

The κ Factor: Inferring Protocol Performance Using Inter-link Reception Correlation

Kannan Srinivasan, Mayank Jain, Jung Il Choi, Tahir Azim, Edward S Kim, Philip Levis and Bhaskar Krishnamachari

Spatial Independence Assumption

Losses on different links are independent

- after a link failure, routing protocols choose the next shortest path forwarder
- simulators explicitly generate channel states independently

Spatial Independence Assumption

Losses on different links are independent

- after a link failure, routing protocols choose the next shortest path forwarder
- simulators explicitly generate channel states independently

When is this assumption safe?

Why does it matter?

Inter-link (Spatial) Correlation

(a) Real Trace, Mirage

Inter-link (Spatial) Correlation

(a) Real Trace, Mirage

(b) Synthetic (Independent) Trace (Every link has the same packet reception ratio (PRR) as in real trace)

Inter-link (Spatial) Correlation

Losses are well aligned (correlated)

Traditional Routing

- Edge weights are PRRs
- S selects n5 as next-hop
- ETX: expected number of transmissions

• ETX =
$$\frac{1}{0.2} + \frac{1}{1.0} = 6.0$$

Opportunistic Routing

- S lists n1-n5 as next-hops
 - S stops as soon as at least one of the next hop nodes receives

Opportunistic Routing

Independent:

$$\mathbf{ETX} = \frac{1}{1 - (1 - 0.2)^5} + 1 = 2.49$$

Opportunistic Routing

Independent:

$$\mathbf{ETX} = \frac{1}{1 - (1 - 0.2)^5} + 1 = 2.49$$

Perfectly Correlated:

$$ext{ETX} = rac{1}{1 - (1 - 0.2)} + 1 = 6.0$$

Same cost as traditional routing (without coordination cost)!

Correlation has implications to protocol performance

So far

- Spatial correlation assumption does not always hold true
 - a measured network: 70% of link pairs are highly correlated
- The degree of correlation has implications to protocol performance

Problem Statement

Need a good way to measure spatial correlation to understand its implications to protocol performance

 existing metrics conflate correlation with link pair PRRs

Research Contributions

- Present a new metric: K
- Show how well network coding protocols perform, based on $\mathcal K$
- Show K 's ability to predict opportunistic routing protocol performance (in paper)
 - perfect prediction when a node has 2 potential forwarders
 - more than 2 forwarders: perfect prediction for most of the nodes

Outline

- Desired Metric Properties
- The K Metric
- κ 's Usefulness
- Open Questions

Outline

- Desired Metric Properties
- The K Metric
- \bullet K's Usefulness
- Open Questions

- a) A scalar with a finite range: [-1,1]
 - >0: positive correlation
 - <0: negative correlation</p>

a) A scalar with a finite range: [-1,1]

b) Symmetric

Metric(x,y) = Metric(y,x)

a) A scalar with a finite range: [-1,1]

- b) Symmetric
- c) Irrespective of PRRs:
 - 1 for perfectly positively correlated link pair
 - -1 for perfectly negatively correlated link pair

a) A scalar with a finite range: [-1,1]

- b) Symmetric
- c) Irrespective of PRRs:
 - 1 for perfectly positively correlated link pair
 - -1 for perfectly negatively correlated link pair

Not a made-up property!

Perfect Positive Correlation (Metric = 1)

Same PRR Link Pair

Opportunistic routing should choose x or y, but not both

Perfect Positive Correlation (Metric = 1)

Same PRR Link Pair

Different PRR Link Pair

Opportunistic routing should only choose x

Perfect Negative Correlation (Metric = -1)

Sum of Link Pair PRRs = 1

Every packet succeeds on only one link

Perfect Negative Correlation (Metric = -1)

Sum of Link Pair PRRs = 1

Sum of Link Pair PRRs > 1

Every packet succeeds at one or both the links

Perfect Negative Correlation (Metric = -1)

Sum of Link Pair PRRs < 1

Opportunistic routing benefits most, given the two PRRs

a) A scalar with a finite range: [-1,1]

- b) Symmetric
- c) Irrespective of PRRs:
 - 1 for perfectly positively correlated link pair
 - -1 for perfectly negatively correlated link pair

