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Abstract

Both SRAM and DRAM have stopped scaling: there is no
technical roadmap to reduce their cost (per byte/GB). As a
result, memory now dominates system cost. This paper ar-
gues for a paradigm shift from today’s simple memory hier-
archy toward specialized memory architectures that exploit
application-specific access patterns. Rather than relying
solely on traditional off-chip DRAM and on-chip SRAM, we
envisage memory systems equipped with additional types
of memory whose performance trade-offs benefit workloads
through non-hierarchical optimization.

We propose two new memory classes deserving explicit
OS support: long-term RAM (LtRAM) optimized for read-
intensive data with long lifetimes, and short-term RAM
(StRAM) designed for transient, frequently-accessed data
with short lifetimes. We explore underlying device tech-
nologies that could implement these classes, including
their evolution and their potential integration into current
system designs given emerging workload requirements.
We identify critical research challenges to realize what
we believe is a necessary evolution toward more efficient
and scalable computing systems capable of meeting future
demands.

Keywords: Operating system, Memory architecture, Het-
erogeneous computing, LtRAM, StRAM

1 Introduction
For decades, computer system performance improvements
have been driven by the continual scaling of memory and
compute from Moore’s Law. For memory, that scaling has
ended - the two dominant memory technologies, SRAM and
DRAM, have hit fundamental physical limitations. This has
made memory the primary performance, power, and cost
bottleneck for current and future computing systems.

These scaling limitations have created a critical diver-
gence between compute and memory capabilities. While
processor and network performance continue to improve
through architectural advances, SRAM and DRAM densities
and costs have stagnated. This divergence has profound eco-
nomic implications: memory now dominates system cost,
with DRAM accounting for over 50% of server hardware
costs [34]. As memory to compute capacity ratios fall, appli-
cations are becoming increasingly memory-bound.

This challenge has been exacerbated by the rise of mem-
ory-intensive workloads, particularly artificial intelligence.
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The need for increased bandwidth has driven innovations
such as High Bandwidth Memory (HBM), which uses ad-
vanced packaging to place many DRAM interfaces close to
compute elements [31] for lower latency and higher energy
efficiency [33]. However, such packaging improvements
alone cannot solve the scaling crisis — they cannot overcome
the fundamental scaling limitations of SRAM and DRAM
technologies.

Recent research has begun exploring memory technolo-
gies that trade off characteristics such as retention' and
endurance® for workload-specific memory access patterns
and data lifetimes®. For example, Managed Retention Mem-
ory (MRM) [24] seeks to repurpose storage-class memories
to better serve workloads like large language model (LLM)
inference by trading retention time and write performance
for improved endurance and lower I/O energy. Similarly,
for on-chip memory arrays, gain cell embedded DRAM [28]
achieves DRAM-like density with SRAM-like integration
properties through similar retention trade-offs.

Building on these insights, we propose a fundamental
shift from hierarchical to specialized memory architec-
tures that leverage workload-specific access characteristics.
Instead of exposing numerous heterogeneous device tech-
nologies directly to system software, we advocate for two
new abstractions for classes of memory device technologies:
long-term RAM (LtRAM) for persistent, read-heavy data,
and short-term RAM (StRAM) for ephemeral, write-inten-
sive workloads. These abstractions provide manageable
interfaces for system optimization while enabling diverse
underlying implementations tailored to meet the perfor-
mance requirements of each class.

This paper makes the three following contributions:

1. It proposes LtRAM and StRAM as new memory classes
that define specific performance and lifetime character-
istics needed by modern workloads.

2.1t explores underlying device technologies that could
implement LtRAM and StRAM and examines their inte-
gration into current system designs.

Retention is the time that data is reliably stored in a memory cell
without requiring a refresh.

*Endurance is the number of write cycles a memory cell can support
before it permanently degrades.

*Data lifetime is the duration for which the data must remain persis-
tent and accessible in memory hardware.
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Figure 1: SRAM and DRAM scaling [4]

3. It identifies key research questions that must be resolved
to realize the potential of LtRAM and StRAM in both
single-node and distributed computing contexts.

2 Memory Today: SRAM and DRAM

The typical memory hierarchy in today’s computing sys-
tems consists of SRAM caches on the compute chip (L1,
L2, etc.), off-chip DRAM main memory, and NAND flash or
other non-volatile storage for permanent data, as described
below in Table 1.

