
OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 75

Incremental, Iterative Data
Processing with Timely Dataflow
By Derek G. Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham, and Martín Abadi

DOI:10.1145/2983551

Abstract
We describe the timely dataflow model for distributed com-
putation and its implementation in the Naiad system. The
model supports stateful iterative and incremental compu-
tations. It enables both low-latency stream processing and
high-throughput batch processing, using a new approach to
coordination that combines asynchronous and fine-grained
synchronous execution. We describe two of the program-
ming frameworks built on Naiad: GraphLINQ for parallel
graph processing, and differential dataflow for nested itera-
tive and incremental computations. We show that a general-
purpose system can achieve performance that matches, and
sometimes exceeds, that of specialized systems.

1. INTRODUCTION
This paper describes the timely dataflow model for itera-
tive and incremental distributed computation, and the
Naiad system that we built to demonstrate it. We set out to
design a system that could simultaneously satisfy a diverse
set of requirements: we wanted efficient high-throughput
processing for bulk data-parallel workloads; stateful com-
putations supporting queries and updates with low latency
(on the order of milliseconds); and a simple yet expressive
programming model with general features like iteration.
Systems already exist for batch bulk-data processing,6, 13, 27
stream processing,3 graph algorithms,11 machine learning,15
and interactive ad hoc queries18; but they are all deeply spe-
cialized for their respective domains. Our goal was to find a
common low-level abstraction and system design that could
be re-used for all of these computational workloads. We were
motivated both by the research question of whether such a
low-level model could be found, and also by the pragmatic
desire to reduce the engineering cost of domain-specific dis-
tributed systems by allowing them to share a single highly
optimized core codebase.

To understand the difficulty of supporting low-latency,
high-throughput, and iterative computations in the same sys-
tem, we must first think about scheduling and coordination.
An easy way to achieve low latency in a distributed system
is to use fully decentralized scheduling with no global coor-
dination: workers eagerly process messages sent by other
workers and respond based on purely local information.
One can write highly complex computations this way—for
example using a trigger mechanism21—but it is challenging
to achieve consistency across the system. Instead we sought
a high-level programming model with the abstraction of
computing over collections of data using constructs with
well-understood semantics, including loops; however, it is
hard to translate such a high-level program description into
an uncoordinated mass of triggers. At the other extreme,

The original version of this paper was entitled “Naiad:
A Timely Dataflow System” and was published in the
Proceedings of the 24th ACM Symposium on Operating Systems
Principles (Farmington, PA, Nov. 3-6, 2013), 439–455.

the easiest way to implement a high-throughput batch sys-
tem with strong consistency is to use heavyweight central
coordination, which has acceptable cost when processing
large amounts of data, because each step of the distributed
computation may take seconds or even minutes. In such sys-
tems it may make sense to insert synchronization barriers
between computational steps,6 and manually unroll loops
and other control flow into explicitly acyclic computation
graphs.20, 27 The overhead of these mechanisms precludes
low-latency responses in cases where only a small amount of
data needs to be processed.

Timely dataflow is a computational model that attaches
virtual timestamps to events in structured cyclic data-
flow graphs. Its key contribution is a new coordination
mechanism that allows low-latency asychronous message
processing while efficiently tracking global progress and
synchronizing only where necessary to enforce consistency.
Our implementation of Naiad demonstrates that a timely
dataflow system can achieve performance that matches—
and in many cases exceeds—that of specialized systems.

A major theme of recent high-throughput data process-
ing systems6, 13, 27 has been their support for transparent fault
tolerance when run on large clusters of unreliable comput-
ers. Naiad falls back on an older idea and simply checkpoints
its state periodically, restoring the entire system state to the
most recent checkpoint on failure. While this is not the most
sophisticated design, we chose it in part for its low overhead.
Faster common-case processing allows more computation to
take place in the intervals between checkpointing, and thus
often decreases the total time to job completion. Streaming
systems are, however, often designed to be highly available3;
users of such systems would rightly argue that periodic
checkpoints are not sufficient, and that (setting aside the
fact that streaming systems generally do not support itera-
tion) a system like MillWheel3 could achieve much higher
throughput if it simply dispensed with the complexity and
overhead of fault tolerance. In keeping with the philosophy
of timely dataflow we believe there is a way to accommodate
both lazy batch-oriented and eager high-availability fault tol-
erance within a single design, and interpolate between them
as appropriate within a single system. We have developed a
theoretical design for timely dataflow fault tolerance2 and are
in the process of implementing it.

In the remainder of this paper we first introduce timely
dataflow and describe how its distributed implementation

http://dx.doi.org/10.1145/2983551

76 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

research highlights

achieves our desiderata (Section 2). We then discuss
some applications that we have built on Naiad, including
graph computation (Section 3) and differential dataflow
(Section 4). Finally we discuss lessons learned and open
questions (Section 5). Some of the material in this article was
previously published at SOSP 2013 in a paper that describes
Naiad in more detail.19

2. SYSTEM DESIGN AND IMPLEMENTATION
Figure 1 illustrates one type of application that motivated
timely dataflow, since it mixes high-throughput iterative
processing on large volumes of data with fine-grained, low-
latency reads and updates of distributed state. Updates
continually arrive at the left, reflecting activity in a social
network. The dashed rectangle surrounds an iterative clus-
tering algorithm that incrementally maintains a view of
conversation topics, aggregated by the dynamic community
structure that the recent activity implies. At the top, incom-
ing queries request topic recommendations that are tailored
to particular users and their community interests: these
queries are joined with the freshest available clustering to
provide high quality and up-to-date results. Before Naiad,
no existing system could implement all of these features
with acceptable performance. A standard solution might
be to write the clustering algorithm in the language of a
batch system like MapReduce6 or Spark27 and re-run it from
scratch every few hours, storing the output in a distributed
datastore like Bigtable.5 A separate program might target a
low-latency streaming system like MillWheel3 and perform
a simpler non-iterative categorization of recent updates,
saving fresh but approximate recommendations to another
table of the distributed store. A third program would accept
user queries, perform lookups against the batch and fresh
data tables, combine them and return results. While this
kind of hybrid approach has been widely deployed, a single
program on a single system would be simpler to write and
maintain, and it would be much easier to reason about the
consistency of its outputs.

