemes that incorporate battery sharing, but the
median differences are still less than 25 %. This discrepancy is because
with a shared battery, an inaccurate forecast for one home may affect
the entire shared battery, but with the individual scheme, the inaccurate
forecast would be confined to just a single home. This phenomenon ex-
plains the larger cost increase spread for the joint and hybrid schemes.
The deviations for transformer aging are also small; the greatest aging
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Fig. 8. (a) Percent loss of life over the month of July 2018 comparing each
scheme solved with MPC. (b) Total system electricity costs for July 2018 with
MPC. (c) Percent cost increases for each scheme using MPC compared to perfect
foresight. The boxplots indicate results of 50 trials. Using MPC has minimal
impact on transformer aging and a small impact on costs, with a 25 % median
increase for joint optimization.
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increase for July 2018 is 5 % for joint optimization. We also find that
these results hold across seasons such that battery sharing with MPC is
still cost-optimal compared to the No BESS case.

The MPC cost increases correspond to a range between a $91.96
increase for the hybrid scheme to $269.31 for the individual scheme.
Although the joint scheme has the greatest percentage median cost
increase, in unnormalized dollars, the individual scheme has the greatest
increase. The results show that even with a cost increase, MPC imple-
mentation is still cheaper than with no BESS. Better forecasting can
mitigate these increases even further. Ultimately, the cost increases only
amount to between $5.75 and $18.50 per home compared to perfect
foresight, indicating that deploying these algorithms in a real system is
economically viable.

5.6. Seasonality effects

The July simulation results are not necessarily representative of sys-
tem behavior during the rest of the year. To ensure the optimization
yields similar transformer protection and cost savings, Fig. 9 presents
results for each optimization scheme for January 2018.

In January, owning a BESS is still effective, but the cost savings are
not as drastic. Although transformer loss of life is an order of mag-
nitude worse than July, the aging still remains under 0.08 % for all
schemes. On the cost side, individual and joint optimization only offer
a 21 % and a 30 % cost reduction, respectively, compared to no BESS.
Although January loads are lower because there is no need for air con-
ditioning, lower solar generation is the main reason for the discrepancy
between January and July. Less excess solar means there are fewer op-
portunities for the BESSs to charge for free from solar and discharge
to offset power at expensive peak times. Regardless, these results prove
that BESS optimization is worthwhile across the whole calendar year,
though its impact (cost reduction or transformer protection) varies over
the seasons.

5.7. Sensitivity to EV penetration and battery aging

The results from Sections 5.1 to 5.6 assume both 100 % EV pene-
tration (i.e., every home has one EV charger) and no economic effects
from battery aging. However, in real neighborhoods, some homes may
not have an EV and the cost of battery degradation may be substantial.
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Fig. 9. (a) Percent loss of life over the month of January 2018 comparing each
scheme. (b) Total system electricity costs for January 2018. The boxplots in-
dicate results of 50 trials. Due to limited solar, loss of life is worse and cost
reduction is not as effective compared to July performance.
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We test the algorithm’s sensitivity to both EV penetration and a cost
on battery aging. Fig. 10 compares the costs for each scheme between
the original simulation, a simulation with 50 % EV penetration, and a
simulation that includes a battery degradation cost per cycle.

As expected, the costs are lower in each scheme with 50 % EV pen-
etration. Joint optimization still yields the lowest cost as it best utilizes
available solar generation. However, the battery aging costs do not fol-
low a consistent pattern across all schemes. In the individual scheme,
adding a cost per cycle increases the median cost by 15.1 %, but the costs
only increase by 2.5 % and 8.2 % in the hybrid and dynamic schemes,
respectively. This result suggests that the impact of battery aging costs
is relatively smaller in these hybrid battery sharing schemes.
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Fig. 10. Comparison of July 2018 costs for each scheme between original, 50 %
EV penetration, and included battery aging cost simulations. The boxplots in-
dicate results of 50 trials. With 50 % EV penetration, the median costs are
consistently lower than with 100 % EV penetration across all schemes. Adding
a battery aging cost has a greater effect when the batteries are not shared (i.e.,
in the individual schemes).

5.8. Small-scale physical system demonstration

The results presented in Sections 5.1 to 5.7 are based on simulated
home load, solar, and EV data. In real world implementation, factors
such as communication delays and setpoint errors can affect the efficacy
of the battery commands. To quantify these delays and errors, we design
a small DC testbed study using a 20 Ah LiFePo4 battery and a 1.6 Ah
lithium-ion battery connected to a power supply that emulates the grid
and an electronic load that emulates home loads in a community. This
study highlights how battery injection reduces the power pulled from
the grid through the transformer and shows battery response time to
setpoint commands.

To illustrate setpoint errors and battery response times, we run a
30 second experiment with varying battery setpoint commands under
a constant load of 0.8 A. Fig. 11 shows the system response to battery
injection. The current being pulled through the transformer, shown in
Fig. 11(c), highlights the grid’s response to changing battery setpoint
commands. On average, the grid takes 1.00 s to respond to the setpoint
commands while the batteries take 0.92 and 1.44 s, respectively. The
setpoint errors are relatively minor for both batteries and the grid with
RMSE values of 0.08 A, 0.06 A, and 0.24 A, respectively. In any real
world electrical system, perturbations around the setpoint are antici-
pated. Overall, the communication delays are negligible under the time
intervals simulated in this study.

