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Abstract
Both SRAM and DRAM have stopped scaling: there is no
technical roadmap to reduce their cost (per byte/GB). As a
result, memory now dominates system cost. This paper ar1
gues for a paradigm shift from today’s simple memory hier1
archy toward specialized memory architectures that exploit
application1specific access patterns. Rather than relying
solely on traditional off1chip DRAM and on1chip SRAM, we
envisage memory systems equipped with additional types
of memory whose performance trade1offs benefit workloads
through non1hierarchical optimization.

We propose two new memory classes deserving explicit
OS support: long1term RAM (LtRAM) optimized for read1
intensive data with long lifetimes, and short1term RAM
(StRAM) designed for transient, frequently1accessed data
with short lifetimes. We explore underlying device tech1
nologies that could implement these classes, including
their evolution and their potential integration into current
system designs given emerging workload requirements.
We identify critical research challenges to realize what
we believe is a necessary evolution toward more efficient
and scalable computing systems capable of meeting future
demands.
Keywords: Operating system, Memory architecture, Het1
erogeneous computing, LtRAM, StRAM
1 Introduction
For decades, computer system performance improvements
have been driven by the continual scaling of memory and
compute from Moore’s Law. For memory, that scaling has
ended – the two dominant memory technologies, SRAM and
DRAM, have hit fundamental physical limitations. This has
made memory the primary performance, power, and cost
bottleneck for current and future computing systems.

These scaling limitations have created a critical diver1
gence between compute and memory capabilities. While
processor and network performance continue to improve
through architectural advances, SRAM and DRAM densities
and costs have stagnated. This divergence has profound eco1
nomic implications: memory now dominates system cost,
with DRAM accounting for over 50% of server hardware
costs [34]. As memory to compute capacity ratios fall, appli1
cations are becoming increasingly memory1bound.

This challenge has been exacerbated by the rise of mem1
ory1intensive workloads, particularly artificial intelligence.

The need for increased bandwidth has driven innovations
such as High Bandwidth Memory (HBM), which uses ad1
vanced packaging to place many DRAM interfaces close to
compute elements [31] for lower latency and higher energy
efficiency [33]. However, such packaging improvements
alone cannot solve the scaling crisis – they cannot overcome
the fundamental scaling limitations of SRAM and DRAM
technologies.

Recent research has begun exploring memory technolo1
gies that trade off characteristics such as retention¹ and
endurance² for workload1specific memory access patterns
and data lifetimes³. For example, Managed Retention Mem1
ory (MRM) [24] seeks to repurpose storage1class memories
to better serve workloads like large language model (LLM)
inference by trading retention time and write performance
for improved endurance and lower I/O energy. Similarly,
for on1chip memory arrays, gain cell embedded DRAM [28]
achieves DRAM1like density with SRAM1like integration
properties through similar retention trade1offs.

Building on these insights, we propose a fundamental
shift from hierarchical to specialized memory architec1
tures that leverage workload1specific access characteristics.
Instead of exposing numerous heterogeneous device tech1
nologies directly to system software, we advocate for two
new abstractions for classes of memory device technologies:
long1term RAM (LtRAM) for persistent, read1heavy data,
and short1term RAM (StRAM) for ephemeral, write1inten1
sive workloads. These abstractions provide manageable
interfaces for system optimization while enabling diverse
underlying implementations tailored to meet the perfor1
mance requirements of each class.

This paper makes the three following contributions:
1. It proposes LtRAM and StRAM as new memory classes

that define specific performance and lifetime character1
istics needed by modern workloads.

2. It explores underlying device technologies that could
implement LtRAM and StRAM and examines their inte1
gration into current system designs.

¹Retention is the time that data is reliably stored in a memory cell
without requiring a refresh.
²Endurance is the number of write cycles a memory cell can support
before it permanently degrades.
³Data lifetime is the duration for which the data must remain persis1
tent and accessible in memory hardware.
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Figure 1: SRAM and DRAM scaling [4]

3. It identifies key research questions that must be resolved
to realize the potential of LtRAM and StRAM in both
single1node and distributed computing contexts.

2 Memory Today: SRAM and DRAM
The typical memory hierarchy in today’s computing sys1
tems consists of SRAM caches on the compute chip (L1,
L2, etc.), off1chip DRAM main memory, and NAND flash or
other non1volatile storage for permanent data, as described
below in Table 1.

