
MARCH 2020 | VOL. 63 | NO. 3 | COMMUNICATIONS OF THE ACM 93

DOI:10.1145/3378931

of tuples, extended to specify joins
between causally related events (with
the happened-before operator), which
enables some neat “pivot table” styles
of analysis across data generated by
different types of components and at
different points in a request’s lifetime.

The paper also proposes another in-
teresting twist to the conventional ap-
proach with the notion of baggage. With
continuously executing queries run-
ning in-situ, where does the input data
come from? How does information gen-
erated at one component (say, the name
of the client application) reach a query
running on a different component (say,
a file system node that will join this
name with a count of bytes read)? Bag-
gage is a container for propagating the
causally related “stream of tuples” in-
band, along with the request itself. This
is an intriguing design choice because
the propagation and query processing
costs are borne by the live system itself,
and thus have to be managed carefully,
but in return we have a flexible and pow-
erful tool for interactive debugging of a
complex, distributed system.

Although tracing systems have been
around over 20 years, their use in pro-
duction has only become mainstream
in the last few years. Tracing support
is now offered by most cloud providers
to their customers, and there is an ac-
tive open source community, defining
standards such as OpenTracing (with
baggage now part of the specification),
OpenCensus, and OpenZipkin. Nev-
ertheless, there is still a great deal of
unrealized potential in tracing for so-
phisticated debugging and rich analyt-
ical insights to help manage complex
distributed systems, and this thought-
provoking paper makes a timely contri-
bution to the conversation.	

Rebecca Isaacs is a software engineer at Twitter in San
Francisco, CA, USA.

The views here are the author’s own, and do not reflect
the views of Twitter.

Copyright held by author.

DISTRIBUTED SYSTEMS ARE difficult to
manage at the best of times: diagnosis,
debugging, capacity planning, and con-
figuration of runtime properties like
timeouts or service-level objective (SLO)
thresholds, are made more challenging
by the extra complexity that arises from
distribution. Throw into the mix that a
single request will be serviced by mul-
tiple independent microservices, and
these challenges compose and multiply.

Yet this type of serving environment
is completely normal—just about ev-
ery online service uses a collection of
distinct, communicating functions to
fulfil each user request. For example,
the sale of a single item on a shopping
site might involve an authentication
service, a bot detection service, an in-
ventory management service, and a
payments service, each of which will be
sharded N ways and likely using a cach-
ing layer in front of (distributed) persis-
tent storage. With distribution comes
scale: requests consisting of hundreds,
or even thousands, of nested RPCs are
not unusual in Web services. Standard
mechanisms for batching, pipelining,
concurrency, fault tolerance, hedging
of requests, load balancing, and other
such in-band, dynamic, control sys-
tems further exacerbate the difficulties
of understanding system behavior.

In such an environment, how do ser-
vice providers debug their systems? If
the shopping cart checkout request la-
tency exceeds the 99th percentile, how
can we identify which microservice was
responsible and why? One important
tool for tackling this kind of problem,
on par with, and complementary to
logs, counters, and metrics, is tracing.

A typical end-to-end request tracing
system relies on the RPC subsystem to
propagate a unique request identifier be-
tween microservices, and thus tie togeth-
er causally related service invocations. A
trace will also capture metadata about
the request, collected at each hop along
the way—details like the URI string or a
client identifier, the name and IP address

of each host, and often performance met-
rics such as how much CPU the request
consumed at each component.

This design is simple but has an in-
herent tension between generality and
cost. Most tracing systems pick a point
in this trade-off space in which every
service instance generates records lo-
cally and transmits them directly to
a collector that groups records from
across the system by trace identifier.
With this approach, the set of queries
that can be run (offline) against the
traces is unconstrained, but the system
can produce vast amounts of data with
correspondingly high cost. As a result,
requests are traced at a low sampling
rate (.01% or lower is typical in produc-
tion), which means rare events, often
critical for detection and diagnosis of
problems, may be missed.

Pivot Tracing, the system described
in the following paper, chooses a dif-
ferent trade-off. Instead of eagerly
handing trace records off to a collec-
tor for long-term storage and future
processing, it installs continuous que-
ries, on demand, inside the distributed
system itself, and dynamically enables
instrumentation at tracepoints to re-
cord exactly the information needed
to answer the currently active queries.
By this design, Pivot Tracing favors
specificity in return for low cost, while
removing the need to down-sample re-
quests. A particularly appealing aspect
is the query language consists of famil-
iar relational operators over streams

Technical Perspective
A Perspective on
Pivot Tracing
By Rebecca Isaacs

To view the accompanying paper,
visit doi.acm.org/10.1145/3378933 rh

Pivot Tracing
favors specificity in
return for low cost;
removing the need to
down-sample requests.

http://dx.doi.org/10.1145/3378931
http://doi.acm.org/10.1145/3378933