6. Discussion

The results show that all of the optimization schemes reduce trans-
former aging substantially over the course of the month-long simulation
periods. Joint, hybrid, and dynamic schemes highlight the impact of
battery sharing on both reducing costs and mitigating transformer aging.

Virtualization is crucial to achieving maximum cost reduction in joint
optimization. However, with only 50 % sharing, the hybrid scheme re-
duces the total community cost incurred during the month of July 2018
by 57 %. Sharing 75 % of their batteries allows homeowners to be within
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Fig. 11. (a) Battery 1 command and actual current. (b) Battery 2 command and
actual current. (c) Command and actual current provided by the grid, which is
equal to 0.8 A minus the current from batteries 1 and 2. The commands sent to
batteries 1 and 2 are annotated. While there is a settling time delay, it is only
1 s on average.

14 % of the optimal lowest cost while still maintaining control over a
modest fraction of their batteries.

The effect of variable solar generation across seasons is substantial.
Reduced solar generation in January leads to diminished cost savings,
but the role of batteries is still prominent. These seasonality effects may
also change in different geographical locations depending on solar and
other variable energy generation penetration.

There are slight differences in transformer protection between opti-
mization schemes. The patterns vary seasonally: in the summer, battery
sharing leads to slightly better transformer protection, while in the
winter battery sharing is slightly worse for the transformer. This phe-
nomenon results from varying battery utilization among the schemes.
Operating at the transformer limit results in greater aging than operat-
ing well below the limit, even if the system never exceeds the limit in
either case. The difference between the individual scheme and individ-
ual with uneven transformer limit allocation scheme also occurs because
of this utilization pattern. By optimizing each home’s limit allocation,
each home is more likely to operate closer to its limit, thus pushing the
aggregate meter toward the nameplate limit.

Overall, complete sharing of batteries (joint optimization) is the most
effective scheme for minimizing community costs and mitigating trans-
former aging. The results show a 76 % and 30 % decrease in costs
compared to the no BESS case in July and January 2018, respectively. In
the worst case of joint optimization in January 2018, the 0.07 % loss of
life over the month would still yield a transformer lifetime of 119 years.

While the hybrid and dynamic schemes have comparable transformer
protection to pure joint optimization, they are less cost-effective. Partial
sharing of the batteries mitigates the worst of the peak loads to effec-
tively reduce aging, but without complete sharing, there is still some
underutilized storage accounting for the higher total costs.

The schemes are robust to both varying EV penetration and a battery
aging cost. Similar trends hold when testing sensitivity to those parame-
ters: joint optimization is still the most cost-effective, but by leveraging
virtualization, hybrid and dynamic optimization are preferable to the
individual cases while still allowing homeowner autonomy.

6.1. Implementation considerations

Each of the schemes provides value for transformer aging when com-
pared to systems without batteries, but the flexibility of the hybrid and
dynamic schemes can better meet various goals and requirements of
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community members. To implement these schemes in practice, there
are many additional considerations including imperfect load and solar
forecasting, cost structure, battery aging, and algorithm scalability.

First, the MPC algorithm is susceptible to inaccurate solar or load
forecasts, making the batteries charge at inopportune times. This can
occur in two scenarios: when actual loads are greater than forecasted
loads or when actual solar generation is less than forecasted genera-
tion. This inaccurate forecasting can lead to suboptimal battery behavior
that momentarily violates the transformer limit. Ultimately, minimizing
transformer aging and costs with MPC is sensitive to forecasting ac-
curacy, and further work will explore MPC performance with a more
accurate forecast.

Deploying the joint, hybrid, or dynamic schemes also requires a new
electricity cost structure. This raises questions about cost fairness, bat-
tery partition sizes, and responsibility for system upgrades, operation,
and maintenance costs. The utility must decide how to bill shared grid
imports and exports and divide costs fairly among homeowners. To
implement a new cost structure, each home needs its own meter to ac-
curately measure load, solar, and battery output. A central aggregator
could serve as a global controller and communicate with the utilities and
homeowners about pricing, but the exact cost structure is dependent on
existing local distribution grid infrastructure.

Battery aging is another concern in real world implementation. In
each scheme, we find that the battery generally completes one full
discharge and charge cycle per 24 h. This usage in the individual scheme
is covered under Tesla’s warranty policy: ten years of coverage with un-
limited battery cycling for solar backup and load shifting or a 1400
charge and discharge cycle limit for other uses [42]. If homeowners
use their battery partition for other programs such as grid frequency
response or ancillary services, then battery usage should be restricted to
using 140 full cycles per year, or 38 % of the battery capacity per day.

When adding a cost per cycle to the simulation, the total electricity
cost increases for each scheme, from 2.5 % to 21.2 % depending on the
scheme. This reflects that when adding a cost per cycle, it is financially
advantageous for the system to complete fewer cycles to prolong the bat-
tery lifetime, even if doing so increases electricity costs. However, this
cost increase associated with battery degradation still does not exceed
the costs for the system with no batteries at all, indicating that batteries
are still economically preferred.