Static RAM (SRAM) consists of six transistors per bit,
operates at high speed, statically retains its state while
powered, and integrates easily with compute logic. These
properties have made SRAM the default choice for on1chip
caches and scratchpad memories.

Dynamic RAM (DRAM) consists of a single transistor
and capacitor per bit. The capacitor stores the charge repre1
senting a 0 or 1, while the transistor gates access to the cell.
To maximize density, DRAM capacitors are very narrow
and tall, making integration with high1performance logic
impractical [18, 36]. DRAM cells have limited retention
due to charge leakage and are disrupted by read opera1
tions. Therefore, DRAM subsystems dynamically “refresh”
by reading and rewriting cell contents (e.g., every 32ms for
DDR5). These periodic refreshes consume significant energy
even when memory is not actively accessed.
2.1 The End of Scaling
Both SRAM and DRAM face the same fundamental chal1
lenge: they have stopped scaling. Figure 1(a) shows that
DRAM cost trends have stagnated over the past 15 years.
While smaller DRAM cells remain technically feasible, man1
ufacturing difficulties from capacitor sizing constraints pre1
vent reductions in per1cell cost [4]. Although 3D stacking
can extend density scaling somewhat, the HBM roadmap
indicates that this density increase will stop beyond 20 dies
due to packaging complexity and cost limitations, placing
an upper bound on the capacities of HBM devices [11].

SRAM faces similar constraints. Figure 1(b) shows that
SRAM cell sizes have stopped shrinking significantly since
the 7nm process node [43]. This stagnation stems from
the fundamental physics of SRAM operation, where main1
taining the delicate balance between transistor sizing and
threshold voltages becomes increasingly difficult at smaller
process nodes and lower operating voltages [17].

2.2 Packaging Options
One current approach to address the scaling limitations of
SRAM and DRAM is to innovate in packaging rather than
cell technology.

SRAM is typically integrated inside compute chips but
can also be 3D stacked for greater capacity [37]. There
are even more packaging options for DRAM. Historically
packaged in DIMMs (Dual Inline Memory Modules) for
modularity, DRAM packaging increasingly focuses on low
power and/or high bandwidth options. LPDDR achieves
lower power and higher bandwidth (10Gbps/pin versus
5.6Gbps/pin in conventional DDR) [38] but must be soldered
to boards, sacrificing the reconfigurability of DDR DIMMs
[26]. HBM achieves much higher bandwidth through 3D
stacking of multiple dies connected via silicon interposers
[31]. This complex process requires advanced facilities and
lowers manufacturing yield, making HBM substantially
more expensive than DDR DRAM [34] while constraining
capacity and making terabyte1scale on1package configura1
tions impractical [22].

These packaging innovations offer different perfor1
mance/cost trade1offs but do not solve the fundamental
scaling limitations of the underlying SRAM and DRAM cell
technologies.
3 Escaping the Memory Scaling Trap
To address the scaling challenges of existing memories,
a wide range of alternative memory technologies has
emerged with fundamentally different scaling roadmaps,
including gain cell embedded DRAM [28], ferroelectric
RAM (FeRAM) [30], magnetoresistive RAM (MRAM) [9],
and resistive RAM (RRAM) [39]. Each technology offers dif1
ferent trade1offs in density, endurance, retention, read/write
energies, access times, and on1chip integration capabilities,
making them suitable for different applications even though
they are not drop1in replacements for SRAM or DRAM. This
section quantifies their scaling benefits, examines the con1
straints that prevent drop1in replacement, and demonstrates
how these limitations necessitate a shift toward specialized
memory systems.
3.1 Density Benefits over SRAM and DRAM
Many of the emerging memory devices are designed to be
denser than SRAM or DRAM, while having the potential of
maintaining that advantage as process nodes shrink. One
such example is gain cell embedded DRAM, which can
achieve 213x higher density than SRAM at similar process
nodes [15] while also allowing on1chip integration due to
its all1transistor structure.

More quantitatively, RRAM demonstrates lower read en1
ergy and latency than DRAM at higher densities due to its
simple cell structure consisting of either one transistor and
one resistor or only a single resistor [39]. Scaling trends for
RRAM are illustrated in Figure 2, which compares the area
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Figure 2: Scaling trends and potentials of DRAM[7] and
HBM compared to RRAM.

densities of DRAM and HBM⁴ with various RRAM config1
urations, from 2D planar RRAM cells [41] to 3D1stacked
V1RRAM architectures with 8 and 64 layers [3, 20, 29].

