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Abstract— A renaissance of memory research has created
many memory technologies with various trade-offs. Yet,
computing systems are bottlenecked by memory accesses.
How do we unlock the use of these emerging memories to
overcome this bottleneck? We envision systems consisting of
massive memories that are diverse and tightly integrated with
compute, from the device technology to the software levels.
I. INTRODUCTION

Future computing systems must do more with less: higher
throughput at significantly lower energy than today.
Otherwise, computing’s energy demands can far exceed
sustainable energy production (projections in [1], [2]).
Workloads such as Artificial Intelligence/Machine Learning
(AI/ML) require massive off-chip memory and are throttled
by the “memory wall” — significant time and energy spent
shuttling data between compute and memory chip(s) [3]. This
memory wall worsens as semiconductor technologies face the
“miniaturization wall” — the inability to gain device density in
2D due to physical limits and fabrication complexity [4]. We
face these walls just as memory needs explode for AI/ML, big
data, and networked systems [5]—[7]. Thus, the large demands
on memory, the memory wall, and the miniaturization wall
are three critical challenges for future computing systems.

While software generally assumes a random-access
memory address space with uniform latency and bandwidth,
software use of that memory is far from uniform. Von
Neumann recognized this fact, stating that “various parts of
this memory have to perform functions which differ somewhat
in their nature and considerably in their purpose” [8]. While
the current hardware memory hierarchy — SRAM, DRAM,
Flash — is already diverse, these devices alone are insufficient
to meet software needs. Instead of expecting new devices fo
replace existing memory, we must focus on integration of
memory with new capabilities as a tool in our toolbox.

For logic circuits, the field-effect transistor (FET) reigns
supreme: we assume that will continue to be the case. In
contrast, for memory, an abundance of new and traditional
devices use a variety of physical mechanisms and materials
[9], [10]. Software and system architects typically want
memory that is better in all attributes; instead, we should
exploit the wide range of tradeoffs across technologies (Table
I) because domain specificity offers high efficiency. Memory
research currently often focuses on optimizing individual
attributes (e.g., specific entries in device comparison tables,
as in Table II). Instead, we must match sets of desired
attributes derived from software use cases (Sec. II).

Beyond being massive and diverse, memory must be
tightly integrated with compute. Von Neumann “ideally ...
desire[d] an indefinitely large memory capacity” with any

"word ... immediately available ... considerably shorter than
... a fast electronic multiplier.” [11] Similar desires hold true
for energy. We envision tightly integrated — both physically
and architecturally — compute-memory systems: memory
matched to software, with abstractions to expose and exploit
diverse memory attributes (Sec. II, Fig. 2).

Unable to achieve this capacity, and ‘“forced” into “a
hierarchy of memories” [11], the memory wall is often
incorrectly attributed to the von Neumann architecture ([12],
[13]). Physical implementation of memory hierarchy with
latency-capacity tradeoffs has led to memory sub-systems in
separate chips for technological, cost, and business reasons
(e.g., SRAM, DRAM, Flash). However, it is conceivable to
integrate massive, diverse memories onto compute chip(s);
we must focus on system-level benefits this brings (Sec. I1I).

Thus, irrespective of the architecture — von Neumann or
non-von Neumann, we must provide: (1) massive amounts of
memory with (2) diverse functionality, (3) tightly integrated
both physically and architecturally with compute (Fig. 1). We
must (4) exploit this integration in the software stack. We
focus on points (1)-(3). (4) is beyond this paper’s scope.

II. SOFTWARE USE CASES FOR DIVERSE MEMORIES

We focus on compute and memory, with bulk data storage
out of our scope. We consider three (of many) use cases (Fig.
3). Attributes include: (1) read/write access frequency; (2)
read/write address predictability (e.g., sequential access by
address order); and (3) data lifetime (i.c., time from variable
creation to destruction). Based on such software use cases,
diverse memory technologies degenerate into bands (Table
III). These bands guide future optimizations in a vast, multi-
dimensional design space (Fig. 4). For each band, we must
optimize the relevant combination of attributes, rather than
focusing on a sole few and neglecting others.