Static RAM (SRAM) consists of six transistors per bit,
operates at high speed, statically retains its state while
powered, and integrates easily with compute logic. These
properties have made SRAM the default choice for on-chip
caches and scratchpad memories.

Dynamic RAM (DRAM) consists of a single transistor
and capacitor per bit. The capacitor stores the charge repre-
senting a 0 or 1, while the transistor gates access to the cell.
To maximize density, DRAM capacitors are very narrow
and tall, making integration with high-performance logic
impractical [18, 36]. DRAM cells have limited retention
due to charge leakage and are disrupted by read opera-
tions. Therefore, DRAM subsystems dynamically “refresh”
by reading and rewriting cell contents (e.g., every 32ms for
DDR5). These periodic refreshes consume significant energy
even when memory is not actively accessed.

2.1 The End of Scaling

Both SRAM and DRAM face the same fundamental chal-
lenge: they have stopped scaling. Figure 1(a) shows that
DRAM cost trends have stagnated over the past 15 years.
While smaller DRAM cells remain technically feasible, man-
ufacturing difficulties from capacitor sizing constraints pre-
vent reductions in per-cell cost [4]. Although 3D stacking
can extend density scaling somewhat, the HBM roadmap
indicates that this density increase will stop beyond 20 dies
due to packaging complexity and cost limitations, placing
an upper bound on the capacities of HBM devices [11].

SRAM faces similar constraints. Figure 1(b) shows that
SRAM cell sizes have stopped shrinking significantly since
the 7nm process node [43]. This stagnation stems from
the fundamental physics of SRAM operation, where main-
taining the delicate balance between transistor sizing and
threshold voltages becomes increasingly difficult at smaller
process nodes and lower operating voltages [17].

2.2 Packaging Options

One current approach to address the scaling limitations of
SRAM and DRAM is to innovate in packaging rather than
cell technology.

SRAM is typically integrated inside compute chips but
can also be 3D stacked for greater capacity [37]. There
are even more packaging options for DRAM. Historically
packaged in DIMMs (Dual Inline Memory Modules) for
modularity, DRAM packaging increasingly focuses on low
power and/or high bandwidth options. LPDDR achieves
lower power and higher bandwidth (10Gbps/pin versus
5.6Gbps/pin in conventional DDR) [38] but must be soldered
to boards, sacrificing the reconfigurability of DDR DIMMs
[26]. HBM achieves much higher bandwidth through 3D
stacking of multiple dies connected via silicon interposers
[31]. This complex process requires advanced facilities and
lowers manufacturing yield, making HBM substantially
more expensive than DDR DRAM [34] while constraining
capacity and making terabyte-scale on-package configura-
tions impractical [22].

These packaging innovations offer different perfor-
mance/cost trade-offs but do not solve the fundamental
scaling limitations of the underlying SRAM and DRAM cell
technologies.

3 Escaping the Memory Scaling Trap

To address the scaling challenges of existing memories,
a wide range of alternative memory technologies has
emerged with fundamentally different scaling roadmaps,
including gain cell embedded DRAM [28], ferroelectric
RAM (FeRAM) [30], magnetoresistive RAM (MRAM) [9],
and resistive RAM (RRAM) [39]. Each technology offers dif-
ferent trade-offs in density, endurance, retention, read/write
energies, access times, and on-chip integration capabilities,
making them suitable for different applications even though
they are not drop-in replacements for SRAM or DRAM. This
section quantifies their scaling benefits, examines the con-
straints that prevent drop-in replacement, and demonstrates
how these limitations necessitate a shift toward specialized
memory systems.

3.1 Density Benefits over SRAM and DRAM

Many of the emerging memory devices are designed to be
denser than SRAM or DRAM, while having the potential of
maintaining that advantage as process nodes shrink. One
such example is gain cell embedded DRAM, which can
achieve 2-3x higher density than SRAM at similar process
nodes [15] while also allowing on-chip integration due to
its all-transistor structure.

More quantitatively, RRAM demonstrates lower read en-
ergy and latency than DRAM at higher densities due to its
simple cell structure consisting of either one transistor and
one resistor or only a single resistor [39]. Scaling trends for
RRAM are illustrated in Figure 2, which compares the area
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Figure 2: Scaling trends and potentials of DRAM[7] and
HBM compared to RRAM.

densities of DRAM and HBM* with various RRAM config-
urations, from 2D planar RRAM cells [41] to 3D-stacked
V-RRAM architectures with 8 and 64 layers [3, 20, 29].