Figure 2 demonstrates that while planar RRAM cells
achieve up to 2x the density of DRAM, the most significant
scaling benefits emerge from 3D V1RRAM architectures,
which can reach up to 10x the density of state1of1the1
art HBM4 at the same process node. These advantages
extend beyond current nodes: RRAM can continue scaling
to smaller process sizes [42] where DRAM would struggle
below 11nm, and V1RRAM architectures can stack up to 64
layers compared to HBM’s 161die limit.
3.2 Constraints of Emerging Memory Technologies
While emerging memory technologies offer compelling
density advantages, they cannot serve as drop1in replace1
ments for SRAM or DRAM due to fundamental trade1offs in
their intrinsic cell properties. Instead, these technologies ex1
hibit asymmetric read/write performance and make explicit
trade1offs between retention time and write endurance.

For instance, RRAM’s limited endurance and high write
energy prevent its use for frequently overwritten transient
data [39], despite its superior scaling potential. Similarly,
gain cell RAM requires periodic refreshes due to its reliance
on intrinsic transistor capacitance rather than SRAM’s feed1
back mechanism for data retention.

These constraints necessitate aligning data access pat1
terns with underlying cell technology characteristics. There
are two key properties to consider. First, for memories
with limited endurance, the write rate of the data over the
expected service life of the device should be consistent with
the cell endurance. Second, matching the data retention of
the cells to the lifetime of the data helps reduce energy
consumption. This motivates memory specialization, where
memory systems can be built with a heterogeneous set of
memory device arrays, each optimized for specific write
patterns and data lifetimes, such that they can cover the full
spectrum of memory accesses in a target workload.

⁴HBM uses the same process size as DRAM, and stacks 4 dies for
HBM1, 8 dies for HBM2, 12 dies for HBM2E and 3, and 16 dies for
HBM3E and 4

4 A Proposal for LtRAM and StRAM
The broadening landscape of emerging memory technolo1
gies poses a significant challenge for system software.
Specialized, heterogeneous memory systems that may be
unique to individual devices cannot remain entirely trans1
parent to the software stack. Instead, operating systems,
middleware, and applications must adapt to different mem1
ory devices with varying properties across systems. More1
over, software must remain compatible with both current
and future memory devices without requiring constant up1
dates as new specializations emerge.

We propose taming this complexity by organizing emerg1
ing devices into just two new memory classes: Short1term
RAM (StRAM) and Long1term RAM (LtRAM). As shown
in Table 1, these additions create a five1class memory
system that preserves existing SRAM, DRAM, and NAND
flash (along with other forms of non1volatile storage) while
adding targeted capabilities for emerging workloads. Rather
than managing numerous individual memory technologies,
this approach provides operating systems with manageable
abstractions that accommodate diverse underlying device
implementations. While one could envision a finer1grained
continuum of retention and access characteristics, these two
classes capture the majority of emerging device and work1
load trade1offs without excessive segmentation.

SRAM, DRAM, and NAND flash in Table 1 are already
well1established in today’s memory hierarchies. We focus
the remainder of this section on the two additional memory
classes, StRAM and LtRAM, which complement existing
technologies to service specific workloads.
4.1 Short-term RAM (StRAM)
Short1term RAM (StRAM) is a memory class optimized for
transient data that is frequently accessed or read once and
discarded, with short sub1second data lifetimes and low en1
ergy costs. It is underpinned by memory technologies that
have symmetric read/write performance and very high (or
unlimited) endurance, but not necessarily high retention.
Key use cases of StRAM exploit data transience and include
intermediate activation buffers in neural networks, pointer
chasing, and temporary data structures such as FIFOs and
message queues in server applications.

StRAM can be implemented using various underlying de1
vice technologies, with gain1cell embedded DRAM serving
as a prime example. Integration approaches range from on1
die placement to near1compute configurations, depending
on device characteristics and thermal constraints.
4.2 Long-term RAM (LtRAM)
Long1term RAM (LtRAM) is a memory class optimized
for persistent, read1heavy data with long data lifetimes on
the order of minutes and longer, building upon managed1
retention concepts [24]. Unlike StRAM, LtRAM prioritizes
read performance and energy efficiency over write charac1
teristics, making explicit trade1offs that accept higher write
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SRAM DRAM NAND StRAM LtRAM

