
Low-Power Sensor Networks

Philip Levis (and John Regehr in abesntia)
Stanford University and the University of Utah

 NSF HCSP-CPS Workshop
November 30, 2006

Alexandria, VA

A Case Study in Seeking Distributed Predictability

Predictable

TinyOS and the specter of low-power
Limited resources and communication
Black box operation

Systems are easy; predictable/dependable systems are
hard

Large numbers, distributed through space
Failures are inevitable: isolating them is paramount

Systems approach: TinyOS, TinyOS 2.0/T2
Networking approach: MNet

This talk has nothing to say about real-time
More on why later

2

Outline

A brief history of: 1.0, 1.1 and 2.0 (T2)
T2 core structure, language/OS co-design
MNet architecture
Real Time?

3

In the Beginning
(1999)

Sensor networks are on the horizon...
... but what are they going to do?

What problems will be important?
What will communication look like?
What will hardware platforms look like?

Having an operating system is nice...
... but how do you design one with these uncertainties?

4

The TinyOS Goals
(ASPLOS 2000)

Allow high concurrency
Operate with limited resources
Adapt to hardware evolution
Support a wide range of applications
Be robust
Support a diverse set of platforms

5

History

6

1999 2006
2000
TinyOS 0.4
perl scripts + C
WeC platform (30)

2001
TinyOS 0.63
perl scripts + C
WeC + rene (1000)

2002
TinyOS 1.0
nesC 1.0
rene + mica

2003
TinyOS 1.1
nesC 1.1
>20 platforms

2006
TinyOS 2.0
nesc 1.2
9 platforms

TinyOS Basics

A program is a set of components
Components can be easily developed and reused

Adaptable to many application domains
Components can be easily replaced
Components can be hardware or software

Allows boundaries to change unknown to programmer
Hardware has internal concurrency

Software needs to be able to have it as well
Hardware is non-blocking

Software needs to be so as well

7

Software
Crypto

Encrypt
This

Encrypt
Finished

Component

TinyOS Basics
(2000)

Hardware
Crypto

Tasks

Encrypt
This

Encrypt
Finished

Non-volatile
Storage

Non-volatile
Storage

Component
8

Software
Crypto

Encrypt
This

Encrypt
Finished

Component

TinyOS Basics, Continued
(2002, nesC)

Hardware
Crypto

Tasks

Encrypt
This

Encrypt
Finished

Non-volatile
Storage

Non-volatile
Storage

Interface

Component
9

The TinyOS Goals
(A Scorecard, 2005)

Allow high concurrency (A)
Operate with limited resources (A-)
Adapt to hardware evolution (B)
Support a wide range of applications (B)
Be robust (D)
Support a diverse set of platforms (B-)

10

Robustness Drives Design

Allow high concurrency (A)
Operate with limited resources (A-)
Adapt to hardware evolution (B)
Support a wide range of applications (B)
Be robust (D)
Support a diverse set of platforms (B-)

11

TinyOS 0.6 -> TinyOS 1.0

Introduce nesC language instead of perl + C
Compilation benefits

Pre-nesC linked compiled components into an executable
The nesC compiler generates a single C file

Whole program analysis
Whole program optimization (code the native compiler likes)
Dead code elimination

Interfaces
Establish programming abstraction as a language abstraction
Prevent bugs

12

TinyOS 1.0 -> TinyOS 1.1

Major addition: async keyword
Synchronous code: tasks (non-
preemptive)
async code is safe to call
outside a task

Interrupt handlers are all async
(preemptive code)

To call sync code, async code
must post a task

sync examples: start a ms timer,
send a packet
async examples: start a 32kHz
alarm, send a byte over a bus

13

Async

Sync

Task
Scheduler

Hardware

Async vs. Sync

Async code can preempt sync code
Might cause data races, atomic statements

Sync code is written assuming no preemption
Sync code executes atomically with respect to other sync code
Simple, easy to write, no data races

Tasks are the interface which transforms async to sync
The explicit sync/async distinction allows nesC to
detect all data races at compile time
Fixed >100 data races in TinyOS (6 races/1000 lines)

14

Outline

A brief history of: 1.0, 1.1 and 2.0 (T2)
T2 core structure, language/OS co-design
MNet architecture
Real Time?

