
Experiences from a Decade
of Development

Philip Levis
Stanford University

@OSDI 2012

1

2

Back to 1999...

3

“The motes [EmNet nodes] preview a future pervaded by
networks of wireless battery-powered sensors that monitor
our environment, our machines, and even us.” 2

“Information technology (IT) is on the verge of another
revolution… The use of EmNets [embedded networks]
throughout society could well dwarf previous milestones.” 1

1 National Research Council. Embedded, Everywhere, 2001.
2 MIT Technology Review. 10 Technologies That Will Change the World, 2003.

TinyOS

• Idea: operating system for “sensor networks”
‣ Microcontrollers (bah, virtual memory and 32-bit words)
‣ Low-power (2µA - 4mA)
‣ Wireless communication (good luck with that)
‣ Started as Perl scripts used by a handful of academics

• 13 years later...
‣ ~25,000 downloads a year, hundreds of thousands of nodes!
‣ Worldwide community of hundreds of contributors!
‣ Hundreds of research papers!
‣ The Internet of Things!

4

This Talk

• Two design principles for embedded software
‣ Minimize resource use
‣ Structure interfaces and code to prevent bugs

• A technical result: static virtualization

• A lesson: avoid the island syndrome

5

6

TinyOS is the work of hundreds of
contributors over a decade.
(of which I am only one, the core WG chair, who joined 18 months in)

This paper and talk are my personal
opinions and observations.

Disclaimer

This Talk

• Two design principles for embedded software
‣ Minimize resource use
‣ Structure interfaces and code to prevent bugs

• A technical result: static virtualization

• A lesson: avoid the island syndrome

7

Minimize Resource Use

8

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3µA $0.94

F1232 8kB 256B 1.6µA $2.73

F155 16kB 512B 2.0µA $6.54

F168 48kB 2048B 2.0µA $9.11

F1611 48kB 10240B 2.0µA $12.86

TI MSP430 Microcontrollers

9

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3µA $0.94

F1232 8kB 256B 1.6µA $2.73

F155 16kB 512B 2.0µA $6.54

F168 48kB 2048B 2.0µA $9.11

F1611 48kB 10240B 2.0µA $12.86

TI MSP430 Microcontrollers

Minimize Resource Use

10

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3µA $0.94

F1232 8kB 256B 1.6µA $2.73

F155 16kB 512B 2.0µA $6.54

F168 48kB 2048B 2.0µA $9.11

F1611 48kB 10240B 2.0µA $12.86

Model ROM RAM Sleep Price

LM2S600 32kB 8kB 950µA $2.73

LM3S1608 128kB 32kB 950µA $4.59

LM3S1968 256kB 64kB 950µA $6.27

TI MSP430 Microcontrollers TI ARM CortexM3 Processors

Minimize Resource Use

11

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3µA $0.94

F1232 8kB 256B 1.6µA $2.73

F155 16kB 512B 2.0µA $6.54

F168 48kB 2048B 2.0µA $9.11

F1611 48kB 10240B 2.0µA $12.86

Model ROM RAM Sleep Price

LM2S600 32kB 8kB 950µA $2.73

LM3S1608 128kB 32kB 950µA $4.59

LM3S1968 256kB 64kB 950µA $6.27

TI MSP430 Microcontrollers TI ARM CortexM3 Processors

Minimize Resource Use

12

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3µA $0.94

F1232 8kB 256B 1.6µA $2.73

F155 16kB 512B 2.0µA $6.54

F168 48kB 2048B 2.0µA $9.11

F1611 48kB 10240B 2.0µA $12.86

Model ROM RAM Sleep Price

LM2S600 32kB 8kB 950µA $2.73

LM3S1608 128kB 32kB 950µA $4.59

LM3S1968 256kB 64kB 950µA $6.27

TI MSP430 Microcontrollers TI ARM CortexM3 Processors

Sleep current necessitates microcontrollers.
Advanced applications run into ROM/RAM limits.

Minimize Resource Use

Two Principles

1. Minimize resource use

2. Structure code to prevent bugs

13

Vision

14

Black Box

Sensor
Readings Wireless

??

Debugging these systems is
exceedingly hard.

Output
?