An existing metric: χ

A recent inter-link correlation metric [1,2,3]:

$$\chi = P(x=0|y=0) - P(x=0)$$

 $\chi = 0 \Rightarrow$ losses are independent

- [1] A. Miu, G. Tan, H. Balakrishnan and J. Apostolopoulos, "Divert: fine-grained path selection for wireless LANs," MobiSys 2004.
- [2] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall and J. Zahorjan, "Measurement-based models for delivery and interference in static wireless networks," SIGCOMM CCR 2006.
- [3] R. Laufer, H. D.-Ferriere and L. Kleinrock, "Multirate Anypath Routing in Wireless Mesh Networks," INFOCOM 2009.

χ is not the desired metric

$$\chi = P(x=0|y=0) - P(x=0)$$

- a) A scalar with a finite range of [-1,1]
- X b) Symmetric
- c) Irrespective of PRRs:
 - 1 for perfectly positively correlated link pair
 - -1 for perfectly negatively correlated link pair

χ is not symmetric

$$\chi_{x,y} = P(x=0|y=0) - P(x=0)$$

= 4/7 - 4/10 = 0.17

χ is not symmetric

$$\chi_{x,y} = P(x=0|y=0) - P(x=0)$$

$$= 4/7 - 4/10 = 0.17$$

$$\chi_{y,x} = P(y=0|x=0) - P(y=0)$$

$$= 1 - 7/10 = 0.3$$

$$\chi_{x,y} \neq \chi_{y,x}$$

χ does not satisfy property (c)

c) 1 for perfectly positively correlated link pair For the same PRR case (P(x=1) = P(y=1)):

$$\chi = P(x=0|y=0) - P(x=0)$$

 χ looks independent for low PRR link pairs

χ does not satisfy property (c)

c) 1 for perfectly positively correlated link pair

For the same PRR case (P(x=1) = P(y=1)):

$$\chi = P(x=0|y=0) - P(x=0)$$

$$P(x=0|y=0) = 1$$

$$\chi = P(x=1) \neq 1$$

 χ is not the desired metric

Cross-correlation Index: p

$$\rho = \begin{cases} \frac{P(x=1,y=1) - P(x=1).P(y=1)}{\sqrt{P(x=1)P(x=0)P(y=1)P(y=0)}}, \prod_{a \in \{0,1\}} P(x=a)P(y=a) \neq 0\\ 0, \text{ otherwise} \end{cases}$$

Cross-correlation Index: p

$$\rho = \begin{cases} \frac{P(x=1,y=1) - P(x=1).P(y=1)}{\sqrt{P(x=1)P(x=0)P(y=1)P(y=0)}}, \prod_{a \in \{0,1\}} P(x=a)P(y=a) \neq 0\\ 0, \text{ otherwise} \end{cases}$$

- a) A scalar with a finite range of [-1,1]
- b) Symmetric
 - C) Irrespective of PRRs:
 - 1 for perfectly positively correlated link pair
 - -1 for perfectly negatively correlated link pair

ρ does not satisfy property (c)

c) I for perfectly positively correlated link pair For the same PRR case $(P_x(1) = P_y(1))$:

$$\rho = \frac{P_{x,y}(1,1) - P_x^2(1)}{P_x(1).P_x(0)}$$

Works when PRRs are same

ρ does not satisfy property (c)

c) 1 for perfectly positively correlated link pair

For the different PRR case $(P_x(1) \neq P_y(1))$:

$$P_{x,y}(1,1) = \min(P_x(1), P_y(1))$$

$$\rho = \sqrt{\frac{P_{x}(0).P_{y}(1)}{P_{x}(1).P_{y}(0)}} \neq 1$$

Does NOT work when PRRs are different

ρ does not satisfy property (c)

- Similarly, for perfectly negatively correlated link pairs:
 - is -1: only when PRRs sum to 1
 - does not work for other cases

ρ is not the desired metric

Outline

- Desired Metric Properties
- The K Metric
- \bullet K's Usefulness
- Open Questions

New Metric: K

- ρ almost satisfied all the desired properties
- Normalizing ρ satisfies all the properties:

$$\mathcal{K} = \begin{cases} \frac{\rho}{-\rho_{max}} & \text{, if } \rho > 0 \\ \frac{-\rho}{\rho_{min}} & \text{, if } \rho < 0 \\ 0 & \text{, otherwise} \end{cases}$$

