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Abstract
We describe the timely dataflow model for distributed com-
putation and its implementation in the Naiad system. The 
model supports stateful iterative and incremental compu-
tations. It enables both low-latency stream processing and 
high-throughput batch processing, using a new approach to 
coordination that combines asynchronous and fine-grained 
synchronous execution. We describe two of the program-
ming frameworks built on Naiad: GraphLINQ for parallel 
graph processing, and differential dataflow for nested itera-
tive and incremental computations. We show that a general-
purpose system can achieve performance that matches, and 
sometimes exceeds, that of specialized systems.

1. INTRODUCTION
This paper describes the timely dataflow model for itera-
tive and incremental distributed computation, and the 
Naiad system that we built to demonstrate it. We set out to 
design a system that could simultaneously satisfy a diverse 
set of requirements: we wanted efficient high-throughput 
processing for bulk data-parallel workloads; stateful com-
putations supporting queries and updates with low latency 
(on the order of milliseconds); and a simple yet expressive 
programming model with general features like iteration. 
Systems already exist for batch bulk-data processing,6, 13, 27 
stream processing,3 graph algorithms,11 machine learning,15 
and interactive ad hoc queries18; but they are all deeply spe-
cialized for their respective domains. Our goal was to find a 
common low-level abstraction and system design that could 
be re-used for all of these computational workloads. We were 
motivated both by the research question of whether such a 
low-level model could be found, and also by the pragmatic 
desire to reduce the engineering cost of domain-specific dis-
tributed systems by allowing them to share a single highly 
optimized core codebase.

To understand the difficulty of supporting low-latency, 
high-throughput, and iterative computations in the same sys-
tem, we must first think about scheduling and coordination. 
An easy way to achieve low latency in a distributed system 
is to use fully decentralized scheduling with no global coor-
dination: workers eagerly process messages sent by other 
workers and respond based on purely local information. 
One can write highly complex computations this way—for 
example using a trigger mechanism21—but it is challenging 
to achieve consistency across the system. Instead we sought 
a high-level programming model with the abstraction of 
computing over collections of data using constructs with 
well-understood semantics, including loops; however, it is 
hard to translate such a high-level program description into 
an uncoordinated mass of triggers. At the other extreme, 

The original version of this paper was entitled “Naiad:  
A Timely Dataflow System” and was published in the  
Proceedings of the 24th ACM Symposium on Operating Systems 
Principles (Farmington, PA, Nov. 3-6, 2013), 439–455.

the easiest way to implement a high-throughput batch sys-
tem with strong consistency is to use heavyweight central 
coordination, which has acceptable cost when processing 
large amounts of data, because each step of the distributed 
computation may take seconds or even minutes. In such sys-
tems it may make sense to insert synchronization barriers 
between computational steps,6 and manually unroll loops 
and other control flow into explicitly acyclic computation 
graphs.20, 27 The overhead of these mechanisms precludes 
low-latency responses in cases where only a small amount of 
data needs to be processed.

Timely dataflow is a computational model that attaches 
virtual timestamps to events in structured cyclic data-
flow graphs. Its key contribution is a new coordination 
mechanism that allows low-latency asychronous message 
processing while efficiently tracking global progress and 
synchronizing only where necessary to enforce consistency. 
Our implementation of Naiad demonstrates that a timely 
dataflow system can achieve performance that matches—
and in many cases exceeds—that of specialized systems.

A major theme of recent high-throughput data process-
ing systems6, 13, 27 has been their support for transparent fault 
tolerance when run on large clusters of unreliable comput-
ers. Naiad falls back on an older idea and simply checkpoints 
its state periodically, restoring the entire system state to the 
most recent checkpoint on failure. While this is not the most 
sophisticated design, we chose it in part for its low overhead. 
Faster common-case processing allows more computation to 
take place in the intervals between checkpointing, and thus 
often decreases the total time to job completion. Streaming 
systems are, however, often designed to be highly available3; 
users of such systems would rightly argue that periodic 
checkpoints are not sufficient, and that (setting aside the 
fact that streaming systems generally do not support itera-
tion) a system like MillWheel3 could achieve much higher 
throughput if it simply dispensed with the complexity and 
overhead of fault tolerance. In keeping with the philosophy 
of timely dataflow we believe there is a way to accommodate 
both lazy batch-oriented and eager high-availability fault tol-
erance within a single design, and interpolate between them 
as appropriate within a single system. We have developed a 
theoretical design for timely dataflow fault tolerance2 and are 
in the process of implementing it.