Combining these disparate requirements in a high-
performance system is challenging, and a crucial first step
was to design suitable abstractions to structure the neces-
sary computation. This section starts by explaining the

computational model we arrived at, the abstractions we
chose, and the reasoning behind them.

2.1. Dataflow
Our first choice was to represent every program as a data-
flow graph. Dataflow is a common approach for distributed
data processing6, 13, 27 because it explicitly encapsulates the
boundaries between computations: the nodes of a data-
flow graph represent subcomputations, and the directed
edges represent the paths along which data is communi-
cated between them. As a result, a system that represents
its programs using dataflow can automatically determine
subcomputations that can be executed in parallel. It then
has a large degree of flexibility in scheduling them, and it
can—at least in principle—place, move, and restart nodes
independently without changing the semantics of the over-
all computation.

We based our design on stateful dataflow, in which every
node can maintain mutable state, and edges carry a poten-
tially unbounded stream of messages. Although statefulness
complicates fault tolerance, we believe that it is essential
for low-latency computation. Incremental or iterative com-
putations may hold very large indexed data structures in
memory and it is essential that an application be able to
rapidly query and update these data structures in response
to dataflow messages, without the overhead of saving and
restoring state between invocations. We chose to require
state to be private to a node to simplify distributed place-
ment and parallel execution. One consequence of adopting
stateful dataflow is that loops can be implemented effi-
ciently using cycles in the dataflow graph (with messages
returning around a loop to the node that stores the state).
In contrast, stateless systems20, 27 implement iteration using
acyclic dataflow graphs by dynamically unrolling loops and
other control flow as they execute.

Having settled on stateful dataflow we attempted to
minimize the number of execution mechanisms, in order
to make timely dataflow systems easier to reason about
and optimize. For example, we adopted the convention that
all computation in nodes occurs in single-threaded event
handlers, which the runtime invokes explicitly. With this
convention all scheduling decisions are centralized in a
common runtime, making CPU usage more predictable and
allowing the system builder to aggressively optimize perfor-
mance and control latency. It also simplifies the implemen-
tation of individual nodes: because the system guarantees
that all event handlers will run in a single thread, the appli-
cation programmer can ignore the complexities of concur-
rent programming. By encouraging single-threaded node
implementations we push programmers to obtain paral-
lelism by adding nodes to the dataflow graph, and force the
system builder to ensure low overhead when scheduling a
node’s computation. The resulting system should be able to
interleave many short-lived invocations of different nodes,
and be well-suited to performing fine-grained updates with
low latency.

Data-parallelism is a standard approach for constructing
parallel dataflow graphs from operators whose inputs and
outputs are collections of records. A data-parallel operator

Figure 1. An application that supports real-time queries on
continually updated data. The dashed rectangle represents iterative
processing that incrementally updates as new data arrive.

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing
incrementally re-

executes to reflect
changed data

User queries
are received

Queries are
joined with

processed data

 OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 77

output: consider for example reduction functions like Count
or Average. At the same time, distributed applications
commonly split input into small asynchronous messages to
reduce latency and buffering as described above. For timely
dataflow to support incremental computations on unbounded
streams of input as well as iteration, it a mechanism to signal
when a node (or data-parallel set of nodes) has seen a consistent
subset of the input for which to produce a result.

A notification is an event that fires when all messages at
or before a particular logical timestamp have been delivered
to a particular node. Since a logical timestamp t identifies a
batch of records, a notification event for a node at t indicates
that all records in that batch have been delivered to the node,
and a result can be produced for that logical times-tamp. We
exposed notifications in the programming model by adding
a system method, NotifyAt(t), that a node can call from
an event handler to request a notification. When the system
can guarantee that no more messages with that timestamp
will ever be delivered to the node, it will call the node’s
OnNotify(t) handler. This guarantee is a global property of
the state of the system and relies on a distributed protocol
we describe below. Nodes typically use an OnNotify han-
dler to send a message containing the result of a computa-
tion on a batch of inputs, and to release any temporary state
associated with that batch.

Iteration with cyclic graphs. Support for iteration compli-
cates the delivery of notifications, because in a cyclic data-
flow graph the input to a node can depend on its output.a As
a result, we had to invent suitable restrictions on the struc-
ture of timely dataflow graphs, and on the timestamps that
can be affixed to messages, to make the notification guaran-
tee hold. The general model is described in detail elsewhere1, 19
but the restrictions that we adopted in the Naiad system are
easy to explain informally. A Naiad dataflow graph is acy-
clic apart from structurally nested cycles that correspond
to loops in the program. The logical timestamp associated
with each event at a node is a tuple of one or more integers,
in which the first integer indicates the batch of input that the
event is associated with, and each subsequent integer gives
the iteration count of any (nested) loops that contain the
node. Every path around a cycle includes a special node that
increments the innermost coordinate of the timestamp. Fi-
nally, the system enforces the rule that no event handler may
send a message with a time earlier than the timestamp for
the event it is handling. These conditions ensure that there
is a partial order on all of the pending events (undelivered
messages and notifications) in the system, which enables ef-
ficient progress tracking.