Strengths
Low R/W latency,

long retention,
low static power

Very dense Extremely dense,
low static power

Dense,
low write energy,
low static power

Very dense,
low read energy,
low static power

Weaknesses Low density

Off1chip only,
high R/W energy,
high static power,
refresh overhead,
destructive reads

Off1chip only,
low bandwidth,

limited endurance,
expensive erases

Short retention,
refresh overhead

High write energy,
high write latency,
limited endurance

Uses Fast R/W caches Large, random
access, read/write data

Storage, rarely
accessed data

Fast R/W caches,
Write1and1read

scratchpads

Read1mostly data,
read1mostly caches

Table 1: Five Types of Memory. “Power” in this table refers to the continual, leakage draw from the technology, while “energy”
refers to the cost of an active read or write operation of a memory cell. Static power only changes with clock frequencies

while active energy scales with use.

latencies and energy costs, as well as lower endurance,
in exchange for superior read properties and retention
characteristics. Example technologies that could underpin
LtRAM include non1volatile memories such as RRAM,
MRAM, FeRAM, and managed1retention DRAM variants.
These offer different trade1offs with respect to read/write
asymmetry, density, endurance, and integration complexity,
and can be deployed on1die, in 3D1stacked packages, or off1
chip modules depending on application needs.

The key insight motivating LtRAM is that long data life1
times and read1heavy access patterns allow optimizations
that are unsuitable for general1purpose memories. Primary
applications include model weights in ML inference, code
pages, hot instruction paths, and relatively static data pages
—workloads that can tolerate higher write costs in exchange
for lower read energy and improved cost per bit. This spe1
cialization addresses fundamental mismatches in current
systems where read1intensive data competes for the same
resources as frequently modified data.
5 Specialization Opportunities
Analysis of workload memory access patterns is crucial
for identifying specialization opportunities and has prece1
dent in memory systems research. For example, the MRM
project [24] examined access patterns in large language
model (LLM) inference, finding that the workload is pre1
dominantly read1intensive and high bandwidth. This made
general1purpose DRAM too slow while rendering HBM
over1provisioned in write performance and endurance,
leading the authors to propose MRM as a specialized mem1
ory class⁵ optimized for LLM workloads. Memory access
patterns across applications exhibit similar specialization
opportunities that extend well beyond LLM inference to
encompass the full spectrum of modern computing systems.
The following examples demonstrate how application1spe1
cific access pattern and data lifetime observations can

⁵For our purposes, MRM is a sub1class of LtRAM.

inform the design of specialized memory systems using the
LtRAM and StRAM classifications.
5.1 Server Workloads
Server applications exhibit diverse memory access patterns
that could benefit from specialized memory technologies.

An interesting example is in1memory data stores such as
Redis [6], Memcached [13], and Ray Plasma [1] or in CDNs,
DNS and other typical server workloads. They demonstrate
read1mostly workloads with variable data lifetimes depend1
ing on the exact data caching and access algorithm selected
at runtime – we envision that more future applications may
adopt this kind of design to suit different compositions of
LtRAM and StRAM in particular memory architectures.

Logging, telemetry, and event buffer systems are char1
acterized by write1once workloads with low to medium
lifetimes, where data is frequently appended but rarely
accessed; StRAM is well1suited for storing the intermediate
states of these workloads before the data is eventually
archived to off1chip flash or other non1volatile storage.
Search engines such as ElasticSearch [23] and Lucene [5]
maintain large inverted indices that are read1intensive with
long lifetimes, while their query processing generates short1
lifetime data structures. Serverless computing platforms
create ephemeral execution environments where code and
data have extremely short lifetimes, often measured in sec1
onds. Database buffer pools exhibit complex access patterns
where recently accessed pages remain hot with shorter data
lifetimes while others become cold with long data lifetimes,
creating opportunities for heterogeneous memory manage1
ment between StRAM, LtRAM, SRAM, and DRAM.

Code pages present another compelling case for special1
ization – they are read1intensive with very long lifetimes,
yet current systems store them in the same DRAM as fre1
quently modified application data. Storing them in LtRAM
would allow these pages to be stored in a more energy1
efficient and cost1effective manner.
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5.2 Machine Learning Workloads
AI workloads further motivate the transition towards
memory specialization due to their highly predictable and
deterministic data flows. These characteristics make the
traditional characteristics of random1access memory mis1
aligned with application needs.