In the remainder of this paper we first introduce timely 
dataflow and describe how its distributed implementation 
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achieves our desiderata (Section 2). We then discuss 
some  applications that we have built on Naiad, including 
graph computation (Section 3) and differential dataflow 
(Section 4). Finally we discuss lessons learned and open 
questions (Section 5). Some of the material in this article was 
previously published at SOSP 2013 in a paper that describes 
Naiad in more detail.19

2. SYSTEM DESIGN AND IMPLEMENTATION
Figure 1 illustrates one type of application that motivated 
timely dataflow, since it mixes high-throughput iterative 
processing on large volumes of data with fine-grained, low-
latency reads and updates of distributed state. Updates 
continually arrive at the left, reflecting activity in a social 
network. The dashed rectangle surrounds an iterative clus-
tering algorithm that incrementally maintains a view of 
conversation topics, aggregated by the dynamic community 
structure that the recent activity implies. At the top, incom-
ing queries request topic recommendations that are tailored 
to particular users and their community interests: these 
queries are joined with the freshest available clustering to 
provide high quality and up-to-date results. Before Naiad, 
no existing system could implement all of these features 
with acceptable performance. A standard solution might 
be to write the clustering algorithm in the language of a 
batch system like MapReduce6 or Spark27 and re-run it from 
scratch every few hours, storing the output in a distributed 
datastore like Bigtable.5 A separate program might target a 
low-latency streaming system like MillWheel3 and perform 
a simpler non-iterative categorization of recent updates, 
saving fresh but approximate recommendations to another 
table of the distributed store. A third program would accept 
user queries, perform lookups against the batch and fresh 
data tables, combine them and return results. While this 
kind of hybrid approach has been widely deployed, a single 
program on a single system would be simpler to write and 
maintain, and it would be much easier to reason about the 
consistency of its outputs.

Combining these disparate requirements in a high- 
performance system is challenging, and a crucial first step 
was to design suitable abstractions to structure the neces-
sary computation. This section starts by explaining the 

computational model we arrived at, the abstractions we 
chose, and the reasoning behind them.

2.1. Dataflow
Our first choice was to represent every program as a data-
flow graph. Dataflow is a common approach for distributed 
data processing6, 13, 27 because it explicitly encapsulates the 
boundaries between computations: the nodes of a data-
flow graph represent subcomputations, and the directed 
edges represent the paths along which data is communi-
cated between them. As a result, a system that represents 
its programs using dataflow can automatically determine 
subcomputations that can be executed in parallel. It then 
has a large degree of flexibility in scheduling them, and it 
can—at least in principle—place, move, and restart nodes 
independently without changing the semantics of the over-
all computation.

We based our design on stateful dataflow, in which every 
node can maintain mutable state, and edges carry a poten-
tially unbounded stream of messages. Although statefulness 
complicates fault tolerance, we believe that it is essential 
for low-latency computation. Incremental or iterative com-
putations may hold very large indexed data structures in 
memory and it is essential that an application be able to 
rapidly query and update these data structures in response 
to dataflow messages, without the overhead of saving and 
restoring state between invocations. We chose to require 
state to be private to a node to simplify distributed place-
ment and parallel execution. One consequence of adopting 
stateful dataflow is that loops can be implemented effi-
ciently using cycles in the dataflow graph (with messages 
returning around a loop to the node that stores the state). 
In contrast, stateless systems20, 27 implement iteration using 
acyclic dataflow graphs by dynamically unrolling loops and 
other control flow as they execute.

Having settled on stateful dataflow we attempted to 
minimize the number of execution mechanisms, in order 
to make timely dataflow systems easier to reason about 
and optimize. For example, we adopted the convention that 
all computation in nodes occurs in single-threaded event 
handlers, which the runtime invokes explicitly. With this 
convention all scheduling decisions are centralized in a 
common runtime, making CPU usage more predictable and 
allowing the system builder to aggressively optimize perfor-
mance and control latency. It also simplifies the implemen-
tation of individual nodes: because the system guarantees 
that all event handlers will run in a single thread, the appli-
cation programmer can ignore the complexities of concur-
rent programming. By encouraging single-threaded node 
implementations we push programmers to obtain paral-
lelism by adding nodes to the dataflow graph, and force the 
system builder to ensure low overhead when scheduling a 
node’s computation. The resulting system should be able to 
interleave many short-lived invocations of different nodes, 
and be well-suited to performing fine-grained updates with 
low latency.

Data-parallelism is a standard approach for constructing 
parallel dataflow graphs from operators whose inputs and 
outputs are collections of records. A data-parallel operator 

Figure 1. An application that supports real-time queries on 
continually updated data. The dashed rectangle represents iterative 
processing that incrementally updates as new data arrive.
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output: consider for example reduction functions like Count 
or Average. At the same time, distributed applications 
commonly split input into small asynchronous messages to 
reduce latency and buffering as described above. For timely 
dataflow to support incremental computations on unbounded 
streams of input as well as iteration, it a mechanism to signal 
when a node (or data-parallel set of nodes) has seen a consistent 
subset of the input for which to produce a result.

