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of tuples, extended to specify joins 
between causally related events (with 
the happened-before operator), which 
enables some neat “pivot table” styles 
of analysis across data generated by 
different types of components and at 
different points in a request’s lifetime.

The paper also proposes another in-
teresting twist to the conventional ap-
proach with the notion of baggage. With 
continuously executing queries run-
ning in-situ, where does the input data 
come from? How does information gen-
erated at one component (say, the name 
of the client application) reach a query 
running on a different component (say, 
a file system node that will join this 
name with a count of bytes read)? Bag-
gage is a container for propagating the 
causally related “stream of tuples” in-
band, along with the request itself. This 
is an intriguing design choice because 
the propagation and query processing 
costs are borne by the live system itself, 
and thus have to be managed carefully, 
but in return we have a flexible and pow-
erful tool for interactive debugging of a 
complex, distributed system.

Although tracing systems have been 
around over 20 years, their use in pro-
duction has only become mainstream 
in the last few years. Tracing support 
is now offered by most cloud providers 
to their customers, and there is an ac-
tive open source community, defining 
standards such as OpenTracing (with 
baggage now part of the specification), 
OpenCensus, and OpenZipkin. Nev-
ertheless, there is still a great deal of 
unrealized potential in tracing for so-
phisticated debugging and rich analyt-
ical insights to help manage complex 
distributed systems, and this thought-
provoking paper makes a timely contri-
bution to the conversation.	
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DISTRIBUTED SYSTEMS ARE  difficult to 
manage at the best of times: diagnosis, 
debugging, capacity planning, and con-
figuration of runtime properties like 
timeouts or service-level objective (SLO) 
thresholds, are made more challenging 
by the extra complexity that arises from 
distribution. Throw into the mix that a 
single request will be serviced by mul-
tiple independent microservices, and 
these challenges compose and multiply.

Yet this type of serving environment 
is completely normal—just about ev-
ery online service uses a collection of 
distinct, communicating functions to 
fulfil each user request. For example, 
the sale of a single item on a shopping 
site might involve an authentication 
service, a bot detection service, an in-
ventory management service, and a 
payments service, each of which will be 
sharded N ways and likely using a cach-
ing layer in front of (distributed) persis-
tent storage. With distribution comes 
scale: requests consisting of hundreds, 
or even thousands, of nested RPCs are 
not unusual in Web services. Standard 
mechanisms for batching, pipelining, 
concurrency, fault tolerance, hedging 
of requests, load balancing, and other 
such in-band, dynamic, control sys-
tems further exacerbate the difficulties 
of understanding system behavior.

In such an environment, how do ser-
vice providers debug their systems? If 
the shopping cart checkout request la-
tency exceeds the 99th percentile, how 
can we identify which microservice was 
responsible and why? One important 
tool for tackling this kind of problem, 
on par with, and complementary to 
logs, counters, and metrics, is tracing.

A typical end-to-end request tracing 
system relies on the RPC subsystem to 
propagate a unique request identifier be-
tween microservices, and thus tie togeth-
er causally related service invocations. A 
trace will also capture metadata about 
the request, collected at each hop along 
the way—details like the URI string or a 
client identifier, the name and IP address 

of each host, and often performance met-
rics such as how much CPU the request 
consumed at each component.

This design is simple but has an in-
herent tension between generality and 
cost. Most tracing systems pick a point 
in this trade-off space in which every 
service instance generates records lo-
cally and transmits them directly to 
a collector that groups records from 
across the system by trace identifier. 
With this approach, the set of queries 
that can be run (offline) against the 
traces is unconstrained, but the system 
can produce vast amounts of data with 
correspondingly high cost. As a result, 
requests are traced at a low sampling 
rate (.01% or lower is typical in produc-
tion), which means rare events, often 
critical for detection and diagnosis of 
problems, may be missed.

Pivot Tracing, the system described 
in the following paper, chooses a dif-
ferent trade-off. Instead of eagerly 
handing trace records off to a collec-
tor for long-term storage and future 
processing, it installs continuous que-
ries, on demand, inside the distributed 
system itself, and dynamically enables 
instrumentation at tracepoints to re-
cord exactly the information needed 
to answer the currently active queries. 
By this design, Pivot Tracing favors 
specificity in return for low cost, while 
removing the need to down-sample re-
quests. A particularly appealing aspect  
is the query language consists of famil-
iar relational operators over streams 
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