New Metric: K

$$\kappa = \begin{cases} \frac{\rho}{\rho_{max}} & \text{, if } \rho > 0 \\ \frac{-\rho}{\rho_{min}} & \text{, if } \rho < 0 \\ 0 & \text{, otherwise} \end{cases}$$

$$\kappa \in [-1.0, 1.0], \forall Px, Py \in (0, 1)$$

 $\kappa = 0$: independent pairs

 $\kappa > 0$: positively correlated pairs

- 1: perfectly positively correlated pairs κ <0: negatively correlated pairs
 - -1: perfectly negatively correlated pairs

K on Mirage

802.15.4 (Mirage)

WiFi (802.11) and 802.15.4 Spectrum

WiFi (802.11) and 802.15.4 Spectrum

Outline

- Desired Metric Properties
- The K Metric
- \bullet K's Usefulness
- Open Questions

How useful is κ ?

Dissemination:

- Deliver large data to all nodes Eg. SPIN, RBP
- Deluge (standard protocol)
- Rateless Deluge (network coding)
- Compare the total time for dissemination

Deluge: P original pkts

Rateless Deluge: original coded pkts pkts

Correlation
TypeDeluge
(# of pkts)Rateless
Deluge
(# of pkts)Perfect Negative85

Rateless Deluge is great!

Correlation Type	Deluge (# of pkts)	Rateless Deluge (# of pkts)
Perfect Negative	8	5
Perfect Positive	5	5

Total Dissemination Time

Correlation Type	Deluge (# of pkts)	Rateless Deluge (# of pkts)
Perfect Negative	8	5
Perfect Positive	5	5

Total dissemination time:

Deluge =
$$5p$$

Rateless = $5p + 5c$

p = time to send packets, c = time to code

In this case, Deluge is better!

A Controlled Study

- 1 transmitter at highest tx power
- 7 single-hop receivers with perfect reception
- Independent Losses:
 Receivers randomly (with prob. P_r) drop packets
- Correlated Losses:
 Transmitter randomly (with prob. P_t) drops packets from tx queue
- Vary P_t and P_r to vary spatial correlation and PRR of links

A Controlled Study

When PRR is high, Deluge is better!

A Controlled Study

When PRR is low, Rateless Deluge is almost always better!

Dissemination Time Performance

Shows how much faster Rateless Deluge is over Deluge

Uncontrolled Experiment

- Measure Kand then run the experiment
- I transmitter (injection point) and 8 receivers
- 3 setups
 - Ch 16: high correlation
 - Ch 26: medium correlation
 - Movement: low correlation

Scenario	Avg K	Avg PRR
Ch16 (High)	0.85	0.85

Outline

- Desired Metric Properties
- The K Metric
- \bullet K's Usefulness
- Open Questions

Open Questions

K can change over time

- how to measure it online?
 - useful for adaptive protocol design

Is K useful with adaptive protocols?

- adaptive rate
- adaptive packet size
- adaptive channel and bandwidth

Summary

- Presented a spatial correlation metric, K
 - \bullet K does not conflate correlation with PRRs
- K has great predictive qualities
 - predicts network coding protocol performance
 - K shows how well opportunistic routing protocols perform

A Shameless Advertisement

• I'm looking for a faculty/research position contact: srikank@stanford.edu

 Mayank and Jung II are looking for industrial research positions

contact for Mayank: mayjain@stanford.edu contact for Jung II: jungilchoi@stanford.edu

Backup Slides

κ on 802.11 networks

Roofnet (Outdoor)

SWAN (Indoor)

Anypath ETX Ratio

Anypath ETX Ratio =

$$\begin{cases} \frac{E[A] - E[A]_{inde}}{E[A]_{max} - E[A]_{inde}}, & E[A] \geq \frac{E[A] - E[A]_{inde}}{E[A]_{inde}}, & \text{otherwise} \end{cases}$$

 $E[A] \ge E[A]_{inde}$ otherwise.

Opportunistic Routing: χ and κ

Roofnet 11Mbps

Causes