2.3. Tracking progress
The ability to deliver notifications promptly and safely is
critical to a timely dataflow system’s ability to support low-
latency incremental and iterative computation with con-
sistent results. For example, the system can use a global

includes a key function that maps each input record to a key,
such that records with different keys can be processed inde-
pendently. As DeWitt and Gray showed more than 20 years
ago, such an operator can be implemented in a dataflow
graph by splitting it into multiple nodes, each of which takes
responsibility for a disjoint subset of the key space.7 Data-
parallelism is attractive because the results are identical
regardless of how one partitions the key space, so the pro-
grammer need only specify an appropriate key function, and
the system can automatically choose the degree of parallel-
ism. Our framework libraries provide standard data-parallel
operators that can be customized for specific applications.

2.2. Timely dataflow
Applications should produce consistent results, and con-
sistency requires coordination, both across dataflow nodes
and around loops. We called new model “timely” dataflow
because it depends on logical timestamps to provide this
coordination. We started with the goal of supporting gen-
eral-purpose incremental and iterative computations with
good performance, and then tried to construct the narrow-
est possible programming interface between system and
application writer that satisfied our requirements. Our
desire for a narrow interface, like our desire for few mecha-
nisms, stems from the belief that it makes systems simpler
to understand and engineer.

Asynchronous messages. All dataflow models require
some means for one node to send a message along an outgo-
ing edge to another node. In a timely dataflow system, each
node implements an OnRecv event handler that the system
can call when a message arrives on an incoming edge, and
the system provides a Send method that a node can invoke
from any of its event handlers to send a message on an out-
going edge. Messages are delivered asynchronously, which
gives the system has great latitude in how the messages are
delivered. For example, it can buffer messages between a
pair of nodes to maximize throughput. At the other extreme
the system may deliver messages via “cut-through,” where-
by the OnRecv handler for the destination node runs on
the same callstack as the source’s Send call. Cut-through
eliminates buffering altogether, which improves cache per-
formance and enables optimizations such as eager data
reduction25 that can drastically reduce memory consump-
tion. Unlike the Synchronous Data Flow model,14 a timely
dataflow node may call Send a variable number of times in
response to an incoming message; as a result, timely data-
flow can represent more programs, but it requires dynamic
scheduling of the individual nodes.

Each message in a timely dataflow graph is labeled with a
logical timestamp. A timestamp can be as simple as an inte-
ger attached to an input message to indicate the batch in
which it arrived. Timestamps are propagated through com-
putations and, for example, enable an application program-
mer to associate input and output data. Timely dataflow also
supports more complex multi-dimensional timestamps,
which can be used to enforce consistency when dataflow
graphs contain cycles, as outlined below.

Consistency. Many computations include subroutines
that must accumulate all of their input before generating an

a  MillWheel has a notification—or “Timer”—interface that is similar to the
timely dataflow design,3 but since it does not support iteration, the time-
stamps are simply integers and the graph is acyclic, greatly simplifying prog-
ress tracking.

78 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

research highlights

the node logic needed for such applications, but Section 4
sketches an explanation and provides further references.

2.4. Implementation
Naiad is our high-performance distributed implementation
of timely dataflow. It is written in C#, and runs on Windows,
Linux, and Mac OS X.b A Naiad application developer can
use all of the features of C#, including classes, structs, and
lambda functions, to build a timely dataflow graph from a
system-provided library of generic Stream objects. Naiad
uses deferred execution: at runtime executing a method like
Max on a Stream actually adds a node to an internal data-
flow graph representation. The dataflow computation only
starts once the graph has been completely built and data
are presented to the input nodes. The same program can
run on a single computer with one or more worker threads,
or—with a simple change in configuration—as a process that
communicates with other instances of the same program
in a distributed computation. Workers exchange messages
locally using shared memory, and remotely using persistent
TCP connections between processes. Each dataflow edge
transmits a sequence of objects of a particular C# type, and
generics are used extensively so that operators and the edges
connecting them can be strongly typed.

Performance considerations. To achieve performance that
is competitive with more specialized systems, we heavily op-
timized Naiad’s few primitive mechanisms. In particular, we
found it necessary to reduce overheads from serialization for
.NET types by adding run-time code generation, and from gar-
bage collection by using value types extensively in the runtime
and standard operators. In order to get low-latency responses
to small incremental updates and fast loop iterations, we
needed to ensure that progress tracking is efficient: notifica-
tions are delivered to a node as soon as possible once it can-
not be sent any more messages with a given timestamp.

Naiad’s progress tracking protocol is essentially equiva-
lent to distributed reference counting for termination detec-
tion or garbage collection.23 Each event is associated with a
graph location (edge or node): a message with the edge it is
sent on, and a notification with the node that requests and
receives it. Each worker maintains a count for its local view
of the number of outstanding events for each pair of location
and timestamp. Whenever an event is delivered the progress
tracker decrements the corresponding location’s count at
the event’s timestamp and increments any counts for mes-
sages sent or notifications requested by the event handler,
then broadcasts this information to all other workers.

As stated, this protocol would be wildly inefficient, but
we made several optimizations that allow workers to accu-
mulate updates and delay sending them without stalling the
global computation. As a simple example, if a worker has
a pending notification at a node n and timestamp t, it can
safely accumulate updates to later timestamps until that
notification is delivered. Accumulated updates frequently
cancel each other out, so the global broadcast traffic is much
less than a naive analysis would suggest.

progress tracker to establish the guarantee that no more
messages with a particular timestamp can be sent to a node.
By maintaining an aggregated view of the pending events in
the system, the progress tracker can use the partial order on
these events to determine (for each node) the earliest logi-
cal time of any subsequent event; this earliest time is mono-
tonic (i.e., it never goes backwards). Moreover, there is an
efficient way—sketched below—to compute this earliest
time so that notifications are delivered promptly when they
come due.