A notification is an event that fires when all messages at 
or before a particular logical timestamp have been delivered 
to a particular node. Since a logical timestamp t identifies a 
batch of records, a notification event for a node at t indicates 
that all records in that batch have been delivered to the node, 
and a result can be produced for that logical times-tamp. We 
exposed notifications in the programming model by adding 
a system method, NotifyAt(t), that a node can call from 
an event handler to request a notification. When the system 
can guarantee that no more messages with that timestamp 
will ever be delivered to the node, it will call the node’s 
OnNotify(t) handler. This guarantee is a global property of 
the state of the system and relies on a distributed protocol 
we describe below. Nodes typically use an OnNotify han-
dler to send a message containing the result of a computa-
tion on a batch of inputs, and to release any temporary state 
associated with that batch.

Iteration with cyclic graphs. Support for iteration compli-
cates the delivery of notifications, because in a cyclic data-
flow graph the input to a node can depend on its output.a As 
a result, we had to invent suitable restrictions on the struc-
ture of timely dataflow graphs, and on the timestamps that 
can be affixed to messages, to make the notification guaran-
tee hold. The general model is described in detail elsewhere1, 19  
but the restrictions that we adopted in the Naiad system are 
easy to explain informally. A Naiad dataflow graph is acy-
clic apart from structurally nested cycles that correspond 
to loops in the program. The logical timestamp associated 
with each event at a node is a tuple of one or more integers, 
in which the first integer indicates the batch of input that the 
event is associated with, and each subsequent integer gives 
the iteration count of any (nested) loops that contain the 
node. Every path around a cycle includes a special node that 
increments the innermost coordinate of the timestamp. Fi-
nally, the system enforces the rule that no event handler may 
send a message with a time earlier than the timestamp for 
the event it is handling. These conditions ensure that there 
is a partial order on all of the pending events (undelivered 
messages and notifications) in the system, which enables ef-
ficient progress tracking.

2.3. Tracking progress
The ability to deliver notifications promptly and safely is 
critical to a timely dataflow system’s ability to support low-
latency incremental and iterative computation with con-
sistent results. For example, the system can use a global 

includes a key function that maps each input record to a key, 
such that records with different keys can be processed inde-
pendently. As DeWitt and Gray showed more than 20 years 
ago, such an operator can be implemented in a dataflow 
graph by splitting it into multiple nodes, each of which takes 
responsibility for a disjoint subset of the key space.7 Data-
parallelism is attractive because the results are identical 
regardless of how one partitions the key space, so the pro-
grammer need only specify an appropriate key function, and 
the system can automatically choose the degree of parallel-
ism. Our framework libraries provide standard data-parallel 
operators that can be customized for specific applications.

2.2. Timely dataflow
Applications should produce consistent results, and con-
sistency requires coordination, both across dataflow nodes 
and around loops. We called new model “timely” dataflow 
because it depends on logical timestamps to provide this 
coordination. We started with the goal of supporting gen-
eral-purpose incremental and iterative computations with 
good performance, and then tried to construct the narrow-
est possible programming interface between system and 
application writer that satisfied our requirements. Our 
desire for a narrow interface, like our desire for few mecha-
nisms, stems from the belief that it makes systems simpler 
to understand and engineer.

Asynchronous messages. All dataflow models require 
some means for one node to send a message along an outgo-
ing edge to another node. In a timely dataflow system, each 
node implements an OnRecv event handler that the system 
can call when a message arrives on an incoming edge, and 
the system provides a Send method that a node can invoke 
from any of its event handlers to send a message on an out-
going edge. Messages are delivered asynchronously, which 
gives the system has great latitude in how the messages are 
delivered. For example, it can buffer messages between a 
pair of nodes to maximize throughput. At the other extreme 
the system may deliver messages via “cut-through,” where-
by the OnRecv handler for the destination node runs on 
the same callstack as the source’s Send call. Cut-through 
eliminates buffering altogether, which improves cache per-
formance and enables optimizations such as eager data 
reduction25 that can drastically reduce memory consump-
tion. Unlike the Synchronous Data Flow model,14 a timely 
dataflow node may call Send a variable number of times in 
response to an incoming message; as a result, timely data-
flow can represent more programs, but it requires dynamic 
scheduling of the individual nodes.

Each message in a timely dataflow graph is labeled with a 
logical timestamp. A timestamp can be as simple as an inte-
ger attached to an input message to indicate the batch in 
which it arrived. Timestamps are propagated through com-
putations and, for example, enable an application program-
mer to associate input and output data. Timely dataflow also 
supports more complex multi-dimensional timestamps, 
which can be used to enforce consistency when dataflow 
graphs contain cycles, as outlined below.

Consistency. Many computations include subroutines 
that must accumulate all of their input before generating an 

a  MillWheel has a notification—or “Timer”—interface that is similar to the 
timely dataflow design,3 but since it does not support iteration, the time-
stamps are simply integers and the graph is acyclic, greatly simplifying prog-
ress tracking.
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the node logic needed for such applications, but Section 4 
sketches an explanation and provides further references.

