

Predictable

- # 2 . = e L iy o . - . il "
e N T e e M Rl % 000 1 Py i I TS

o TinyOS and the specter of low-power
o Limited resources and communication
o Black box operation

o Systems are easy; predictable/dependable systems are
hard

o Large numbers, distributed through space

o Failures are inevitable: isolating them is paramount
o Systems approach: TinyOS, TinyOS 2.0/T2
o Networking approach: MNet

o This talk has nothing to say about real-time
o More on why later

In the Beginning

MWMMW'MH et 1 TSR S N e PR

o Sensor networks are on the horizon...

o ... but what are they going to do?
o What problems will be important?
o What will communication look like?
o What will hardware platforms look like?

o Having an operating system is nice...
o ... but how do you design one with these uncertainties?

TinyOS Basics

mmﬁmmﬂfﬁﬁ SN L et SR E N v g SNt e e i PO S e AP LTl

o A program is a set of components
o Components can be easily developed and reused
o Adaptable to many application domains
o Components can be easily replaced
o Components can be hardware or software
o Allows boundaries to change unknown to programmer

o Hardware has internal concurrency
o Software needs to be able to have it as well

o Hardware is non-blocking
o Software needs to be so as well

TinyOS Basics

(2000)

Non-volatile Non-volatile
Storage Storage

Hardware Softwure
Crypto Crifito

Tasks

- Component Component

TinyOS Basics, Continued

(2002, nesC)

DO A A, St S P AN A s 5= 9% L R s 5V o mas s B e kST LR
Non-volatile Non-volatile
Storage Storage
Interface

Hardware Softwure
Crypto Crifito

Componen’r Component

Robustness Drlves De5|gn

PRSI b Ui L Tt G ST P G T T 8 Py I LSS I v gt Lkl PR

o Allow high concurrency (A)

o Operate with limited resources (A-)

o Adapt to hardware evolution (B)

o Support a wide range of applications (B)
o Be robust (D)

o Support a diverse set of platforms (B-)

11

TinyOS 0.6 -> TinyOS 1.0

L T Lt St b e L L aaie . PIRRGPE —

o Introduce nesC language instead of perl + C

o Compilation benefits
o Pre-nesC linked compiled components into an executable
o The nesC compiler generates a single C file
o Whole program analysis
o Whole program optimization (code the native compiler likes)
o Dead code elimination

o Interfaces
o Establish programming abstraction as a language abstraction
o Prevent bugs

2

TinyOS 1.0 -> TinyOS 1.1

e N T e e andke . PII R . = e W e B

o Major addition: async keyword SCE:ZEH ?

o Synchronous code: tasks (non-
preemptive) A

o async code is safe to call T v
outside a task

Sync
o Interrupt handlers are all async
(preemptive code) l i T
o To call sync code, async code Async
must post a task T l T l
o sync examples: start a ms timer,
send a packet Hardware

o async examples: start a 32kHz
alarm, send a byte over a bus

13

Async vs. Sync

AR R i Tt o 05 POt L Tt £ 2 I aakal, FISRGTS VI B Sl

o Async code can preempt sync code
o Might cause data races, atomic statements

o Sync code is written assuming no preemption

o Sync code executes atomically with respect to other sync code
o Simple, easy to write, no data races

o Tasks are the interface which transforms async to sync

o The explicit sync/async distinction allows nesC to
detect all data races at compile time

o Fixed >100 data races in TinyOS (6 races/1000 lines)

14

TinyOS Evolution

MWMMW'MH e - 10 S S N . PR

o TinyOS 1.x improved component dependability
Adding language mechanisms for better checking
Low-level system code (few writers, many users)

OK to trade verbosity for dependability

o Push checks to compile-time when possible

o TinyOS 2.0 takes the next step: system predictability

(0]

(0]

(0]

16

Failures of Implementatlon

e N T T et SR R T

o Components intended to be independent

o Unforeseen interactions
o “The ADC hangs when | send packets!”
o “Time synchronization gives crazy readings!”
o “When | turn off the radio my application hangs!”
o “When | boot with flash support the radio stops working!”

4

Failures of Structure

MWMMW'MH et 1 TSR S N e PR

o TinyOS 1.x has no resource management

o Most operations can fail at any time (busy)
o Packet transmission
o Bus access
o ADC sampling
o Depends on higher-level retries
o Global “done” events (e.g., GenericComm.sendDone)
o Fan-out has deterministic scheduling

o No component isolation

18

. -

Concurrency Model

MWMMW'MH et 1 TSR S N e PR

. -

o T2 has the same basic concurrency model
o Tasks, sync vs. async

o T2 changes the task semantics

o TinyOS 1.x: post() can return FAIL, can post() multiple
times (shared slots)

o T2: post returns FAIL iff the task is already in the queue
(single reserved slot per task)