15

TinyOS Evolution

TinyOS 1.x improved component dependability
Adding language mechanisms for better checking
Low-level system code (few writers, many users)
OK to trade verbosity for dependability
Push checks to compile-time when possible

TinyOS 2.0 takes the next step: system predictability

16

Failures of Implementation

Components intended to be independent
Unforeseen interactions

“The ADC hangs when I send packets!”
“Time synchronization gives crazy readings!”
“When I turn off the radio my application hangs!”
“When I boot with flash support the radio stops working!”

17

Failures of Structure

TinyOS 1.x has no resource management
Most operations can fail at any time (busy)

Packet transmission
Bus access
ADC sampling

Depends on higher-level retries
Global “done” events (e.g., GenericComm.sendDone)
Fan-out has deterministic scheduling

No component isolation

18

Allocation

TinyOS has always followed a static allocation policy
Argument: dynamic allocation leads to dynamic failures

One major 1.x exception: the task scheduler
Major source of failures
Inherent inter-component dependency

19

Concurrency Model

T2 has the same basic concurrency model
Tasks, sync vs. async

T2 changes the task semantics
TinyOS 1.x: post() can return FAIL, can post() multiple
times (shared slots)
T2: post returns FAIL iff the task is already in the queue
(single reserved slot per task)

TinyOS 1.x T2
20

Static Binding

Run-time vs. compile time parameters
interface CC2420Register {
 command uint16_t read(uint8_t reg);
 command uint8_t write(uint8_t reg, uint16_t val);
 command uint8_t strobe();
}
component CC2420C {
 provides interface CC2420Register;
}

interface CC2420StrobeReg {
 command uint8_t strobe();
}
component CC2420C {
 provides interface CC2420StrobeReg as SNOP;
 provides interface CC2420StrobeReg as STXONCCA;

}

21

Static Allocation

You know what you’ll need: allocate it at compile-time
(statically)
Depending on probabilities is a bet

I.e., “it’s very unlikely they’ll all need to post tasks at once” =
“they will”

You know what components will use a resource, can
allocate accordingly

In some cases, static allocation can save memory
Less defensive programming/error handling

22

Predictability Saves Memory

module Foo {
 bool busy;

 command result_t request() {
 if (!busy() &&
 post fooTask() == SUCCESS) {
 busy = TRUE;
 return SUCCESS;
 }
 else {
 return FAIL;
 }
 }

module Foo {
 bool busy;

 command result_t request() {
 return post fooTask();
 }

TinyOS 1.x T2

23

The Power of Counting

Basic language mechanism that TinyOS provides
Ability to count elements in an application at compile
time

unique(key): for each key, returns a unique number starting at 0
uniqueCount(key): returns number of calls to unique(key)

Each needed service or abstraction can use its own key
Tasks: unique(“TinySchedulerC.BasicTask”), etc.

24

unique(...) = 1

unique(...) = 2

uniqueCount(...) = 8

Basic OS Requirement: QoS

Flaw in many protocols: under load, routing fails
Data packets overflow queues
Control packets are lost, routes disintegrate

Priorities are difficult: they can break promises
I’ve agreed to forward this data packet, but have to drop it now...
Defining priorities across many protocols can be difficult

Want to promise a minimum quality of service
Control traffic receives at least k/n of the available bandwidth
A control packet has to wait for at most x packets

25

QoS Through an OS Interface

Every component that needs to send a packet
instantiates an instance of a packet sending service

Broadcast, collection, unicast, etc.
Each instance of the service can have at most one
outstanding packet at any time
Like tasks, send fails if and only if a packet is already
pending

26

Sender

Application

Sender

Application

Time Time

QoS Through Counting

Each instance allocates a queue entry with unique(...)
The service has a queue of length uniqueCount(...)
Implementation scans through the queue for pending
packets

27

Sender Sender Sender Sender

Extending the Model

A protocol can allocate more than one sender for a
greater share

28

Sender Sender Sender Sender Sender

Extending the Model

A protocol can allocate more than one sender for a
greater share
A protocol can introduce its own queue
Still uses k/n bandwidth

29

Sender Sender Sender Sender Sender

More Defensive Programming

Interfaces allow programs to easily
swap component implementations

Exchange SerialAMSenderC for
AMSenderC

Interfaces are weakly specified
Allow implementation differences
E.g., 1.x SendMsg vs 2.0 Send

Weak specifications lead to
defensive programming

More code -> more errors
Wastles resources

30

Packets

Encrypt
This

Encrypt
Finished

Router

?