Figure 2 demonstrates that while planar RRAM cells
achieve up to 2x the density of DRAM, the most significant
scaling benefits emerge from 3D V-RRAM architectures,
which can reach up to 10x the density of state-of-the-
art HBM4 at the same process node. These advantages
extend beyond current nodes: RRAM can continue scaling
to smaller process sizes [42] where DRAM would struggle
below 11nm, and V-RRAM architectures can stack up to 64
layers compared to HBM’s 16-die limit.

3.2 Constraints of Emerging Memory Technologies
While emerging memory technologies offer compelling
density advantages, they cannot serve as drop-in replace-
ments for SRAM or DRAM due to fundamental trade-offs in
their intrinsic cell properties. Instead, these technologies ex-
hibit asymmetric read/write performance and make explicit
trade-offs between retention time and write endurance.

For instance, RRAM’s limited endurance and high write
energy prevent its use for frequently overwritten transient
data [39], despite its superior scaling potential. Similarly,
gain cell RAM requires periodic refreshes due to its reliance
on intrinsic transistor capacitance rather than SRAM’s feed-
back mechanism for data retention.

These constraints necessitate aligning data access pat-
terns with underlying cell technology characteristics. There
are two key properties to consider. First, for memories
with limited endurance, the write rate of the data over the
expected service life of the device should be consistent with
the cell endurance. Second, matching the data retention of
the cells to the lifetime of the data helps reduce energy
consumption. This motivates memory specialization, where
memory systems can be built with a heterogeneous set of
memory device arrays, each optimized for specific write
patterns and data lifetimes, such that they can cover the full
spectrum of memory accesses in a target workload.

“HBM uses the same process size as DRAM, and stacks 4 dies for
HBM1, 8 dies for HBM2, 12 dies for HBM2E and 3, and 16 dies for
HBMS3E and 4

4 A Proposal for LtRAM and StRAM

The broadening landscape of emerging memory technolo-
gies poses a significant challenge for system software.
Specialized, heterogeneous memory systems that may be
unique to individual devices cannot remain entirely trans-
parent to the software stack. Instead, operating systems,
middleware, and applications must adapt to different mem-
ory devices with varying properties across systems. More-
over, software must remain compatible with both current
and future memory devices without requiring constant up-
dates as new specializations emerge.

We propose taming this complexity by organizing emerg-
ing devices into just two new memory classes: Short-term
RAM (StRAM) and Long-term RAM (LtRAM). As shown
in Table 1, these additions create a five-class memory
system that preserves existing SRAM, DRAM, and NAND
flash (along with other forms of non-volatile storage) while
adding targeted capabilities for emerging workloads. Rather
than managing numerous individual memory technologies,
this approach provides operating systems with manageable
abstractions that accommodate diverse underlying device
implementations. While one could envision a finer-grained
continuum of retention and access characteristics, these two
classes capture the majority of emerging device and work-
load trade-offs without excessive segmentation.

SRAM, DRAM, and NAND flash in Table 1 are already
well-established in today’s memory hierarchies. We focus
the remainder of this section on the two additional memory
classes, StRAM and LtRAM, which complement existing
technologies to service specific workloads.

4.1 Short-term RAM (StRAM)

Short-term RAM (StRAM) is a memory class optimized for
transient data that is frequently accessed or read once and
discarded, with short sub-second data lifetimes and low en-
ergy costs. It is underpinned by memory technologies that
have symmetric read/write performance and very high (or
unlimited) endurance, but not necessarily high retention.
Key use cases of StRAM exploit data transience and include
intermediate activation buffers in neural networks, pointer
chasing, and temporary data structures such as FIFOs and
message queues in server applications.

StRAM can be implemented using various underlying de-
vice technologies, with gain-cell embedded DRAM serving
as a prime example. Integration approaches range from on-
die placement to near-compute configurations, depending
on device characteristics and thermal constraints.