2.4. Implementation
Naiad is our high-performance distributed implementation 
of timely dataflow. It is written in C#, and runs on Windows, 
Linux, and Mac OS X.b A Naiad application developer can 
use all of the features of C#, including classes, structs, and 
lambda functions, to build a timely dataflow graph from a 
system-provided library of generic Stream objects. Naiad 
uses deferred execution: at runtime executing a method like 
Max on a Stream actually adds a node to an internal data-
flow graph representation. The dataflow computation only 
starts once the graph has been completely built and data 
are presented to the input nodes. The same program can 
run on a single computer with one or more worker threads, 
or—with a simple change in configuration—as a process that 
communicates with other instances of the same program 
in a distributed computation. Workers exchange messages 
locally using shared memory, and remotely using persistent 
TCP connections between processes. Each dataflow edge 
transmits a sequence of objects of a particular C# type, and 
generics are used extensively so that operators and the edges 
connecting them can be strongly typed.

Performance considerations. To achieve performance that 
is competitive with more specialized systems, we heavily op-
timized Naiad’s few primitive mechanisms. In particular, we 
found it necessary to reduce overheads from serialization for 
.NET types by adding run-time code generation, and from gar-
bage collection by using value types extensively in the runtime 
and standard operators. In order to get low-latency responses 
to small incremental updates and fast loop iterations, we 
needed to ensure that progress tracking is efficient: notifica-
tions are delivered to a node as soon as possible once it can-
not be sent any more messages with a given timestamp.

Naiad’s progress tracking protocol is essentially equiva-
lent to distributed reference counting for termination detec-
tion or garbage collection.23 Each event is associated with a 
graph location (edge or node): a message with the edge it is 
sent on, and a notification with the node that requests and 
receives it. Each worker maintains a count for its local view 
of the number of outstanding events for each pair of location 
and timestamp. Whenever an event is delivered the progress 
tracker decrements the corresponding location’s count at 
the event’s timestamp and increments any counts for mes-
sages sent or notifications requested by the event handler, 
then broadcasts this information to all other workers.

As stated, this protocol would be wildly inefficient, but 
we made several optimizations that allow workers to accu-
mulate updates and delay sending them without stalling the 
global computation. As a simple example, if a worker has 
a pending notification at a node n and timestamp t, it can 
safely accumulate updates to later timestamps until that 
notification is delivered. Accumulated updates frequently 
cancel each other out, so the global broadcast traffic is much 
less than a naive analysis would suggest.

progress tracker to establish the guarantee that no more 
messages with a particular timestamp can be sent to a node. 
By maintaining an aggregated view of the pending events in 
the system, the progress tracker can use the partial order on 
these events to determine (for each node) the earliest logi-
cal time of any subsequent event; this earliest time is mono-
tonic (i.e., it never goes backwards). Moreover, there is an 
efficient way—sketched below—to compute this earliest 
time so that notifications are delivered promptly when they 
come due.

The progress tracker is an “out-of-band” mechanism for 
delivering notifications. Previous systems have implemented 
the equivalent of notifications using “in-band” control mes-
sages along dataflow edges: for example by requiring nodes 
to forward a special “punctuation” message on their outgo-
ing edges to indicate that a batch is complete.24 While in-band 
punctuations might appear to fit better with our philosophy of 
keeping things simple, the performance benefits of the out-of-
band progress tracker design outweighed the cost of the extra 
complexity. Punctuations are unattractive for data-parallel 
dataflow graphs because the number of messages that must 
be sent to indicate the end of a batch is proportional to the 
number of edges in the graph rather than the number of nodes 
(as in the out-of-band design). The simplicity of punctuations 
breaks down when the dataflow can be cyclic, because (i) a 
node cannot produce a punctuation until it receives punctua-
tions on all of its inputs, and (ii) in a cyclic graph at least one 
node must have an input that depends on its output. Although 
punctuations support a limited class of iterative computa-
tions,4 they do not generalize to nested iteration or non- 
monotonic operators, and so do not meet our requirements.

Having established the need for out-of-band coordi-
nation, we could still have adopted a simpler centralized 
scheduling discipline, for example triggering nodes to pro-
cess events in each iteration after the previous was complete.  
A subtle but powerful property of incrementally updated 
iterative computation convinced us to pursue superior per-
formance. Consider for example the problem of computing 
the connected components of a large graph: it might require 
200 iterations and be partitioned over 100 worker comput-
ers. Now imagine re-running the computation after deleting 
a single edge from the graph. It would not be surprising if 
the work done in the second run were identical to that in the 
first except for, say, eight distinct loop iterations; and if those 
iterations differed only at two or three workers each. When 
incrementally updating the computation, a sophisticated 
implementation can actually be made to perform work only 
at those 20 or so times and workers, and this is only possible 
because the out-of-band notification mechanism can “skip 
over” workers and iterations where there is nothing to do; 
a design that required the system to step each node around 
the loop at every iteration would be much less efficient. This 
example also illustrates a case in which event handlers send 
messages and request notifications for a variety of times in 
the future of the events being processed; again, we could 
have chosen a simpler design that restricted this general-
ity, but we would have lost substantial performance for use-
ful applications. Space does not permit a full treatment of b  The full source code is available from https://github.com/TimelyDataflow/