Interface Contracts

Specify valid call patterns
with annotations

Per-interface basis (heavy reuse)
Both sides of the interface

Base case: hardware
abstractions follow contracts
Inductive static, dynamic,
run-time checking

Run-time approach has detected
several serious bugs in 1.x
(which turn out to be impossible
by design in 2.0)

31

HPL

HAL

HIL

Service

Application

Outline

A brief history of: 1.0, 1.1 and 2.0 (T2)
T2 core structure, language/OS co-design
MNet architecture
Real Time?

32

Sensornets Are Hard

Sensor networks often fail/operate poorly
Great Duck Island network: median yield 58% [SenSys 2004]
Redwood network: median yield 40% [SenSys 2005]
Volcano network: median yield:68% [OSDI 2006]

Survey of causes
Protocol conflicts/interference
Collisions and congestion induced loss
Neighbor management (with layer 2 scheduling, e.g. TMAC)
Don’t know!

Low-power, limited resources make complete logging
prohibitively expensive...

33

Management

Give operators a peek into the sensornet black box
SNMS [EWSN 2005]: lightweight get/set
Sympathy [SenSys 2005]: expert system

34

MNet Principle

The difficulty in deploying and developing sensornets is
part of the essence of this class of systems.

Large numbers, limited energy, distributed over space, different
views of the environment, noise, local optimizations, etc.
This is more than an artifact.

MNet principle: Improve visibility into the internal
operation of the network.

Quantify: Minimize the energy required to identify the cause of
network behavior.

Case study: network protocols.

35

Goal

36

37

Inter-Protocol Interference

Snooping is a common routing approach
Implicit acks, rate control, backpressure, etc.

Vulnerable to inter-protocol interference
Reduces energy efficiency, can even cause failures

One misbehaving protocol can prevent anyone else
from performing well

SINKA B C

Isolation

Isolating behaviors simplifies reasoning.
Basic technique in systems: apply to networks

If any protocol X, Y, Z can a protocol to fail, then we
have a larger (more expensive) state space to explore
We need a way to isolate protocols from one another, so
they can operate concurrently but not interfere.
Mechanism: grant-to-send (GTS)

38

Grant-To-Send

A transmitter may embed a quiet time in a packet.
No-one except the destination may transmit for the
duration of the quiet time (including transmitter).
Sending a packet grants the channel to the receiver.

39

0 0 0 0

Grant-To-Send

A transmitter may embed a quiet time in a packet.
No-one except the destination may transmit for the
duration of the quiet time (including transmitter).
Sending a packet grants the channel to the receiver.

40

0 0 0 0
2

2

Grant-To-Send

A transmitter may embed a quiet time in a packet.
No-one except the destination may transmit for the
duration of the quiet time (including transmitter).
Sending a packet grants the channel to the receiver.

41

2 0 0 0
2

2

Grant-To-Send

A transmitter may embed a quiet time in a packet.
No-one except the destination may transmit for the
duration of the quiet time (including transmitter).
Sending a packet grants the channel to the receiver.

42

1 0 2 0
2

2

Grant-To-Send

A transmitter may embed a quiet time in a packet.
No-one except the destination may transmit for the
duration of the quiet time (including transmitter).
Sending a packet grants the channel to the receiver.

43

0 0 2 21

Grant-To-Send

A transmitter may embed a quiet time in a packet.
No-one except the destination may transmit for the
duration of the quiet time (including transmitter).
Sending a packet grants the channel to the receiver.

44

0 0 1 20
2

2

Fairness

Isolation is insufficient.
The simplest approach is to not let anyone do anything.