TinyOS 1. T2

20

Static Allocation

MWMMW'MH et 1 TSR S N e PR

o You know what you’ll need: allocate it at compile-time
(statically)
o Depending on probabilities is a bet

o |l.e., “it’s very unlikely they’ll all need to post tasks at once” =
“they will”

o You know what components will use a resource, can
allocate accordingly

o |In some cases, static allocation can save memory
o Less defensive programming/error handling

22

The Power of Counting

e T T UL P PIR I e

o Basic language mechanism that TinyOS provides

o Ability to count elements in an application at compile
time
o unique(key): for each key, returns a unique number starting at O
o uniqueCount(key): returns number of calls to unique(key)

o Each needed service or abstraction can use its own key
o Tasks: unique(“TinySchedulerC.BasicTask”), etc.

unique(...) = 1@????9
unique(...) = 2—
<

> uniqueCount(...) =8

24

Basic OS Reqmrement QoS

PISTRSTEIRS b, M L, Tt A P IO S Pty = IV ST AL I e vt e B s

o Flaw in many protocols: under load, routing fails
o Data packets overflow queues
o Control packets are lost, routes disintegrate

o Priorities are difficult: they can break promises
o [|’ve agreed to forward this data packet, but have to drop it now...
o Defining priorities across many protocols can be difficult

o Want to promise a minimum quality of service
o Control traffic receives at least k/n of the available bandwidth
o A control packet has to wait for at most x packets

25

QoS Through an OS Interface

e S T T T e S R S

o Every component that needs to send a packet
instantiates an instance of a packet sending service

o Broadcast, collection, unicast, etc.

o Each instance of the service can have at most one
outstanding packet at any time

o Like tasks, send fails if and only if a packet is already
pending

Time

Application

L]

Sender

Application

Lo

Sender

Time >

26

QoS Through Countmg

L T Lt e St b iz Lo ek PHRP gl el

o Each instance allocates a queue entry with unique(...)
o The service has a queue of length uniqueCount(...)
o Implementation scans through the queue for pending

packets
Sender | Sender | Sender | Sender

27

Sender | Sender | Sender | Sender | Sender

Extendmg the Model

PREAETER b M L Tt T e Tt T Pty O SR i SN L S R kel PHRRP, B S

o A protocol can allocate more than one sender for a
greater share

o A protocol can introduce its own queue
o Still uses k/n bandwidth

Sender Sender | Sender | Sender Y Sender

L |

29

More Defensive Programming

PR A Min L St R P SO K s SO LRI s e 5N it ek s MR 14 0 1 i

o |Interfaces allow programs to easily
swap component implementations

o Exchange Serial AMSenderC for
AMSenderC

o Interfaces are weakly specified
o Allow implementation differences
o E.g., 1.x SendMsg vs 2.0 Send

o Weak specifications lead to
defensive programming G P
o More code -> more errors PGCkZTS |
o Wastles resources ARG el

30

o

o

(0]

Interface Contracts

e S T T T e S R S

o Specify valid call patterns
with annotations

Per-interface basis (heavy reuse)
Both sides of the interface

o Base case: hardware
abstractions follow contracts

o Inductive static, dynamic,
run-time checking

Run-time approach has detected
several serious bugs in 1.x
(which turn out to be impossible
by design in 2.0)

31

Application

Service

HIL

HAL

HPL

Sensornets Are Hard

MWMMW'MH e - 10 S S N . PR

o Sensor networks often fail/operate poorly
o Great Duck Island network: median yield 58% [SenSys 2004]
o Redwood network: median yield 40% [SenSys 2005]
o Volcano network: median yield:68% [OSDI 2006]

o Survey of causes
o Protocol conflicts/interference
o Collisions and congestion induced loss
o Neighbor management (with layer 2 scheduling, e.g. TMAC)
o Don’t know!

o Low-power, limited resources make complete logging
prohibitively expensive...

33

Bad Node Transmit Bad Path To Sink

MNet Principle

L T Lt St b e L L ek, PR e g e

o The difficulty in deploying and developing sensornets is
part of the essence of this class of systems.

o Large numbers, limited energy, distributed over space, different
views of the environment, noise, local optimizations, etc.

o This is more than an artifact.
o MNet principle: Improve visibility into the internal
operation of the network.

o Quantify: Minimize the energy required to identify the cause of
network behavior.

o Case study: network protocols.

35

Inter-Protocol Interference

PISTRSTEIRS b, M L, Tt A P IO S Pty = IV ST AL I e vt e P s i I e

o Snooping is a common routing approach
o Implicit acks, rate control, backpressure, etc.

o Vulnerable to inter-protocol interference
o Reduces energy efficiency, can even cause failures

o One misbehaving protocol can prevent anyone else
from performing well

37

|Isolation

e N T e e aaie . PIRRGPE —

o Isolating behaviors simplifies reasoning.
o Basic technique in systems: apply to networks

o If any protocol X, Y, Z can a protocol to fail, then we
have a larger (more expensive) state space to explore

o We need a way to isolate protocols from one another, so
they can operate concurrently but not interfere.

o Mechanism: grant-to-send (GTS)

38

Grant-To-Send

ORI A A, Tt SIS P SOEDANT 84 S =g IR s e Stk e TR e . e e DOl WL

o A transmitter may embed a quiet time in a packet.

o No-one except the destination may transmit for the
duration of the quiet time (including transmitter).

o Sending a packet grants the channel to the receiver.