The progress tracker is an “out-of-band” mechanism for
delivering notifications. Previous systems have implemented
the equivalent of notifications using “in-band” control mes-
sages along dataflow edges: for example by requiring nodes
to forward a special “punctuation” message on their outgo-
ing edges to indicate that a batch is complete.24 While in-band
punctuations might appear to fit better with our philosophy of
keeping things simple, the performance benefits of the out-of-
band progress tracker design outweighed the cost of the extra
complexity. Punctuations are unattractive for data-parallel
dataflow graphs because the number of messages that must
be sent to indicate the end of a batch is proportional to the
number of edges in the graph rather than the number of nodes
(as in the out-of-band design). The simplicity of punctuations
breaks down when the dataflow can be cyclic, because (i) a
node cannot produce a punctuation until it receives punctua-
tions on all of its inputs, and (ii) in a cyclic graph at least one
node must have an input that depends on its output. Although
punctuations support a limited class of iterative computa-
tions,4 they do not generalize to nested iteration or non-
monotonic operators, and so do not meet our requirements.

Having established the need for out-of-band coordi-
nation, we could still have adopted a simpler centralized
scheduling discipline, for example triggering nodes to pro-
cess events in each iteration after the previous was complete.
A subtle but powerful property of incrementally updated
iterative computation convinced us to pursue superior per-
formance. Consider for example the problem of computing
the connected components of a large graph: it might require
200 iterations and be partitioned over 100 worker comput-
ers. Now imagine re-running the computation after deleting
a single edge from the graph. It would not be surprising if
the work done in the second run were identical to that in the
first except for, say, eight distinct loop iterations; and if those
iterations differed only at two or three workers each. When
incrementally updating the computation, a sophisticated
implementation can actually be made to perform work only
at those 20 or so times and workers, and this is only possible
because the out-of-band notification mechanism can “skip
over” workers and iterations where there is nothing to do;
a design that required the system to step each node around
the loop at every iteration would be much less efficient. This
example also illustrates a case in which event handlers send
messages and request notifications for a variety of times in
the future of the events being processed; again, we could
have chosen a simpler design that restricted this general-
ity, but we would have lost substantial performance for use-
ful applications. Space does not permit a full treatment of b  The full source code is available from https://github.com/TimelyDataflow/

Naiad.

 OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 79

algorithms typically require efficient communication, coor-
dination at fine granularity, and the ability to express iterative
algorithms. These challenges have spurred research into spe-
cialized distributed graph-processing systems11 and—more
recently—attempts to adapt dataflow systems for graph pro-
cessing.12 We used a variety of graph algorithms to evaluate
both the expressiveness of the timely dataflow programming
model and the performance of our Naiad implementation.
To avoid confusion in this section we use the term “operator”
for dataflow nodes, and “graph,” “node,” and “edge” refer to
elements of the graph that is being analyzed by a program
running on Naiad unless otherwise qualified.

To understand how we implement graph algorithms on
Naiad, it is instructive to consider the Gather-Apply-Scatter
(GAS) abstraction of Gonzalez et al.11 In the GAS abstraction,
a graph algorithm is expressed as the computation at a node
in the graph that (i) gathers values from its neighbors, (ii)
applies an update to the node’s state, and (iii) scatters the new
value to its neighbors. Figure 3 shows how we express this
abstraction as a timely dataflow graph. The first step is to load
and partition the edges of the graph (1). This step might use
a simple hash of the node ID, or a more advanced partition-
ing scheme that attempts to reduce the number of edges that
cross partition boundaries. The core of the computation is a
set of stateful graph-join operators (2), which store the graph
in an efficient in-memory data structure that is optimized for
random node lookup. The graph-join effectively computes
the inner join of its two inputs—the static (src, dst) edge rela-
tion, and the iteratively updating (src, val) state relation—and
has the effect of scattering the updated state values along the
edges of the graph. A set of stateful node-aggregate operators
(3) perform the gather and apply steps: they store the current
state of each node in the graph, gather incoming updates
from the neighbors (i.e., the output of the graph-join), apply
the final value to each node’s state, and produce it as output.
To perform an iterative computation, the node-aggregate
operators take the initial value for each node in the first itera-
tion (4), feed updated state values around the back-edge of the
loop (5), and produce the final value for each node after the
algorithm reaches a fixed point (6).

Depending on the nature of the algorithm, it may be pos-
sible to run completely asynchronously, or synchronize after
each iteration. In our experience, the most efficient imple-
mentation of graph algorithms like PageRank or weakly

The delivery of notifications defines the critical path for
a Naiad computation, and the protocol as implemented can
dispatch notifications across a cluster in a single network
round-trip. Figure 2 shows that, using the protocol, a simple
microbenchmark of notifications in a tight loop performs
a global barrier across 64 servers (connected by Gigabit
Ethernet) with a median latency of just 750 ms.

Layering programming abstractions. We wanted to en-
sure that Naiad would be easy to use for beginners, while
still flexible enough to allow experienced programmers to
customize performance-critical node implementations.
We therefore adopted a layered model for writing Naiad
programs. The lowest layer exposes the raw timely dataflow
interfaces for completely custom nodes. Higher layers are
structured as framework libraries that hide node implemen-
tations behind sets of data-parallel operators with related
functionality whose inputs and outputs are distributed col-
lections of C# objects.

We modeled many of our libraries on the distributed
query libraries in DryadLINQ,26 with the added support for
graph processing and incremental computation that we
discuss in the following sections. Within libraries we can
often re-use common implementations; for example most
of the LINQ operators in Naiad build on unary and binary
forms of a generic buffering operator with an OnRecv call-
back that adds records to a list indexed by timestamp, and
an OnNotify(t) method that applies the appropriate trans-
formation to the list or lists for time t. In many cases we
were able to specialize the implementation of operators that
require less coordination: for example Concat immediately
forwards records from either of its inputs, Select trans-
forms and outputs data without buffering, and Distinct
outputs a record as soon as it is seen for the first time.