During inference, model weights are typically immutable,
leading to frequent high1bandwidth large block reads, espe1
cially for large language models. As noted in previous work
[24], traditional HBM and DRAM are over1provisioned in
terms of write performance, hence LtRAM may allow for
better efficiency and opportunities for on1chip integration.
Activations and intermediate results during inference are
immediately discarded after computation, and hence are
more suitable for StRAM.

Training workloads combine read1 & write1heavy ac1
cesses to model weights with write1heavy access to gradi1
ents and optimizer states. Activation data during training
exhibits particularly distinctive temporal locality – it is
intensively accessed during forward and backward passes,
then immediately discarded after gradients are computed.
The short data lifetimes of activations and gradients make
them good candidates for StRAM usage.
5.3 Memory Access Patterns within Processor Cores
Within processor cores, memory access patterns similarly
mismatch current technology provisioning. Most data per1
sists in SRAM1based L1/L2/L3 caches for only short periods,
including function call stacks, local temporaries, intermedi1
ate results in math kernels, and tight thread communication.
SRAM is over1provisioned for these short1lived data objects,
where StRAM would suffice while providing similar perfor1
mance characteristics at potentially higher density and
lower static power consumption.
6 Systems Design Challenges
The introduction of LtRAM and StRAM fundamentally
disrupts traditional memory system design, creating new
research challenges that span the entire system stack. We
identify several critical research questions that must be
addressed to realize the potential of specialized memory
systems.
6.1 Abstractions for Post-Hierarchical Memories
Traditional memory systems expose uniform abstractions
in byte1 or block1addressable, flat address spaces that hide
device complexity from software, where the entire memory
address space is treated as a homogeneous resource. While
this approach provides a simple interface and programming
model, it cannot exploit the specialized characteristics of
emerging memory technologies or the application1specific
access patterns that motivated LtRAM and StRAM.

Traditional hierarchies assume that proximity correlates
with performance: SRAM is closest to the processor, fastest,
and most expensive; DRAM and NAND flash are progres1
sively further away, slower, and cheaper. Our proposed

memory classes underpinned by specialized memory de1
vices break these assumptions from the strict hierarchy,
necessitating non1hierarchical optimizations for data place1
ment and access policies.

For example, heterogeneous combinations of SRAM and
denser StRAM may both be incorporated on1chip as first1
level scratchpad memories, with data placement determined
by application requirements [44] rather than hierarchical
positioning. Similarly, LtRAM may be placed off1chip yet
directly accessed for read1heavy, long1lived data despite the
lower bandwidth [45].

Navigating this landscape of “post1hierarchical memo1
ries” requires exposing the characteristics of individual
memory classes to applications and system software. In lit1
erature, NAND flash storage increasingly exposes internal
organization to enable more efficient accesses [2], while
GPU architectures provide explicit SRAM memory access
instructions for performance1critical libraries [14]. These
examples demonstrate that providing low1level hardware
control can yield considerable performance benefits, albeit
with increased code complexity.

The key research challenge becomes: how should oper1
ating systems expose retention characteristics, endurance
limitations, and read/write performance asymmetries to
applications while maintaining programmability? New
memory system abstractions must balance performance
optimization opportunities with software complexity.
6.2 Data Placement Policies
Heterogeneous memory systems require sophisticated data
placement policies that determine when and where place1
ment decisions should be made without relying on hierar1
chical assumptions.

Current memory management operates at coarse page1
level granularities that cannot capture the nuanced patterns
that would benefit from memory specialization [27]. Future
systems require fine1grained profiling of data lifetimes,
read/write rates, and temporal locality patterns [25]. Devel1
oping lightweight profiling techniques without significant
overhead represents a critical research challenge. Addition1
ally, propagating the insights from profiling remains an
open question. We propose that compiler annotations or
instruction metadata may provide useful hints about appli1
cation memory access patterns and requirements.