While we test the algorithm on a small, 25 kVA residential trans-
former, the optimization schemes can be applied to systems with larger
transformers, which may add more batteries and more decision vari-
ables in the optimization problem. Solving for a longer time horizon or a
smaller time granularity also increases the number of decision variables.
Since the optimization problem is convex, it is scalable to a larger prob-
lem and does not pose time constraints when solving at fast frequency
with MPC. Virtualization software can also be scaled to large systems;
in a simulation of 600 virtual batteries, latency from the virtualization
software accounts for only half of the total system latency [32]. Lastly,
incorporating a transformer penalty that only relies on the transformer
nameplate limit and not on device-specific parameters also facilitates
deployment in a variety of physical systems.

In real world implementation, virtualization is imperative to dis-
tribute battery charge and discharge instructions to each constituent
physical battery. Virtualization serves multiple roles in this distribution
process, such as allowing the system to re-calibrate if one battery drops
offline and enabling the system to change battery partition weights fre-
quently, as in the dynamic partitioning scheme. Without virtualization,
homeowners could either control an individual battery and risk under-
utilizing an expensive asset, or they could buy into a centralized, shared
battery with no individual autonomy. Virtualization makes this combi-
nation possible while ensuring the system is robust in the face of system
outages, additions, or changes.

Each of these implementation challenges is critical for home and EV
owners, policymakers, utilities, and aggregators to consider. While utili-
ties and aggregators may be concerned with the scalability and flexibility
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of the algorithm to deploy it in heterogeneous distribution systems,
homeowners may be more focused on their direct costs of buying a
battery and buying into a shared battery system. On the other hand,
policymakers need to understand implementation challenges and asso-
ciated costs to help design rebates or incentive programs that aim to
ensure equitable deployment. All of these stakeholders must collaborate
to fairly and successfully deploy this shared battery system.

6.2. Limitations

Battery sharing algorithms have limitations. This work does not focus
on cost allocation fairness, forecasting accuracy and prediction models,
and battery control execution.

The question of how to fairly allocate the benefits of battery shar-
ing still remains. This paper only provides an assessment of total system
cost and does not report a breakdown of costs among homeowners. In an
aggregation scheme, splitting the cost savings equally among all home-
owners would not be fair to homeowners who are already able to manage
their loads individually. Two other potential options are scaling the sav-
ings based on a home’s peak power or total energy throughput. Future
work will explore the differences in cost allocation schemes, including
which type of homeowner benefits from each scheme.

Our simulation also has the limitation of a simplified perfect fore-
sight prediction model for EV charging. In reality, EV drivers may not
know their exact charging needs one day in advance. A deviation from
this prediction has the potential to exacerbate transformer aging with a
high load, especially if multiple EVs in a neighborhood charge simulta-
neously. If hardware and computational capabilities allow, a short MPC
timestep (i.e., quickly correcting forecasting errors) could rectify this
problem. Alternatively, a smart charger or other peak load management
system could serve as a backup to curtail load in case of incorrect EV
demand forecasting.

Lastly, we only examine the effect of long latencies or battery set-
point control errors in a small DC testbed. In a grid-scale system, the
residential batteries may not be perfectly controlled. While the MPC
corrects for setpoint errors, long latencies could reduce the algorithm’s
performance if they are beyond the seconds scale as observed in the DC
testbed. To mitigate these effects, engineers should perform extensive
physical testing with the algorithm to understand any latencies across
different battery management systems.

7. Conclusion

This work presents a comparison between different battery sharing
optimization schemes enabled by battery virtualization. The schemes
aim to reduce consumer electricity bills and mitigate residential trans-
former aging. We find that sharing the batteries results in both lower
costs and similar transformer protection than a scheme where owners
optimize their batteries individually. While the joint scheme offers the
highest battery utilization, the hybrid and dynamic schemes, or com-
binations of the individual and joint schemes, yield similar costs and
transformer protection while still allowing homeowners to keep part of
the battery for themselves. By employing virtualization, the dynamic
scheme improves individual costs further by changing the retained and
shared partition to maximize utilization. Lastly, the proposed model pre-
dictive controller allows for real time implementation that is robust to
forecast error.

Future work will explore higher fidelity forecasting methods, sim-
ulations on different configurations of batteries and transformers, and
experiments on physical battery systems in homes. To test and im-
plement our algorithms in a neighborhood, a central controller or
aggregator must also decide how to fairly allocate cost savings. Both
fair pricing and best practices for collaboration between aggregators,
utilities, and homeowners are other areas of future research.

Ultimately, residential battery virtualization empowers homeowners
to optimize their batteries to protect shared neighborhood transformers
and reduce costs for the entire community. As EV sales continue to
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grow and more homeowners install Level 2 EV chargers, residential
distribution transformer overload will become a more pressing prob-
lem. Our BESS optimization schemes offer the flexibility for homeowners
to install chargers without compromising neighborhood transformer
lifetimes.
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