The ease of implementing new frameworks as libraries
on Naiad enabled us to experiment with various distributed
processing patterns. In the following sections, we elabo-
rate on the frameworks that we built for graph processing
(Section 3) and differential dataflow (Section 4).

3. GRAPH PROCESSING ON NAIAD
It is challenging to implement high-performance graph algo-
rithms on many data processing systems. Distributed graph

Figure 2. The median latency of a global barrier implemented using
notifications in a cycle is just 750 µs on 64 machines. Error bars
show the 95th percentile latencies in each configuration.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

T
im

e
pe

r
ite

ra
tio

n
(m

s)

Number of computers

95th/5th percentiles
Quartiles

Median

VertexValues

NodeAggregate

GraphJoin

Concat

Edges 1

2

3

4

5

6

Figure 3. Illustration of a graph algorithm as a timely dataflow graph.

80 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

research highlights

an edge-based partitioning in the spirit of PowerGraph’s
edge partitioning with a vertex cut objective, but based on a
space-filling curve16; it outperforms PowerGraph by a factor
of 5, taking just 1.03 s per iteration on 49 machines. Figure 4
plots a single-threaded baseline for the PageRank opera-
tion, using a late-2014 MacBook Pro with 16 GB of RAM:
using a similar data layout to the advanced Naiad imple-
mentation, this implementation takes 5.25 s per iteration.

4. DIFFERENTIAL DATAFLOW
Differential dataflow is a computational framework that we
developed to efficiently execute and incrementally update
iterative data-parallel computatations. The framework com-
prises algorithms, data structures, and dataflow graph con-
structs layered atop a timely dataflow system.17

4.1. Incremental view maintenance
Differential dataflow is a generalization of incremental
view maintenance, a useful technique from database sys-
tems. Incremental view maintenance can be implemented
as a dataflow graph of data-parallel nodes. Each node con-
tinually receives records and maintains the correct output
for their accumulation. Because the node implementa-
tions are data-parallel, they only need to revisit previously
received input records with the same keys as newly arriv-
ing inputs. Looking at only these records, the node can
determine how the output must be corrected (if at all) to
reflect the new input. By producing and communicating
only changed output records, the node informs down-
stream nodes of the relatively few keys they must recon-
sider. The system as a whole performs work only when and
where actual changes occur.

Incremental view maintenance is the basis for many suc-
cessful stream processing systems3 and graph processing sys-
tems.8 In a stream processing system, a small per-record update
time means that the system can execute with very low latency
compared to batch systems. In an incremental graph process-
ing system, the time to perform a round of message exchanges
depends only on the number of messages exchanged rather
than the total number of nodes or edges. Despite its value for
both stream and graph processing systems, incremental view
maintenance is not suitable for combining the two.

4.2. From incremental to differential dataflow
Differential dataflow provides the ability to combine
incremental and iterative updates by removing the
implicit assumption that time is totally ordered; instead
it indexes and accumulates records according to par-
tially ordered timestamps. Consider a graph processing
system that accepts incremental updates to its node and
edge sets, and correctly updates the output of an iterative
computation. This system must deal with multiple types
of updates, due to both iterations progressing and inputs
changing; differential dataflow distinguishes these types
of updates using multi-dimensional logical timestamps.
When a new record arrives, the implementation constructs
the accumulation needed to determine the new output
from all records with timestamps less than or equal to
that of the new record. Concretely, consider the example

connected components uses OnRecv to aggregate incom-
ing values to the node-aggregate operator asynchronously,
and OnNotify to produce new aggregated states for the
nodes synchronously in each iteration. Because it is possible
to coordinate at timescales as short as a millisecond, more
complex graph algorithms benefit from dividing iterations
into synchronous sub-iterations, using the prioritization
technique that we briefly describe in Section 4.

Motivated by the dataflow in Figure 3, we implemented
the GraphLINQ framework on Naiad. GraphLINQ extends
the LINQ programming model—with its higher-order declar-
ative operators over collections, such as Select, Where,
and GroupBy—with GraphJoin, NodeAggregate, and
Iterate operators that implement the specialized data-
flow nodes depicted in Figure 3. GraphLINQ allows the
programmer to use standard LINQ operators to define the
dataflow computation that loads, parses, and partitions
the input data as a graph, and then specify a graph algorithm
declaratively. A simple implementation of PageRank is just
nine lines of GraphLINQ code.

When implementing graph algorithms on a dataflow
system, a common concern is that the generality of the
system will impose a performance penalty over a special-
ized system. To evaluate this overhead, we measured the
performance of several implementations of PageRank on a
publicly available crawl of the Twitter follower graph, with
42 million nodes and 1.5 billion edges.c Figure 4 compares
two Naiad implementations of PageRank to the published
results for PowerGraph,11 which were measured on com-
parable hardware.d We present two different implementa-
tions of PageRank on Naiad. The first (“Naiad Vertex”) uses
a simple hash function to partition the nodes of the Twitter
graph between the workers, and performs all processing
for each node on a single worker; this implementation per-
forms similarly to the best PowerGraph implementation,
taking approximately 5.55 s per iteration on 64 machines.
The more advanced (“Naiad Edge”) implementation uses

1

10

100

0 10 20 30 40 50 60

T
im

e
pe

r
ite

ra
tio

n
(s

)

Number of computers

Serial implementation
Naiad Vertex
PowerGraph

Naiad Edge

Figure 4. Time per iteration for PageRank on the Twitter follower
graph, as the number of machines is varied.

c  http://an.kaist.ac.kr/traces/WWW2010.html.
d  The Naiad results were computed using two racks of 32 servers, each with
two quad-core 2.1 GHz AMD Opteron processors, 16 GB of RAM, and an Nvidia
NForce Gigabit Ethernet NIC. The PowerGraph results were computed using
64 Amazon EC2 cc1.4xlarge instances, each with two quad-core Intel
Xeon X5570 processors, 23 GB of RAM, and 10Gbit/s networking.11

 OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 81

the amount of unproductive communication and
computation.