4.2 Long-term RAM (LtRAM)

Long-term RAM (LtRAM) is a memory class optimized
for persistent, read-heavy data with long data lifetimes on
the order of minutes and longer, building upon managed-
retention concepts [24]. Unlike StRAM, LtRAM prioritizes
read performance and energy efficiency over write charac-
teristics, making explicit trade-offs that accept higher write
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Table 1: Five Types of Memory. “Power” in this table refers to the continual, leakage draw from the technology, while “energy”
refers to the cost of an active read or write operation of a memory cell. Static power only changes with clock frequencies
while active energy scales with use.

latencies and energy costs, as well as lower endurance,
in exchange for superior read properties and retention
characteristics. Example technologies that could underpin
LtRAM include non-volatile memories such as RRAM,
MRAM, FeRAM, and managed-retention DRAM variants.
These offer different trade-offs with respect to read/write
asymmetry, density, endurance, and integration complexity,
and can be deployed on-die, in 3D-stacked packages, or off-
chip modules depending on application needs.

The key insight motivating LtRAM is that long data life-
times and read-heavy access patterns allow optimizations
that are unsuitable for general-purpose memories. Primary
applications include model weights in ML inference, code
pages, hot instruction paths, and relatively static data pages
—workloads that can tolerate higher write costs in exchange
for lower read energy and improved cost per bit. This spe-
cialization addresses fundamental mismatches in current
systems where read-intensive data competes for the same
resources as frequently modified data.

5 Specialization Opportunities

Analysis of workload memory access patterns is crucial
for identifying specialization opportunities and has prece-
dent in memory systems research. For example, the MRM
project [24] examined access patterns in large language
model (LLM) inference, finding that the workload is pre-
dominantly read-intensive and high bandwidth. This made
general-purpose DRAM too slow while rendering HBM
over-provisioned in write performance and endurance,
leading the authors to propose MRM as a specialized mem-
ory class® optimized for LLM workloads. Memory access
patterns across applications exhibit similar specialization
opportunities that extend well beyond LLM inference to
encompass the full spectrum of modern computing systems.
The following examples demonstrate how application-spe-
cific access pattern and data lifetime observations can

*For our purposes, MRM is a sub-class of LLIRAM.

inform the design of specialized memory systems using the
LtRAM and StRAM classifications.

5.1 Server Workloads

Server applications exhibit diverse memory access patterns
that could benefit from specialized memory technologies.

An interesting example is in-memory data stores such as
Redis [6], Memcached [13], and Ray Plasma [1] or in CDNgs,
DNS and other typical server workloads. They demonstrate
read-mostly workloads with variable data lifetimes depend-
ing on the exact data caching and access algorithm selected
at runtime — we envision that more future applications may
adopt this kind of design to suit different compositions of
LtRAM and StRAM in particular memory architectures.

Logging, telemetry, and event buffer systems are char-
acterized by write-once workloads with low to medium
lifetimes, where data is frequently appended but rarely
accessed; StRAM is well-suited for storing the intermediate
states of these workloads before the data is eventually
archived to off-chip flash or other non-volatile storage.
Search engines such as ElasticSearch [23] and Lucene [5]
maintain large inverted indices that are read-intensive with
long lifetimes, while their query processing generates short-
lifetime data structures. Serverless computing platforms
create ephemeral execution environments where code and
data have extremely short lifetimes, often measured in sec-
onds. Database buffer pools exhibit complex access patterns
where recently accessed pages remain hot with shorter data
lifetimes while others become cold with long data lifetimes,
creating opportunities for heterogeneous memory manage-
ment between StRAM, LtRAM, SRAM, and DRAM.

Code pages present another compelling case for special-
ization — they are read-intensive with very long lifetimes,
yet current systems store them in the same DRAM as fre-
quently modified application data. Storing them in LtRAM
would allow these pages to be stored in a more energy-
efficient and cost-effective manner.



5.2 Machine Learning Workloads

Al workloads further motivate the transition towards
memory specialization due to their highly predictable and
deterministic data flows. These characteristics make the
traditional characteristics of random-access memory mis-
aligned with application needs.

During inference, model weights are typically immutable,
leading to frequent high-bandwidth large block reads, espe-
cially for large language models. As noted in previous work
[24], traditional HBM and DRAM are over-provisioned in
terms of write performance, hence LtRAM may allow for
better efficiency and opportunities for on-chip integration.
Activations and intermediate results during inference are
immediately discarded after computation, and hence are
more suitable for StRAM.