Naiad.
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algorithms typically require efficient communication, coor-
dination at fine granularity, and the ability to express iterative 
algorithms. These challenges have spurred research into spe-
cialized distributed graph-processing systems11 and—more 
recently—attempts to adapt dataflow systems for graph pro-
cessing.12 We used a variety of graph algorithms to evaluate 
both the expressiveness of the timely dataflow programming 
model and the performance of our Naiad implementation. 
To avoid confusion in this section we use the term “operator” 
for dataflow nodes, and “graph,” “node,” and “edge” refer to 
elements of the graph that is being analyzed by a program 
running on Naiad unless otherwise qualified.

To understand how we implement graph algorithms on 
Naiad, it is instructive to consider the Gather-Apply-Scatter 
(GAS) abstraction of Gonzalez et al.11 In the GAS abstraction, 
a graph algorithm is expressed as the computation at a node 
in the graph that (i) gathers values from its neighbors, (ii) 
applies an update to the node’s state, and (iii) scatters the new 
value to its neighbors. Figure 3 shows how we express this 
abstraction as a timely dataflow graph. The first step is to load 
and partition the edges of the graph (1). This step might use 
a simple hash of the node ID, or a more advanced partition-
ing scheme that attempts to reduce the number of edges that 
cross partition boundaries. The core of the computation is a 
set of stateful graph-join operators (2), which store the graph 
in an efficient in-memory data structure that is optimized for 
random node lookup. The graph-join effectively computes 
the inner join of its two inputs—the static (src, dst) edge rela-
tion, and the iteratively updating (src, val) state relation—and 
has the effect of scattering the updated state values along the 
edges of the graph. A set of stateful node-aggregate operators 
(3) perform the gather and apply steps: they store the current 
state of each node in the graph, gather incoming updates 
from the neighbors (i.e., the output of the graph-join), apply 
the final value to each node’s state, and produce it as output. 
To perform an iterative computation, the node-aggregate 
operators take the initial value for each node in the first itera-
tion (4), feed updated state values around the back-edge of the 
loop (5), and produce the final value for each node after the 
algorithm reaches a fixed point (6).

Depending on the nature of the algorithm, it may be pos-
sible to run completely asynchronously, or synchronize after 
each iteration. In our experience, the most efficient imple-
mentation of graph algorithms like PageRank or weakly 

The delivery of notifications defines the critical path for 
a Naiad computation, and the protocol as implemented can 
dispatch notifications across a cluster in a single network 
round-trip. Figure 2 shows that, using the protocol, a simple 
microbenchmark of notifications in a tight loop performs 
a global barrier across 64 servers (connected by Gigabit 
Ethernet) with a median latency of just 750 ms.

Layering programming abstractions. We wanted to en-
sure that Naiad would be easy to use for beginners, while 
still flexible enough to allow experienced programmers to 
customize performance-critical node implementations. 
We therefore adopted a layered model for writing Naiad 
programs. The lowest layer exposes the raw timely dataflow 
interfaces for completely custom nodes. Higher layers are 
structured as framework libraries that hide node implemen-
tations behind sets of data-parallel operators with related 
functionality whose inputs and outputs are distributed col-
lections of C# objects.

We modeled many of our libraries on the distributed 
query libraries in DryadLINQ,26 with the added support for 
graph processing and incremental computation that we 
discuss in the following sections. Within libraries we can 
often re-use common implementations; for example most 
of the LINQ operators in Naiad build on unary and binary 
forms of a generic buffering operator with an OnRecv call-
back that adds records to a list indexed by timestamp, and 
an OnNotify(t) method that applies the appropriate trans-
formation to the list or lists for time t. In many cases we 
were able to specialize the implementation of operators that 
require less coordination: for example Concat immediately 
forwards records from either of its inputs, Select trans-
forms and outputs data without buffering, and Distinct 
outputs a record as soon as it is seen for the first time.

The ease of implementing new frameworks as libraries 
on Naiad enabled us to experiment with various distributed 
processing patterns. In the following sections, we elabo-
rate on the frameworks that we built for graph processing 
(Section 3) and differential dataflow (Section 4).