41

Grant-To-Send

PISTRSTEIRS b, DM L, Tt DA P IO ST S bty = IV LSRRI v N b e PR e e B Gy B S AR

o A transmitter may embed a quiet time in a packet.

o No-one except the destination may transmit for the
duration of the quiet time (including transmitter).

o Sending a packet grants the channel to the receiver.

42

Grant-To-Send

DIOTTEE A Ain 1, Gt SRS P ST 88 s O L A I v e s PV it e s PN e 0 i bSOl i BN

o A transmitter may embed a quiet time in a packet.

o No-one except the destination may transmit for the
duration of the quiet time (including transmitter).

o Sending a packet grants the channel to the receiver.

© () @« @)

43

Grant-To-Send

PISTRSTEIRS b, DM L, Tt DA P IO ST S bty = IV LSRRI v N b e PR e e B Gy B S AR

o A transmitter may embed a quiet time in a packet.

o No-one except the destination may transmit for the
duration of the quiet time (including transmitter).

o Sending a packet grants the channel to the receiver.

44

Fairness

- # 2 . = e L iy o . - . il "
e N T e e M Rl % 000 1 Py i I TS

o Isolation is insufficient.
o The simplest approach is to not let anyone do anything.
o Every protocol should receive its fair share of the
network bandwidth.
o Wireless is inherently distributed
o Different views of the channel
o Perfect fairness is not always possible (but we can be close)
o Mechanism: fair queueing

o GTS times represent channel utilization
o Naturally fit into fair queueing

45

Fair Waltlng Protocol

""*ﬂ%mwmm A Fiy " P o s v ¥y “ by Lt PR PR T

—f
o Uses Grant-To-Send

mechanism l l l | l | l

o Sits between CSMA layer S
EVVE
and network layer l
o Fair queueing according
to the channel occupation CSMA
o Considers the grant duration l

as a channel occupation

47

Single-Hop Uniform Lossless Load

MWMMW'MH et 1 TSR S N e PR

. -

o ldeal case without collisions and packet losses

o Perfect fairness among nodes and protocols
o CSMA allows all nodes to have equal chance of transmission

o All nodes agree on channel usages of protocols, thus perfect
fairness among protocols

o Perfect Isolation
o Every node waits until the current quiet time expires

48

— 0
o

©
o
S

aleys |puueyd

Real Loads - ARC

' e : o ety S P et o K g : = S e
PREAETEIR b M FOt AT P T A A s Rt Laianie . PRSP = TS S EER 2

o ARC: rate-limiting collection protocol [Mobicom 2001]

o Goodput and cost for two separate ARC instances running in the
presence of two other protocols (PSFQ and Trickle)

o FWP increases ARC goodput by 23-30% and decreases cost by 5-10%

N
|
|

10 8 -
-
— a
e 6 1 B
. o
&, . ECSMA
_ CIFWP 3 [IFWP
-
(7))
()
(@)

Goodput (packets/s)

o N H ()} 00}
|

o
|

ARC1 ARC2 ARC1 ARC2

51

o FWP isolates network
protocols from each other

o How do we isolate causes
within a protocol?

o Apply minimization
principle to higher layers

52

e 1 — ._‘. o =5 ¢ B T .} PR S o

Network Protocols

Hlschanian, PRRSPT I

TN
N

'y v v ¥

FWP

CSMA

Case Study CoIIectlon

PREAETEIR b M L Tt AT P T T A Pty I SRR S i USRS PR LTl

o 5 principal causes of packet loss

1. Retransmit timeout
2. Queue drop
3. False positive duplicate suppression

4. Reboot

I E{‘% 5. Kaboom!

Origin sequence numbers, THL field

53

Decision Tree

mmﬁmmﬂfﬁﬁ LN Lt SR E Ny g SNt s e Pl vy PP S S-S Ras - LTl

@more paCkD Requires no querying of network state!

Death/Disconnect

Seq No. Break?

Reboot

High THL?

/\

Suppression Queue Drop

54

o

(o)

o

o

(o)

o

(@)

MWMMW'MH et 1 TSR S N e PR

The Real-Time Tension

o Real-time is inherently unfair

Some people get to go first!
Understanding *why* something failed is hard (Mars Rover)
Necessitates local operations and internal decisions

Makes it more difficult to understand the internal operation of the
system

o Optimal scheduling of a scarce resource

Uncommon in sensornets because utilization is so low...
Event-driven, not periodic workloads

o Wireless is an inherent challenge

Outside of your control

57