Training workloads combine read- & write-heavy ac-
cesses to model weights with write-heavy access to gradi-
ents and optimizer states. Activation data during training
exhibits particularly distinctive temporal locality — it is
intensively accessed during forward and backward passes,
then immediately discarded after gradients are computed.
The short data lifetimes of activations and gradients make
them good candidates for StRAM usage.

5.3 Memory Access Patterns within Processor Cores
Within processor cores, memory access patterns similarly
mismatch current technology provisioning. Most data per-
sists in SRAM-based L1/L2/L3 caches for only short periods,
including function call stacks, local temporaries, intermedi-
ate results in math kernels, and tight thread communication.
SRAM is over-provisioned for these short-lived data objects,
where StRAM would suffice while providing similar perfor-
mance characteristics at potentially higher density and
lower static power consumption.

6 Systems Design Challenges
The introduction of LtRAM and StRAM fundamentally
disrupts traditional memory system design, creating new
research challenges that span the entire system stack. We
identify several critical research questions that must be
addressed to realize the potential of specialized memory
systems.
6.1 Abstractions for Post-Hierarchical Memories
Traditional memory systems expose uniform abstractions
in byte- or block-addressable, flat address spaces that hide
device complexity from software, where the entire memory
address space is treated as a homogeneous resource. While
this approach provides a simple interface and programming
model, it cannot exploit the specialized characteristics of
emerging memory technologies or the application-specific
access patterns that motivated LtRAM and StRAM.
Traditional hierarchies assume that proximity correlates
with performance: SRAM is closest to the processor, fastest,
and most expensive; DRAM and NAND flash are progres-
sively further away, slower, and cheaper. Our proposed

memory classes underpinned by specialized memory de-
vices break these assumptions from the strict hierarchy,
necessitating non-hierarchical optimizations for data place-
ment and access policies.

For example, heterogeneous combinations of SRAM and
denser StRAM may both be incorporated on-chip as first-
level scratchpad memories, with data placement determined
by application requirements [44] rather than hierarchical
positioning. Similarly, LtRAM may be placed off-chip yet
directly accessed for read-heavy, long-lived data despite the
lower bandwidth [45].

Navigating this landscape of “post-hierarchical memo-
ries” requires exposing the characteristics of individual
memory classes to applications and system software. In lit-
erature, NAND flash storage increasingly exposes internal
organization to enable more efficient accesses [2], while
GPU architectures provide explicit SRAM memory access
instructions for performance-critical libraries [14]. These
examples demonstrate that providing low-level hardware
control can yield considerable performance benefits, albeit
with increased code complexity.

The key research challenge becomes: how should oper-
ating systems expose retention characteristics, endurance
limitations, and read/write performance asymmetries to
applications while maintaining programmability? New
memory system abstractions must balance performance
optimization opportunities with software complexity.

6.2 Data Placement Policies

Heterogeneous memory systems require sophisticated data
placement policies that determine when and where place-
ment decisions should be made without relying on hierar-
chical assumptions.

Current memory management operates at coarse page-
level granularities that cannot capture the nuanced patterns
that would benefit from memory specialization [27]. Future
systems require fine-grained profiling of data lifetimes,
read/write rates, and temporal locality patterns [25]. Devel-
oping lightweight profiling techniques without significant
overhead represents a critical research challenge. Addition-
ally, propagating the insights from profiling remains an
open question. We propose that compiler annotations or
instruction metadata may provide useful hints about appli-
cation memory access patterns and requirements.

The timing and authority for placement decisions varies
significantly across applications. Specialized software such
as databases and ML frameworks possess domain knowl-
edge to make informed placement decisions autonomously
given their simplistic dataflows, while general-purpose ap-
plications require automatic placement by the OS or hard-
ware. This diversity necessitates flexible placement frame-
works that accommodate both explicit application control
and transparent system management. However, automated
data placement policies in our post-hierarchical memory
systems ultimately require prediction of future access pat-



terns, where misprediction consequences extend beyond
traditional performance penalties, making robust placement
algorithms essential for system reliability.