The 1s change series shows that the amount of work
required to update the edge set by sliding the window for-
ward one second—incrementally updating the connectivity
structures as well—is vanishingly small by comparison.

Since differential dataflow uses the same representation
for incremental and iterative changes to collections, the
techniques are composable. Figure 7 shows an implementa-
tion of an algorithm for finding the strongly connected com-
ponents (SCC) of a directed graph. The classic algorithm
for SCC is based on depth-first search, which is not easily
parallelizable. However, by nesting two connected compo-
nents queries (Figure 6) inside an outer FixedPoint, we
can write a data-parallel version using differential dataflow
(Figure 7). Strictly speaking the connected components
query computes directed reachability, and the SCC algo-
rithm repeatedly removes edges whose endpoints reach dif-
ferent components and must therefore be in different SCCs.
Iteratively trimming the graph in alternating directions—by

of timestamps (epoch, iteration) for multiple rounds of
an iterative computation that receives multiple epochs of
updated input. Using the partial order (a, b) £ (x, y) iff a £ x
∧ b £ y we can get both the standard streaming and graph
processing behavior at once: a timestamp (epoch, 0) col-
lects all updates (i, 0) with i £ epoch, and a timestamp
(0, round) collects all updates (0, j) with j £ round. Further,
a timestamp (epoch, round) can take advantage of exactly
those records that are useful for it: those at timestamp
(i, j) where i £ epoch and j £ round. Records at later epochs
or rounds can be ignored.

Figure 5 shows, for different implementation strategies,
the execution time for each iteration of a graph processing
computation: namely, weakly connected components (via
label propagation) on a graph derived from a 24-h window
of Twitter mentions. Each vertex represents a user, and it
repeatedly exchanges the smallest user ID it has seen so far
(including its own) with its neighbors. As the computation
proceeds, labels eventually stop changing and converge to
the smallest user ID in each connected component. The
implementation strategies are as follows:

•	 Stateless batch execution (not shown) repeatedly
recomputes all labels in each iteration, and does a con-
stant number of updates as the computation pro-
gresses. This is the baseline version that could be
implemented on top of MapReduce.

•	 Incremental dataflow uses incremental view mainte-
nance to improve on the stateless version. The amount
of work decreases as the computation starts to converge
and unchanged labels are neither re-communicated
nor re-computed.

•  Prioritized differential dataflow improves on this fur-
ther by incrementally introducing the labels to propa-
gate, starting with the smallest values (those most
likely to be retained at each vertex) and adding larger
values only once the small labels have fully propa-
gated. The advantage of introducing small labels ear-
lier is that many vertices (that eventually receive small
labels) will no longer propagate the larger labels that
they possess during the early iterations, which reduces

0.1

1

10

100

1000

10000

0 5 10 15 20

T
im

e
pe

r
ite

ra
tio

n
(m

s)

Iteration index

Incremental
Prioritized
1s change

Figure 5. The execution time for each iteration of the connected
components algorithm, for a graph built from a Twitter conversation
dataset. The “1s change” curve shows an sliding window update that
requires no work for many of the iterations.

Figure 6. A connected components algorithm in differential dataflow
that uses FixedPoint to perform iterative aggregation over node
neighborhoods.

// produces a (src, label) pair for each node in the graph
Collection<Node> ConnectedComponents(Collection<Edge> edges)
{
// start each node with its own label, then iterate
return edges.Select(x => new Node(x.src, x.src))

.FixedPoint(x => LocalMin(x, edges));
}

// improves an input labeling of nodes by considering the
// labels available on neighbors of each node as well
Collection<Node> LocalMin(Collection<Node> nodes,

Collection<Edge> edges)
{
return nodes.Join(edges, n => n.src, e => e.src,

(n, e) => new Node(e.dst, n.label))
.Concat(nodes)
.Min(node => node.src, node => node.label);

}

// returns edges between nodes within a SCC
Collection<Edge>
{
return edges.FixedPoint(y => TrimAndReverse(

TrimAndReverse(y)));
}

// returns edges whose endpoints reach the same node, flipped
Collection<Edge> TrimAndReverse(Collection<Edge>
{
// establish labels based on reachability
var labels = ConnectedComponents(edges);

// struct LabeledEdge(a,b,c,d): edge (a,b); labels c, d;
return edges.Join(labels, x => x.src, y => y.src,

(x, y) => x.AddLabel1(y))
.Join(labels, x => x.dst, y => y.src,

(x, y) => x.AddLabel2(y))
.Where(x => x.label1 == x.label2)
.Select(x => new Edge(x.dst, x.src));

}

edges)

SCC(Collection<Edge> edges)

Figure 7. A function to compute strongly connected components in
differential dataflow that uses connected components (Figure 6) as a
nested iterative subroutine.