3. GRAPH PROCESSING ON NAIAD
It is challenging to implement high-performance graph algo-
rithms on many data processing systems. Distributed graph 

Figure 2. The median latency of a global barrier implemented using 
notifications in a cycle is just 750 µs on 64 machines. Error bars 
show the 95th percentile latencies in each configuration.
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an edge-based partitioning in the spirit of PowerGraph’s 
edge partitioning with a vertex cut objective, but based on a 
space-filling curve16; it outperforms PowerGraph by a factor 
of 5, taking just 1.03 s per iteration on 49 machines. Figure 4  
plots a single-threaded baseline for the PageRank opera-
tion, using a late-2014 MacBook Pro with 16 GB of RAM: 
using a similar data layout to the advanced Naiad imple-
mentation, this implementation takes 5.25 s per iteration.

4. DIFFERENTIAL DATAFLOW
Differential dataflow is a computational framework that we 
developed to efficiently execute and incrementally update 
iterative data-parallel computatations. The framework com-
prises algorithms, data structures, and dataflow graph con-
structs layered atop a timely dataflow system.17

4.1. Incremental view maintenance
Differential dataflow is a generalization of incremental 
view maintenance, a useful technique from database sys-
tems. Incremental view maintenance can be implemented 
as a dataflow graph of data-parallel nodes. Each node con-
tinually receives records and maintains the correct output 
for their accumulation. Because the node implementa-
tions are data-parallel, they only need to revisit previously 
received input records with the same keys as newly arriv-
ing inputs. Looking at only these records, the node can 
determine how the output must be corrected (if at all) to 
reflect the new input. By producing and communicating 
only changed output records, the node informs down-
stream nodes of the relatively few keys they must recon-
sider. The system as a whole performs work only when and 
where actual changes occur.

Incremental view maintenance is the basis for many suc-
cessful stream processing systems3 and graph processing sys-
tems.8 In a stream processing system, a small per-record update 
time means that the system can execute with very low latency 
compared to batch systems. In an incremental graph process-
ing system, the time to perform a round of message exchanges 
depends only on the number of messages exchanged rather 
than the total number of nodes or edges. Despite its value for 
both stream and graph processing systems, incremental view 
maintenance is not suitable for combining the two.

4.2. From incremental to differential dataflow
Differential dataflow provides the ability to combine 
incremental and iterative updates by removing the 
implicit assumption that time is totally ordered; instead 
it indexes and accumulates records according to par-
tially ordered timestamps. Consider a graph processing 
system that accepts incremental updates to its node and 
edge sets, and correctly updates the output of an iterative 
computation. This system must deal with multiple types 
of updates, due to both iterations progressing and inputs 
changing; differential dataflow distinguishes these types 
of updates using multi-dimensional logical timestamps. 
When a new record arrives, the implementation constructs 
the accumulation needed to determine the new output 
from all records with timestamps less than or equal to 
that of the new record. Concretely, consider the example 

connected components uses OnRecv to aggregate incom-
ing values to the node-aggregate operator asynchronously, 
and OnNotify to produce new aggregated states for the 
nodes synchronously in each iteration. Because it is possible 
to coordinate at timescales as short as a millisecond, more 
complex graph algorithms benefit from dividing iterations 
into synchronous sub-iterations, using the prioritization 
technique that we briefly describe in Section 4.

Motivated by the dataflow in Figure 3, we implemented 
the GraphLINQ framework on Naiad. GraphLINQ extends 
the LINQ programming model—with its higher-order declar-
ative operators over collections, such as Select, Where, 
and GroupBy—with GraphJoin, NodeAggregate, and 
Iterate operators that implement the specialized data-
flow nodes depicted in Figure 3. GraphLINQ allows the 
programmer to use standard LINQ operators to define the 
dataflow computation that loads, parses, and partitions  
the input data as a graph, and then specify a graph algorithm 
declaratively. A simple implementation of PageRank is just 
nine lines of GraphLINQ code.

When implementing graph algorithms on a dataflow 
system, a common concern is that the generality of the 
system will impose a performance penalty over a special-
ized system. To evaluate this overhead, we measured the 
performance of several implementations of PageRank on a 
publicly available crawl of the Twitter follower graph, with 
42 million nodes and 1.5 billion edges.c Figure 4 compares 
two Naiad implementations of PageRank to the published 
results for PowerGraph,11 which were measured on com-
parable hardware.d We present two different implementa-
tions of PageRank on Naiad. The first (“Naiad Vertex”) uses 
a simple hash function to partition the nodes of the Twitter 
graph between the workers, and performs all processing 
for each node on a single worker; this implementation per-
forms similarly to the best PowerGraph implementation, 
taking approximately 5.55 s per iteration on 64 machines. 
The more advanced (“Naiad Edge”) implementation uses 
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Figure 4. Time per iteration for PageRank on the Twitter follower 
graph, as the number of machines is varied.

c  http://an.kaist.ac.kr/traces/WWW2010.html.
d  The Naiad results were computed using two racks of 32 servers, each with 
two quad-core 2.1 GHz AMD Opteron processors, 16 GB of RAM, and an Nvidia 
NForce Gigabit Ethernet NIC. The PowerGraph results were computed using 
64 Amazon EC2 cc1.4xlarge instances, each with two quad-core Intel 
Xeon X5570 processors, 23 GB of RAM, and 10Gbit/s networking.11
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the amount of unproductive communication and 
computation.