Type A. Frequent Reads, Infrequent Writes, Predictable
Accesses: Such software writes data rarely and reads written
data many times, with predictable (often sequential) accesses,
which enables data aggregation with write buffering and read
pre-fetching. Examples include types of AI/ML inference
weight memory and processor instruction caches (a few
thousand instructions executed billions of times — Fig. 3). The
write vs. read imbalance presents an opportunity to trade
write costs (energy, latency, endurance) for better reads
(energy, delay, retention) which must be co-optimized with
density, technology choice (e.g., MRAM, RRAM, PCM), and
encoding (e.g., multi-bit/cell). While reads are prioritized,
some minimal write characteristics are required depending on
system needs (e.g., hourly model updates for Large Language
Models). For example, improving MRAM/RRAM endurance
alone without improving write energy may not be sufficient
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for energy-constrained systems (Fig. 5 (a)), as utilizing
gained endurance cycles can come with a large energy cost.
Type B. Frequent Writes, Few Reads per Write, Short
Data Lifetime: In this use case, software writes data in (often
sequential) blocks, and soon reads it (sometimes only once),
discarding it thereafter (e.g., streaming 1/O, AI/ML
activations, and data analytics, with block sizes and write-to-
read times of 10’s of kB in 10’s of pus [14], MBs in ms [15]-
[18], and 1-128MBs in seconds [19], [20]). Short data
lifetimes enable trading retention for speed, density, or
energy efficiency (e.g., gain cells [21], [22], MRAM [23],
and FeRAM [24]). Consider retention-speed trade-off curves
in gain cell design [21], [22] (Fig. 5 (b)): design choice (V)
along this curve must be driven by the application. This curve
can shift towards ideal corners by other design knobs (e.g.,
voltage), device improvement (sharper on/off transition or
lower SS), or circuit innovations (e.g., hybrid gain cells [25]).
Type C. Random Reads, Sequential Writes: Such software
reads randomly (e.g., Zipf-like) but writes sequentially across
contiguous blocks, e.g., buffers for a file system. For
example, during memory defragmentation, randomly updated
values are read and written sequentially back (e.g., in live
data write logs). Random read delay can be hidden via multi-
threading, but low read energy is critical. On-chip gain cells
offer much lower access energy than today’s off-chip DRAM.

III. TIGHT INTEGRATION WITH COMPUTE

The physical layer of memory-compute integration is
illustrated in Table IV. High bandwidth memory access
requires high connection density between memory and
compute [26]-[29]. While today’s 2.5D/3D advanced
packaging has connection densities that are far lower than on-
chip integration, the pin pitch of packaging technology is
projected to shrink to below 1 pm [30], [31], thus providing a
continuum of 3D interconnects down to very fine-pitched
(10’s of nm via monolithic 3D integration). These high
connection densities enable re-architecting the system to
exploit potentially massively increased bandwidth [26], [27].

Compute-in-memory (CIM) architectures aim to reduce
data movement by performing computations directly within
memory arrays. While CIM performs matrix-vector
multiplication with high parallelism [32], AI/ML models
require  additional  operations, e.g.,  vector-vector
multiplication for attention [17] and depth-wise separable
convolution [18], that are challenging for CIM [33].
Programmability and flexibility are especially challenging as
the memory/compute elements are fixed at design time.

Analog CIM non-volatile memory (NVM) device non-
idealities (Fig. 6 (a)) degrade accuracy due to large device
variations, weight programming non-linearity, limited on-off
ratios, state drift, and array IR drop [34]. Even chip-in-the-
loop fine-tuning fails to maintain software accuracy for
RRAM-based CIM [35]. Analog CIM requires costly DACs
and ADCs to convert/quantize data, limiting energy
efficiency, throughput, and density [35], [36]. Small weight
kernels have low array utilization and can’t amortize these
input and output peripheral circuits. Large weight kernels that
exceed single memory array capacity require post-ADC

digital accumulation, reducing energy efficiency [37], [38].
Analog CIM exhibits attractive array-level energy efficiency
for low-precision operations (e.g., <10 fJ per 4-bit OP), but
this diminishes rapidly with bit width (e.g., >100 fJ per 8-bit
OP) due to extra ADC energy to overcome thermal noise:
each extra bit of precision requires quadruple the capacitance
and energy [37]. As CIM arrays get larger, ADCs are noise-
limited, and amortization benefits saturate [37].