82 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

research highlights

efficient system based on maintaining a large amount
of state in memory. While we were able to use C# value
types to reduce the number of pointers on the heap—
and hence the amount of GC work required—it was not
possible to eliminate GC-related pauses completely.
Since building the original version of Naiad we have
investigated alternative designs that would reduce the
impact of garbage collection: the Broom project shows
encouraging improvements in the throughput of Naiad
programs using region-based memory allocation,9 and
a reimplementation of timely dataflow in the Rust lan-
guage eliminates the garbage collector altogether.e

Many distributed dataflow systems exploit determin-
istic execution to provide automatic fault tolerance,13, 20,

27 but Naiad embraces non-determinism and asynchrony
to produce results sooner. Furthermore, Naiad vertices
can maintain arbitrary state, which makes it non-trivial
to generate code that produces a checkpoint of a vertex.
As explained in the introduction our current implementa-
tion of fault tolerance is based on restoring from a global
checkpoint, which requires code in each stateful vertex
to produce and consume a checkpoint of its state. Global
checkpointing introduces a large amount of skew into the
distribution of epoch and iteration execution times, and
forces non-failing processes to roll back in the event of a
failure. We have developed a model that permits differ-
ent vertices to implement different checkpointing poli-
cies,2 and are working on a Naiad implementation of the
model, which exposes a range of performance tradeoffs
that in many cases allow high-throughput, low-latency,
and fault-tolerant execution.

Finally we note that, while Naiad supports the composi-
tion of many different models of computation in the same
program, it lacks a high-level programming language—such
as SQL—and an optimizer that chooses the most appropri-
ate models for a particular task. Other authors have applied
program analysis and query optimization techniques to
Naiad. Sousa et al.22 achieved speedups over Naiad’s built-in
operators by analyzing user-defined functions and generat-
ing new operators. Gog et al.10 achieved encouraging results
with Musketeer, which transforms possibly iterative pro-
grams written in a high-level language into code that uses
a variety of systems including Naiad. Still, we believe that
there is scope for a more powerful compiler that can target
Naiad’s different libraries, including differential dataflow,
and generate optimized vertex code.

Acknowledgments
We worked on Naiad at the Microsoft Research Silicon Valley
Lab between 2011 and the lab’s closure in September 2014.
We thank Dave Andersen, Amer Diwan, and Matt Dwyer for
suggestions on improving this paper. We are grateful to all
of our former colleagues who commented on previous ver-
sions of the work, and especially to Roy Levin and Mike
Schroeder, who created a unique environment in which this
kind of research was encouraged and nurtured.�

e  https://github.com/frankmcsherry/timely-dataflow.

reversing the edges in each iteration—eventually converges
to the graph containing only those edges whose endpoints
are in the same SCC.

4.3. Implementation
Our implementation of differential dataflow comprises sev-
eral standard nodes, including Select, Where, GroupBy,
and Join, as well as a higher-order FixedPoint node
that iteratively applies an arbitrary differential dataflow
expression until it converges to a fixed point. The records
exchanged are of the form (data, time, difference), where
data is an arbitrary user-defined type, time is a timestamp,
and difference is a (possibly negative) integer.

The standard nodes have somewhat subtle imple-
mentations that nonetheless mostly follow from the
mathematical definition of differential dataflow17 and
the indexing needed to respond quickly to individual
time-indexed updates. The FixedPoint node intro-
duces a new coordinate to the timestamps of enclosed
nodes, and extends “less or equal” and “least upper
bound” for the timestamps according to the product
order described above (one timestamp is less than or
equal to another if all of its coordinates are). An impor-
tant aspect of the implementation is that all differential
dataflow nodes are generic with respect to the type of
timestamp as long as it implements “less or equal” and
“least upper bound” methods, and this means that they
can be placed within arbitrarily nested fixed-point loops.
When the fixed point of an expression is computed, the
expression’s dataflow subgraph is constructed as nor-
mal, but with an additional connection from the output
of the subgraph back to its input, via a node that advances
the innermost coordinate by one (informally, this
advances the iteration count).

5. LESSONS LEARNED AND OPEN QUESTIONS
Timely dataflow demonstrates that it is possible to combine
asynchronous messaging with distributed coordination to
generate consistent results from complex, cyclic dataflow
programs. Naiad further demonstrates that we can build a
system that combines the flexibility of a general-purpose data-
flow system with the performance of a specialized system.

Our original Naiad implementation used C# as the imple-
mentation language. C#’s support for generic types and first-
class functions makes it simple to build a library of reusable
data-parallel operators like LINQ. The fact that a running
C# program has access to its typed intermediate-language
representation means that reflection can be used to gener-
ate efficient serialization code automatically. The advantage
of automatic serialization when writing distributed appli-
cations should not be underestimated, since it allows pro-
grammers to use native language mechanisms like classes to
represent intermediate values without paying the penalty of
writing and maintaining serializers for every class.

Some of C#’s productivity benefits come at a cost
to performance and we had to work to minimize that
cost. The .NET runtime uses a mark-and-sweep garbage
collector (GC) to reclaim memory, which simplifies
user programs but presents challenges for building an

 OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 83

Vassilakis, T. Dremel: Interactive
analysis of web-scale datasets. Proc.
VLDB Endow. Proc. VLDB Endow. 3,
1–2 (Sep. 2010), 330–339.

	19.	 Murray, D.G., McSherry, F., Isaacs, R.,
Isard, M., Barham, P., Abadi, M. Naiad:
A timely dataflow system. In Proc.
SOSP (Nov. 2013), 439–455.

	20.	 Murray, D.G., Schwarzkopf, M.,
Smowton, C., Smith, S.,
Madhavapeddy, A., Hand, S. CIEL:
A universal execution engine for
distributed data-flow computing. In
Proc. NSDI (Mar. 2011), 113–126.

	21.	 Peng, D., Dabek, F. Large-scale
incremental processing using
distributed transactions and
notifications. In Proc. OSDI (Oct.
2010), 251–264.

	22.	 Sousa, M., Dillig, I., Vytiniotis, D.,
Dillig, T., Gkantsidis, C. Consolidation
of queries with user-defined
functions. In Proc. PLDI (June 2014),
554–564.