The timing and authority for placement decisions varies
significantly across applications. Specialized software such
as databases and ML frameworks possess domain knowl1
edge to make informed placement decisions autonomously
given their simplistic dataflows, while general1purpose ap1
plications require automatic placement by the OS or hard1
ware. This diversity necessitates flexible placement frame1
works that accommodate both explicit application control
and transparent system management. However, automated
data placement policies in our post1hierarchical memory
systems ultimately require prediction of future access pat1
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terns, where misprediction consequences extend beyond
traditional performance penalties, making robust placement
algorithms essential for system reliability.
6.3 Coherence and Consistency
By disrupting the traditional memory hierarchy, specialized
memory classes introduce new challenges for coherence
and consistency protocols. Cache coherence ensures con1
sistent data views across processors through invalidation1
based protocols (notifying caches when data becomes stale)
or update1based protocols (propagating new values directly
to all caches). Consistency protocols, on the other hand,
ensure that memory operations across different processors
appear to execute in a globally agreed1upon order, preserv1
ing the illusion of sequential consistency. The previous
assumptions of these protocols where all memory types
have similar access latencies and read/write costs no longer
hold in heterogeneous memory systems.

StRAM’s limited retention time introduces novel coher1
ence complexities. Cache controllers must prevent coher1
ence violations by periodically refreshing cache lines before
retention limits expire or preemptively evicting them. Al1
ternatively, systems might deliberately allow certain inval1
idated StRAM cache lines to become stale, trading consis1
tency for reduced refresh overhead.

LtRAM’s asymmetric read/write characteristics chal1
lenge existing mechanisms. Invalidation1based protocols
that rely on frequent metadata updates may perform poorly
with LtRAM’s high write costs, making update1based proto1
cols more efficient despite higher bandwidth requirements.
System designers might also separate cache line data from
coherence metadata, storing frequently1updated coherence
information in faster memory types while keeping actual
data in read1optimized LtRAM.

Cache organizations spanning multiple memory tech1
nologies, such as L2 caches implemented across SRAM,
StRAM, and LtRAM proposed in [25], must handle variable
access latencies of different memory devices while main1
taining proper ordering guarantees. This heterogeneity may
require entirely new approaches, such as message1passing
protocols between memory types, to preserve consistency
without sacrificing specialization benefits.
6.4 Power-/Thermal-Aware Integration
The sustained growth of cloud computing and now AI
have cause significant increases in energy consumption and
power densities of data centers. While typical CPU1based
compute and storage servers today require   20 kW [21],
current1generation AI racks draw as much as 120 kW [16],
and next1generation AI racks (slated to arrive late12027)
will draw 600 kW [32]. Today, operators are incapable of
running full AI racks in existing installations due to power
delivery constraints. Increasingly, operators are turning to
on1site power generation [35], even considering nuclear
power [40], while evolving power delivery inside the data
center [19] for 1+ MW per rack. As such, reducing power

Figure 3: Peak power usage breakdown by components of a
warehouse scale computer [10]

consumption is becoming a first1order optimization objec1
tive for new systems.

While compute typically receives the most attention in
regards to power, memory also makes up a large fraction of
overall power draw in modern systems, as shown in Figure
3. Memory contributes significantly to overall system power
consumption through static leakage, refresh operations,
and data movement costs [8] of both on1chip and off1chip
memory arrays.

Memory specialization offers substantial power opti1
mization opportunities through better matching of cell
characteristics to workload requirements. At the memory
cell level, matching data lifetimes as closely as possible
to the cell1level retention characteristics can substantially
reduce static power consumption by minimizing unneces1
sary SRAM leakage and DRAM refresh operations. Data
movement energy, which scales super1linearly with inter1
connect distance, typically dominates total memory power
consumption. Thus any attempt at memory specialization
must consider the energy consumption of interconnects
and packaging in the system. Co1optimization of the mem1
ory cells, interconnect, packaging, and data assignment is
essential.

Increasing power densities and tight integration of dense
memory arrays also means careful attention must be paid
to cooling, to ensure effective and reliable operation of
the hardware. This might involve potentially inventing and
integrating new technologies (e.g., microfluidics [12]) to
achieve this.
7 Conclusion
As memory scaling stalls, memory has become the primary
bottleneck in cost, performance, and power for modern
systems. This paper advocates for a shift toward specialized
memory architectures, introducing LtRAM and StRAM as
abstractions that capture the essential trade1offs of emerg1
ing technologies. These classes enable system software to
exploit workload1specific access patterns and data lifetimes,
improving efficiency and programmability without exces1
sive complexity.

To realize this vision, we call for research in fine1
grained workload profiling, lifetime1aware data placement
and compiler optimizations, new interfaces that expose
heterogeneous memory properties, and efficient hardware
implementations of LtRAM and StRAM. Cross1disciplinary
collaboration between material scientists, device physi1
cists, circuit designers, computer architects, and systems
researchers will be essential to address these multifaceted
research problems.
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