Every protocol should receive its fair share of the
network bandwidth.
Wireless is inherently distributed

Different views of the channel
Perfect fairness is not always possible (but we can be close)

Mechanism: fair queueing
GTS times represent channel utilization
Naturally fit into fair queueing

45

Fair Queueing
(Demers, Shenker, and Keshav)

46

Send protocol which has lowest channel utilization.

P1

P2

P3

47

Fair Waiting Protocol

Uses Grant-To-Send
mechanism
Sits between CSMA layer
and network layer
Fair queueing according
to the channel occupation

Considers the grant duration
as a channel occupation

FWP

CSMA

Network Protocols

48

Single-Hop Uniform Lossless Load

Ideal case without collisions and packet losses
Perfect fairness among nodes and protocols

CSMA allows all nodes to have equal chance of transmission
All nodes agree on channel usages of protocols, thus perfect
fairness among protocols

Perfect Isolation
Every node waits until the current quiet time expires

49

Loss

Lost packets can cause inconsistent
view of the channel occupation
times of protocols
Experimental Setting:

Five nodes in single-hop range
Three protocols with different quiet times
(20ms / 40ms / 80ms)

Normalized share of one node
High channel fairness: 0.99 (Jain’s
Fairness Index)
However, individual nodes are
servicing protocols unevenly
“Ping-pong Effect”

0

0.2

0.4

0.6

0.8

1

0 100 200 300

Time (s)

C
h

a
n

n
e
l
S

h
a
r
e P1

P2

P3

TT+1

T-1T+1

T-1T

T-2T

P2P1

T+2T+1

T+1T+1

T+1T

TT

P2P1

P2

P2

P1

50

Multihop Uniform Load

Uniform loads on 40
nodes on motelab

20 / 40 / 80 ms (Fig. 1)
20 / 60 / 140 ms (Fig. 2)

Plain (no decay)
Global fairness : 0.997
Poor transmit fairness

Decaying every 500 ms
Global Fairness : 0.995
Best transmit fairness

Understanding the
decaying period better is a
future work

CD
F

CD
F

51

Real Loads - ARC

ARC: rate-limiting collection protocol [Mobicom 2001]
Goodput and cost for two separate ARC instances running in the
presence of two other protocols (PSFQ and Trickle)
FWP increases ARC goodput by 23-30% and decreases cost by 5-10%

0

2

4

6

8

10

ARC1 ARC2

G
o

o
d

p
u

t
(
p

a
c
k
e
ts

/
s
)

CSMA

FWP

0

2

4

6

8

ARC1 ARC2

C
o

s
t

(
tx

/
g

o
o

d
p

u
t)

CSMA

FWP

Network Protocols

FWP isolates network
protocols from each other
How do we isolate causes
within a protocol?
Apply minimization
principle to higher layers

52

FWP

CSMA

Network Protocols

Case Study: Collection

53

5 principal causes of packet loss

1. Retransmit timeout
2. Queue drop
3. False positive duplicate suppression
4. Reboot
5. Kaboom!

Origin sequence numbers, THL field

High THL?

Suppression Queue Drop

Decision Tree

54

No more packets?

Seq No. Break?

Reboot

Death/Disconnect

Requires no querying of network state!

MNet Architecture

Elevate management and visibility to an architectural
principle and design goal
Isolation of causes
Fairness (protocol, node, application...)
FWP as the narrow waist

55

Outline

A brief history of: 1.0, 1.1 and 2.0 (T2)
T2 core structure, language/OS co-design
MNet architecture
Real Time?

56

The Real-Time Tension

Real-time is inherently unfair
Some people get to go first!
Understanding *why* something failed is hard (Mars Rover)
Necessitates local operations and internal decisions
Makes it more difficult to understand the internal operation of the
system

Optimal scheduling of a scarce resource
Uncommon in sensornets because utilization is so low...
Event-driven, not periodic workloads

Wireless is an inherent challenge
Outside of your control

57

Predictability

Being able to assume things will behave in a certain way
Breaking outside current approaches

Language-OS co-design
Static, dynamic, run-time approaches

Predictable networks, not just systems
Network is increasingly cause of failure
Wireless more so...

58

Questions

59