15

This Talk

• Two design principles for embedded software
‣ Minimize resource use
‣ Structure interfaces and code to prevent bugs

• A technical result: static virtualization

• A lesson: avoid the island syndrome

16

Static Virtualization

17

Operating
System

Static Virtualization

18

Operating
System

A
pplication

3 files

2 timers

Static Virtualization

19

Operating
System

A
pplication

3 files

2 timers

Static Virtualization

20

Operating
System

A
pplication

3 files

2 timers

Static Virtualization

21

Operating
System

A
pplication

3 files

2 timers

Static Virtualization

22

Operating
System

A
pplication

3 files

2 timers

• Allocates exact RAM

• No pointers

• Cross-call optimization

• Dead code elimination

• Compile-time certainty

Result

23

Year Version Multihop yield

2003a TinyOS 0.6 58%

2005b TinyOS 1.1 68.5%

2009c TinyOS 2.0 99.58%

aSzewczyk et al. “An Analysis of a Large Scale Habitat Monitoring Application.” SenSys 2004.
“The multi-hop burrow motes perform worse (with a median yield of 58%) but within tolerance”

bWerner-Allen et al. “Fidelity and Yield in a Volcano Monitoring Sensor Network.” OSDI 2006.
“the median event yield was 68.5%” (events, not packets)

cChipara et al. “Reliable Clinical Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit.” Sensys 2010.
“the system achieved a median network reliability of 99.68% (range 95.2% – 100%). In contrast, the sensing reliability was
significantly lower.”

Result

24

Year Version Multihop yield

2003a TinyOS 0.6 58%

2005b TinyOS 1.1 68.5%

2009c TinyOS 2.0 99.58%

aSzewczyk et al. “An Analysis of a Large Scale Habitat Monitoring Application.” SenSys 2004.
“The multi-hop burrow motes perform worse (with a median yield of 58%) but within tolerance”

bWerner-Allen et al. “Fidelity and Yield in a Volcano Monitoring Sensor Network.” OSDI 2006.
“the median event yield was 68.5%” (events, not packets)

cChipara et al. “Reliable Clinical Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit.” Sensys 2010.
“the system achieved a median network reliability of 99.68% (range 95.2% – 100%). In contrast, the sensing reliability was
significantly lower.”

Static virtualization enabled applications to be
highly robust, dependable, and efficient.

This Talk

• Two design principles for embedded software
‣ Minimize resource use
‣ Structure interfaces and code to prevent bugs

• A technical result: static virtualization

• A lesson: avoid the island syndrome

25

Applications

26

Research vs. Practice

• TinyOS technically focused on enabling users
to build larger, more complex applications

• Doing so increased the learning curve to
building simple ones

27

28

Fir
st

Tin
yO

S
co

de

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

AS
PL

OS
pa

pe
r

v0
.6

NE
ST

 bo
otc

am
p

v1
.0

v1
.1

Co
re

 W
G fo

rm
s

v1
.15

NE
ST

 co
nc

lud
es

v2
.0

be
ta1

v2
.0

be
ta2

v2
.0

v2
.0.

1
v2

.0.
2

v2
.1

v2
.1.

1

atomic,
uniqueCount

generics,
nx_types

safe,
threads

nesC, bidirectional and
parameterized interfaces

Timeline

Fir
st

Tin
yO

S
co

de

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

AS
PL

OS
pa

pe
r

v0
.6

NE
ST

 bo
otc

am
p

v1
.0

v1
.1

Co
re

 W
G fo

rm
s

v1
.15

NE
ST

 co
nc

lud
es

v2
.0

be
ta1

v2
.0

be
ta2

v2
.0

v2
.0.

1
v2

.0.
2

v2
.1

v2
.1.