The 1s change series shows that the amount of work 
required to update the edge set by sliding the window for-
ward one second—incrementally updating the connectivity 
structures as well—is vanishingly small by comparison.

Since differential dataflow uses the same representation 
for incremental and iterative changes to collections, the 
techniques are composable. Figure 7 shows an implementa-
tion of an algorithm for finding the strongly connected com-
ponents (SCC) of a directed graph. The classic algorithm 
for SCC is based on depth-first search, which is not easily 
parallelizable. However, by nesting two connected compo-
nents queries (Figure 6) inside an outer FixedPoint, we 
can write a data-parallel version using differential dataflow 
(Figure 7). Strictly speaking the connected components 
query computes directed reachability, and the SCC algo-
rithm repeatedly removes edges whose endpoints reach dif-
ferent components and must therefore be in different SCCs. 
Iteratively trimming the graph in alternating directions—by 

of timestamps (epoch, iteration) for multiple rounds of 
an iterative computation that receives multiple epochs of 
updated input. Using the partial order (a, b) £ (x, y) iff a £ x 
∧ b £ y we can get both the standard streaming and graph 
processing behavior at once: a timestamp (epoch, 0) col-
lects all updates (i, 0) with i £ epoch, and a timestamp  
(0, round) collects all updates (0,  j) with j £ round. Further, 
a timestamp (epoch, round) can take advantage of exactly 
those records that are useful for it: those at timestamp  
(i,  j) where i £ epoch and j £ round. Records at later epochs 
or rounds can be ignored.

Figure 5 shows, for different implementation strategies, 
the execution time for each iteration of a graph processing 
computation: namely, weakly connected components (via 
label propagation) on a graph derived from a 24-h window 
of Twitter mentions. Each vertex represents a user, and it 
repeatedly exchanges the smallest user ID it has seen so far 
(including its own) with its neighbors. As the computation 
proceeds, labels eventually stop changing and converge to 
the smallest user ID in each connected component. The 
implementation strategies are as follows:

•	 Stateless batch execution (not shown) repeatedly 
recomputes all labels in each iteration, and does a con-
stant number of updates as the computation pro-
gresses. This is the baseline version that could be 
implemented on top of MapReduce.

•	 Incremental dataflow uses incremental view mainte-
nance to improve on the stateless version. The amount 
of work decreases as the computation starts to converge 
and unchanged labels are neither re-communicated 
nor re-computed.

•  Prioritized differential dataflow improves on this fur-
ther by incrementally introducing the labels to propa-
gate, starting with the smallest values (those most 
likely to be retained at each vertex) and adding larger 
values only once the small labels have fully propa-
gated. The advantage of introducing small labels ear-
lier is that many vertices (that eventually receive small 
labels) will no longer propagate the larger labels that 
they possess during the early iterations, which reduces 
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Figure 5. The execution time for each iteration of the connected 
components algorithm, for a graph built from a Twitter conversation 
dataset. The “1s change” curve shows an sliding window update that 
requires no work for many of the iterations.

Figure 6. A connected components algorithm in differential dataflow 
that uses FixedPoint to perform iterative aggregation over node 
neighborhoods.

// produces a (src, label) pair for each node in the graph
Collection<Node> ConnectedComponents(Collection<Edge> edges)
{
// start each node with its own label, then iterate
return edges.Select(x => new Node(x.src, x.src))

.FixedPoint(x => LocalMin(x, edges));
}

// improves an input labeling of nodes by considering the
// labels available on neighbors of each node as well
Collection<Node> LocalMin(Collection<Node> nodes,

Collection<Edge> edges)
{
return nodes.Join(edges, n => n.src, e => e.src,

(n, e) => new Node(e.dst, n.label))
.Concat(nodes)
.Min(node => node.src, node => node.label);

}

// returns edges between nodes within a SCC
Collection<Edge>
{
return edges.FixedPoint(y => TrimAndReverse(

TrimAndReverse(y)));
}

// returns edges whose endpoints reach the same node, flipped
Collection<Edge> TrimAndReverse(Collection<Edge>
{
// establish labels based on reachability
var labels = ConnectedComponents(edges);

// struct LabeledEdge(a,b,c,d): edge (a,b); labels c, d;
return edges.Join(labels, x => x.src, y => y.src,

(x, y) => x.AddLabel1(y))
.Join(labels, x => x.dst, y => y.src,

(x, y) => x.AddLabel2(y))
.Where(x => x.label1 == x.label2)
.Select(x => new Edge(x.dst, x.src));

}

edges)

SCC(Collection<Edge> edges)