6.3 Coherence and Consistency

By disrupting the traditional memory hierarchy, specialized
memory classes introduce new challenges for coherence
and consistency protocols. Cache coherence ensures con-
sistent data views across processors through invalidation-
based protocols (notifying caches when data becomes stale)
or update-based protocols (propagating new values directly
to all caches). Consistency protocols, on the other hand,
ensure that memory operations across different processors
appear to execute in a globally agreed-upon order, preserv-
ing the illusion of sequential consistency. The previous
assumptions of these protocols where all memory types
have similar access latencies and read/write costs no longer
hold in heterogeneous memory systems.

StRAM’s limited retention time introduces novel coher-
ence complexities. Cache controllers must prevent coher-
ence violations by periodically refreshing cache lines before
retention limits expire or preemptively evicting them. Al-
ternatively, systems might deliberately allow certain inval-
idated StRAM cache lines to become stale, trading consis-
tency for reduced refresh overhead.

LtRAM’s asymmetric read/write characteristics chal-
lenge existing mechanisms. Invalidation-based protocols
that rely on frequent metadata updates may perform poorly
with LtRAM’s high write costs, making update-based proto-
cols more efficient despite higher bandwidth requirements.
System designers might also separate cache line data from
coherence metadata, storing frequently-updated coherence
information in faster memory types while keeping actual
data in read-optimized LtRAM.

Cache organizations spanning multiple memory tech-
nologies, such as L2 caches implemented across SRAM,
StRAM, and LtRAM proposed in [25], must handle variable
access latencies of different memory devices while main-
taining proper ordering guarantees. This heterogeneity may
require entirely new approaches, such as message-passing
protocols between memory types, to preserve consistency
without sacrificing specialization benefits.

6.4 Power-/Thermal-Aware Integration

The sustained growth of cloud computing and now Al
have cause significant increases in energy consumption and
power densities of data centers. While typical CPU-based
compute and storage servers today require 20 kW [21],
current-generation Al racks draw as much as 120 kW [16],
and next-generation Al racks (slated to arrive late-2027)
will draw 600 kW [32]. Today, operators are incapable of
running full Al racks in existing installations due to power
delivery constraints. Increasingly, operators are turning to
on-site power generation [35], even considering nuclear
power [40], while evolving power delivery inside the data
center [19] for 1+ MW per rack. As such, reducing power

33% 10% 30% 5% 22%

mCPUs mDisks mDRAM mNet mOther
Figure 3: Peak power usage breakdown by components of a
warehouse scale computer [10]

consumption is becoming a first-order optimization objec-
tive for new systems.

While compute typically receives the most attention in
regards to power, memory also makes up a large fraction of
overall power draw in modern systems, as shown in Figure
3. Memory contributes significantly to overall system power
consumption through static leakage, refresh operations,
and data movement costs [8] of both on-chip and off-chip
Memory arrays.

Memory specialization offers substantial power opti-
mization opportunities through better matching of cell
characteristics to workload requirements. At the memory
cell level, matching data lifetimes as closely as possible
to the cell-level retention characteristics can substantially
reduce static power consumption by minimizing unneces-
sary SRAM leakage and DRAM refresh operations. Data
movement energy, which scales super-linearly with inter-
connect distance, typically dominates total memory power
consumption. Thus any attempt at memory specialization
must consider the energy consumption of interconnects
and packaging in the system. Co-optimization of the mem-
ory cells, interconnect, packaging, and data assignment is
essential.

Increasing power densities and tight integration of dense
memory arrays also means careful attention must be paid
to cooling, to ensure effective and reliable operation of
the hardware. This might involve potentially inventing and
integrating new technologies (e.g., microfluidics [12]) to
achieve this.

7 Conclusion

As memory scaling stalls, memory has become the primary
bottleneck in cost, performance, and power for modern
systems. This paper advocates for a shift toward specialized
memory architectures, introducing LtRAM and StRAM as
abstractions that capture the essential trade-offs of emerg-
ing technologies. These classes enable system software to
exploit workload-specific access patterns and data lifetimes,
improving efficiency and programmability without exces-
sive complexity.

To realize this vision, we call for research in fine-
grained workload profiling, lifetime-aware data placement
and compiler optimizations, new interfaces that expose
heterogeneous memory properties, and efficient hardware
implementations of LtRAM and StRAM. Cross-disciplinary
collaboration between material scientists, device physi-
cists, circuit designers, computer architects, and systems
researchers will be essential to address these multifaceted
research problems.
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