Digital CIM follows the same computing model as
traditional digital systems, with separate digital logic and
(digital) memory elements. Digital CIM provides full bit
accuracy, avoiding analog CIM’s SNR limitations. In some
cases, logic elements are tightly integrated within the array
itself (Fig. 6 (b)). To match memory cell pitch and achieve
high density requires simple logic elements — for example, 6T
SRAMs modified with a few added transistors to implement
basic logic [39]-[41]. This can impede programmability for
different workloads and increase runtime, e.g., bit-serial
compact ALUs to replace large-area multipliers [39].

If AI/ML models are larger than on-chip capacity, naively
relying on off-chip memory results in the usual memory wall —
regardless of analog CIM, digital CIM or other architectures.
The solution is to orchestrate AI/ML execution across a
system of multiple chips without any off-chip memories,
instead relying on the sum total of each chip’s local on-chip
memory/compute elements [16], [26], [42]. Combined with
special mappings of the AI/ML model to the system to
minimize inter-chip traffic by co-optimizing per-chip memory
size, heterogeneous inter- and intra-chip interconnects, and
idle power via fine-grained power management, such a system
can create the illusion of a much larger chip, e.g., a Dream
Chip with all compute/memory on-chip. Illusion is thus
distinct from traditional parallel processing. Such [llusion
Systems (Fig. 7) have been well established for digital
accelerator AI/ML systems of various sizes (e.g., 8% larger
than single chips) with system-level energy and execution
time within 5% of corresponding Dream Chips [16], [42].

Case Studies — Digital AI/ML Accelerators with Tightly
Integrated Memory: Hybrid Gain Cell (HGC) has 3.6x
density and lower energy than high-current (HC) SRAM (Fig.
8). HGC integrated with RRAM (Fig. 9) [43] for AI/ML
training and inference saves > 80% energy. Fig. 10 shows how
RRAM-based system non-volatility can provide up to 9%
energy benefits vs. traditional memory systems (e.g., SRAM,
off-chip DRAM and NAND Flash), even with foundry RRAM
macros’ similar density to foundry SRAM [15], [16].

IV. CONCLUSION

Memory must evolve from a uniform, random-access view
to a heterogeneous collection of different memories optimized
for different uses [44]. Memory’s diverse characteristic
tradeoffs must be exposed via appropriate abstraction to
software (e.g., endurance vs. retention, energy vs. latency) for
end-to-end  device-system-software  optimization. Tight
integration (monolithic, 3D, 2.5D) of new memory is key to
large capacity, low latency, and high bandwidth. Demands
will still outpace capacity; thus, proper co-design of multi-chip
system communication, e.g., [llusion Systems, is critical.
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Table IV: Memories can be in the logic process itself (SRAM), in package (2.5D/3D chip stacking), monolithically 3D integrated in the back-end-of-line,
or monolithically 3D integrated atop Si FETs in the front-end-of-line. Monolithic integration has higher connection pin density than in-package integration
but requires fabrication at low temperatures. Off-chip package interfaces have limited bandwidth and significant latencies due to the macroscopic size and
high capacitance of package pins and limited number of parallel connections. High-bandwidth memory (HBM) uses 5 — 50 pm-sized through-silicon vias
(TSV) [26],[47] to bring logic and memory closer together, enabling high-bandwidth and lower-energy memory access. The interface protocols (e.g., DDR,
HBM, PCle, CXL, UClIe), are required as off-chip devices are fabricated by multiple entities, but can introduce energy, latency, and bandwidth overheads.

These protocols are managed by software (from device drivers to operating systems), with minimum hardware support such as memory management units.
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high-endurance, high-energy corner is not of interest, as the Fig. 8: (a) Hybrid gain cell has density 3% of HD SRAM and scalable to FInFET nodes with
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that arises from a limited transistor Ion/Ior ratio. Curve shifts ©f 51 nm. (b) ITO FET with Lew = 40 nm, experimentally demonstrated. (c) Cadence
towards ideal corners (green) through other design knobs (e.g. Spectre circuit simulation for hybrid gain cell vs. SRAM memory macro with the same
voltage), device improvements like smaller SS and on/off Pperipheral circuit and array architecture at Snm node. HGC has less area, read energy, and
transition region, or circuit innovations like hybrid gain cells. standby power compared to HC SRAM iso-frequency (2GHz) at the macro-level.
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