	23.	 Tel, G., Mattern, F. The derivation of
distributed termination detection

algorithms from garbage collection
schemes. ACM Trans. Program. Lang.
Syst. 15, 1 (Jan. 1993), 1–35.

	24.	 Tucker, P.A., Maier, D., Sheard, T.,
Fegaras, L. Exploiting punctuation
semantics in continuous data
streams. IEEE Trans. Knowledge
Data Eng. 15, 3 (2003), 555–568.

	25.	 Yu, Y., Gunda, P.K., Isard, M.
Distributed aggregation for data-
parallel computing: Interfaces and
implementations. In Proc. SOSP
(Oct. 2009), 247–260.

	26.	 Yu, Y., Isard, M., Fetterly, D., Budiu, M.,
Erlingsson, Ú., Gunda, P.K., Currey, J.
DryadLINQ: A system for general-
purpose distributed data-parallel
computing using a high-level language.
In Proc. OSDI (Dec. 2008), 1–14.

	27.	 Zaharia, M., Chowdhury, M., Das, T.,
Dave, A., Ma, J., McCauley, M.,
Franklin, M., Shenker, S., Stoica, I.
Resilient Distributed Datasets:
A fault-tolerant abstraction for
in-memory cluster computing. In
Proc. NSDI (Apr. 2012).

References
	 1.	 Abadi, M., Isard, M. Timely dataflow:

A model. In Proc. FORTE (2015),
131–145.

	 2.	 Abadi, M., Isard, M. Timely rollback:
Specification and verification. In Proc.
NASA Formal Methods (April 2015),
19–34.

	 3.	 Akidau, T., Balikov, A., Bekiroğlu, K.,
Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P.,
Whittle, S. MillWheel: Fault-tolerant
stream processing at internet scale.
Proc. VLDB Endow. 6, 11 (Aug. 2013),
1033–1044.

	 4.	 Chandramouli, B., Goldstein, J.,
Maier, D. On-the-fly progress
detection in iterative stream queries.
Proc. VLDB Endow. 2, 1 (Aug. 2009),
241–252.

	 5.	 Chang, F., Dean, J., Ghemawat, S.,
Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E. Bigtable: A distributed
storage system for structured
data. In Proc. OSDI (Nov. 2006),
205–218.

	 6.	 Dean, J., Ghemawat, S. Mapreduce:
Simplified data processing on large
clusters. Commun. ACM 51, 1 (Jan.
2008), 107–113.

	 7.	 DeWitt, D., Gray, J. Parallel database
systems: The future of high
performance database systems.
Commun. ACM 35, 6 (June 1992),
85–98.

	 8.	 Ewen, S., Tzoumas, K., Kaufmann, M.,
Markl, V. Spinning fast iterative data
flows. Proc. VLDB Endow. 5, 11 (July
2012), 1268–1279.

	 9.	 Gog, I., Giceva, J., Schwarzkopf, M.,
Vaswani, K., Vytiniotis, D.,

Ramalingam, G., Costa, M., Murray, D.G.,
Hand, S., Isard, M. Broom: Sweeping
out garbage collection from big
data systems. In Proc. HotOS
(May 2015).

	10.	 Gog, I., Schwarzkopf, M., Crooks, N.,
Grosvenor, M.P., Clement, A., Hand, S.
Musketeer: All for one, one for all in
data processing systems. In Proc.
EuroSys (Apr. 2015).

	11.	 Gonzalez, J.E., Low, Y., Gu, H.,
Bickson, D., Guestrin, C. PowerGraph:
Distributed graph-parallel
computation on natural graphs. In
Proc. OSDI (Oct. 2012), 17–30.

	12.	 Gonzalez, J.E., Xin, R.S., Dave, A.,
Crankshaw, D., Franklin, M.J., Stoica, I.
GraphX: Graph processing in a
distributed dataflow framework. In
Proc. OSDI (Oct. 2014), 599–613.

	13.	 Isard, M., Budiu, M., Yu, Y., Birrell, A.,
Fetterly, D. Dryad: Distributed data-
parallel programs from sequential
building blocks. In Proc. EuroSys
(Mar. 2007), 59–72.

	14.	 Lee, E., Messerschmitt, D.G.
Synchronous data flow. Proc. IEEE
75, 9 (1987), 1235–1245.

	15.	 Li, M., Andersen, D.G., Park, J.W.,
Smola, A.J., Ahmed, A., Josifovski, V.,
Long, J., Shekita, E.J., Su, B.-Y. Scaling
distributed machine learning with the
parameter server. In Proc. OSDI
(Oct. 2014), 583–598.

	16.	 McSherry, F., Isard, M., Murray, D.G.
Scalability! But at what COST? In
Proc. HotOS (May 2015).

	17.	 McSherry, F., Murray, D.G., Isaacs, R.,
Isard, M. Differential dataflow. In
Proc. CIDR (Jan. 2013).

	18.	 Melnik, S., Gubarev, A., Long, J.J.,
Romer, G., Shivakumar, S., Tolton, M.,

Derek G. Murray, Michael Isard,
Rebecca Isaacs, Paul Barham, and
Martín Abadi ({mrry, misard, risaacs,
pbar, abadi}@google.com) Google,
Mountain View, CA.

Frank McSherry (fmcsherry@me.com)
is still at large.

Copyright held by owners/authors.

A personal walk down the
computer industry road.

BY AN EYEWITNESS.
Smarter Than Their Machines: Oral Histories
of the Pioneers of Interactive Computing is
based on oral histories archived at the Charles
Babbage Institute, University of Minnesota.
These oral histories contain important messages
for our leaders of today, at all levels, including
that government, industry, and academia can
accomplish great things when working together in
an effective way.