1

atomic,
uniqueCount

generics,
nx_types

safe,
threads

nesC, bidirectional and
parameterized interfaces

Timeline

Statically Virtualized Timer
(TinyOS 2.x)

31

AppP.nc

T = new TimerC()
AppP.Timer -> TimerC.Timer

AppC.nc

Control.start() {
 Timer.start(..)
}

Timer.fired() {
 send_packet();
}

Implementation
(TinyOS 2.x)

32

AppP.nc
#define TS unique(“T”)
TimerC.Timer =
 TimerP.Timer[TS]

TimerC.nc

#define NT uCount(“T”)
timer_t ts[NT];

clock_interrupt {
 update_ts()
 for i = 0 to NT-1
 if (ts[i].fire)
 Timer[i].fired();
}

Timer[i].start(...) {
 startTimer(i, ..)
}

TimerP.nc

T = new TimerC()
AppP.Timer -> TimerC.Timer

AppC.nc

Control.start() {
 Timer.start(..)
}

Timer.fired() {
 send_packet();
}

Implementation
(TinyOS 2.x)

33

AppP.nc
#define TS unique(“T”)
TimerC.Timer =
 TimerP.Timer[TS]

TimerC.nc

#define NT uCount(“T”)
timer_t ts[NT];

clock_interrupt {
 update_ts()
 for i = 0 to NT-1
 if (ts[i].fire)
 Timer[i].fired();
}

Timer[i].start(...) {
 startTimer(i, ..)
}

TimerP.nc

T = new TimerC()
AppP.Timer -> TimerC.Timer

AppC.nc

Control.start() {
 Timer.start(..)
}

Timer.fired() {
 send_packet();
}

TinyOS 0.6

34

timer_t ts;

TIMER_START(...) {
 set_ts();
 init_interrupt();
}

clock_interrupt {
 update_ts()
 TIMER_FIRE();
}

APP_START() {
 APP_TIMER_INIT(..);
}

APP_TIMER() {
 send_packet();
}

APP.c TIMER.c

APP_TIMER_INIT TIMER_START
TIMER_FIRE APP_TIMER

APP.desc

Code Evolution

• Code evolved to use nesC features in more
complex and intricate ways
‣ Improved software dependability
‣ Allowed more complex applications
‣ Served the needs of the community

• Increased barrier to entry: island syndrome

35

Death by Components

• Fine-grained component toolkits are great for
building and evolving a system

• The end result is difficult for a new user to
understand: increases the learning curve

• Need to transition to structurally simpler
implementations

36

Death by Components

37

TimerC

AlarmCounterP

AlarmSyncC

HplTimer0C

HplTimer0P McuSleepC

AlarmAsyncP

VirtualizeTimerC

CounterToTimeC AlarmToTimerC

Another Approach

38

TimerC

McuSleepCHplAlarmP

TimerP

39

40

TinyOS

• Tremendously successful academic project
‣ Started as Perl scripts used by a handful of academics
‣ Now ~100 downloads a day, hundreds of thousands of nodes
‣ Has a worldwide community of hundreds of contributors

• But it could have been more so
‣ Missed being a platform for simple sensing apps (Arduino)
‣ Missed being a platform for the Internet of Things (Contiki)
‣ “Applications” became “hard applications”
‣ Should have focused on the simple as much as the complex

(the island syndrome)

41

42

TinyOS is the work of hundreds of
contributors over a decade.
(of which I am only one, the core WG chair, who joined 18 months in)

This paper and talk are my personal
opinions and observations.

Disclaimer

43

44

I'd like to especially acknowledge Jason Hill, David Culler, David Gay, Cory Sharp, Eric
Brewer, Shankar Sastry, Joe Polastre, Vlado Handziski, Jan Heinrich-Hauer, Kevin Klues,
David Moss, Omprakash Gnawali, Jonathan Hui, John Regehr, Matt Welsh, Alec Woo,
Robert Szewczyk, Kamin Whitehouse, Philip Buonadonna, Ben Greenstein, Miklos
Maroti, Andreas Koepke, and Janos Sallai, as well as Razvan Musaloiu-E., JeongGil Ko,
Philipp Huppertz, Antonio Linan, Steve Ayers, Kristin Wright, Steven Dawson-
Haggerty, Jan Beutel, Branislav Kusy, Prabal Dutta, Gilman Tolle, Thomas Schmid, Chad
Metcalf, Henri Dubois-Ferriere, Deepak Ganesan, Laurynas Riliskis, Eric Decker, Martin
Turon, and Peter Bigot.

TinyOS is also deeply indebted to its users, their bug reports, feature requests, and
hard work.