Figure 7. A function to compute strongly connected components in 
differential dataflow that uses connected components (Figure 6) as a 
nested iterative subroutine.
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efficient system based on maintaining a large amount 
of state in memory. While we were able to use C# value 
types to reduce the number of pointers on the heap—
and hence the amount of GC work required—it was not 
possible to eliminate GC-related pauses completely. 
Since building the original version of Naiad we have 
investigated alternative designs that would reduce the 
impact of garbage collection: the Broom project shows 
encouraging improvements in the throughput of Naiad 
programs using region-based memory allocation,9 and 
a reimplementation of timely dataflow in the Rust lan-
guage eliminates the garbage collector altogether.e

Many distributed dataflow systems exploit determin-
istic execution to provide automatic fault tolerance,13, 20, 

27 but Naiad embraces non-determinism and asynchrony 
to produce results sooner. Furthermore, Naiad vertices 
can maintain arbitrary state, which makes it non-trivial 
to generate code that produces a checkpoint of a vertex. 
As explained in the introduction our current implementa-
tion of fault tolerance is based on restoring from a global 
checkpoint, which requires code in each stateful vertex 
to produce and consume a checkpoint of its state. Global 
checkpointing introduces a large amount of skew into the 
distribution of epoch and iteration execution times, and 
forces non-failing processes to roll back in the event of a 
failure. We have developed a model that permits differ-
ent vertices to implement different checkpointing poli-
cies,2 and are working on a Naiad implementation of the 
model, which exposes a range of performance tradeoffs 
that in many cases allow high-throughput, low-latency, 
and fault-tolerant execution.

Finally we note that, while Naiad supports the composi-
tion of many different models of computation in the same 
program, it lacks a high-level programming language—such 
as SQL—and an optimizer that chooses the most appropri-
ate models for a particular task. Other authors have applied 
program analysis and query optimization techniques to 
Naiad. Sousa et al.22 achieved speedups over Naiad’s built-in 
operators by analyzing user-defined functions and generat-
ing new operators. Gog et al.10 achieved encouraging results 
with Musketeer, which transforms possibly iterative pro-
grams written in a high-level language into code that uses 
a variety of systems including Naiad. Still, we believe that 
there is scope for a more powerful compiler that can target 
Naiad’s different libraries, including differential dataflow, 
and generate optimized vertex code.
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reversing the edges in each iteration—eventually converges 
to the graph containing only those edges whose endpoints 
are in the same SCC.

4.3. Implementation
Our implementation of differential dataflow comprises sev-
eral standard nodes, including Select, Where, GroupBy, 
and Join, as well as a higher-order FixedPoint node 
that iteratively applies an arbitrary differential dataflow 
expression until it converges to a fixed point. The records 
exchanged are of the form (data, time, difference), where 
data is an arbitrary user-defined type, time is a timestamp, 
and difference is a (possibly negative) integer.

The standard nodes have somewhat subtle imple-
mentations that nonetheless mostly follow from the 
mathematical definition of differential dataflow17 and 
the indexing needed to respond quickly to individual 
time-indexed updates. The FixedPoint node intro-
duces a new coordinate to the timestamps of enclosed 
nodes, and extends “less or equal” and “least upper 
bound” for the timestamps according to the product 
order described above (one timestamp is less than or 
equal to another if all of its coordinates are). An impor-
tant aspect of the implementation is that all differential 
dataflow nodes are generic with respect to the type of 
timestamp as long as it implements “less or equal” and 
“least upper bound” methods, and this means that they 
can be placed within arbitrarily nested fixed-point loops. 
When the fixed point of an expression is computed, the 
expression’s dataflow subgraph is constructed as nor-
mal, but with an additional connection from the output 
of the subgraph back to its input, via a node that advances  
the innermost coordinate by one (informally, this 
advances the iteration count).

5. LESSONS LEARNED AND OPEN QUESTIONS
Timely dataflow demonstrates that it is possible to combine 
asynchronous messaging with distributed coordination to 
generate consistent results from complex, cyclic dataflow 
programs. Naiad further demonstrates that we can build a 
system that combines the flexibility of a general-purpose data-
flow system with the performance of a specialized system.

Our original Naiad implementation used C# as the imple-
mentation language. C#’s support for generic types and first-
class functions makes it simple to build a library of reusable 
data-parallel operators like LINQ. The fact that a running 
C# program has access to its typed intermediate-language 
representation means that reflection can be used to gener-
ate efficient serialization code automatically. The advantage 
of automatic serialization when writing distributed appli-
cations should not be underestimated, since it allows pro-
grammers to use native language mechanisms like classes to 
represent intermediate values without paying the penalty of 
writing and maintaining serializers for every class.

Some of C#’s productivity benefits come at a cost 
to performance and we had to work to minimize that 
cost. The .NET runtime uses a mark-and-sweep garbage 
collector (GC) to reclaim memory, which simplifies 
user programs but presents challenges for building an 
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