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Spatial Independence Assumption

Losses on different links are independent

e after a link failure, routing protocols choose the
next shortest path forwarder

e simulators explicitly generate channel states
independently



Spatial Independence Assumption

Losses on different links are independent

e after a link failure, routing protocols choose the
next shortest path forwarder

e simulators explicitly generate channel states
independently

When is this assumption safe?

Why does it matter?



Inter-link (Spatial) Correlation
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Inter-link (Spatial) Correlation
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(a) Real Trace, Mirage (b) Synthetic (Independent) Trace
(Every link has the same packet

reception ratio (PRR) as in real trace)
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Inter-link (Spatial) Correlation
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(a) Real Trace, Mirage (b) Synthetic (Independent) Trace

Losses are well alighed (correlated)



So what!?
Traditional Routing

® Edge weights are PRRs
® S selects n5 as next-hop

® ETX:expected number of
transmissions

1 1 _
_ = 6.0
* EIX=0210




So what!
Opportunistic Routing

® S lists nl-n5 as next-hops

® S stops as soon as at
least one of the next
hop nodes receives




So what!
Opportunistic Routing

Independent:

1
ETX = -1 = 2.49
1—(1—0.2)5




So what!
Opportunistic Routing

Independent:

1
ETX = -1 = 2.49
1—(1—0.2)5

1
ETX = -1 =
1—(1-—0.2)

Same cost as traditional routing
(without coordination cost)!

Correlation has implications to protocol
performance



So far

® Spatial correlation assumption does not
always hold true

® a measured network: 70% of link pairs are
highly correlated

® The degree of correlation has implications
to protocol performance



Problem Statement

Need a good way to measure spatial
correlation to understand its implications to
protocol performance

® existing metrics conflate correlation with
link pair PRRs



Research Contributions

® Present a new metric: K

® Show how well network coding protocols
perform, based on K

® Show K ’s ability to predict opportunistic
routing protocol performance (in paper)

® perfect prediction when a node has 2
potential forwarders

® more than 2 forwarders: perfect prediction
for most of the nodes
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Desired Metric Properties

a) A scalar with a finite range: [-1,1]

e >0:positive correlation

e <0:negative correlation
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Desired Metric Properties

a) A scalar with a finite range: [-1,1]  p ; >\Py

b) Symmetric @ @

-------------------------------------------------------------------------

:c) Irrespective of PRRs:
1 for perfectly positively correlated link pair

-1 for perfectly negatively correlated link pair

------------------------------------------------------------------------

Not a made-up property!



Perfect Positive Correlation (Metric = 1)

Same PRR Link Pair

0/° INRRRE R

Opportunistic routing should choose x or Yy,
but not both
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Perfect Positive Correlation (Metric = 1)

Same PRR Link Pair

Gr//»tb INRRRE R

Different PRR Link Pair

er//»db J B

Opportunistic routing should only choose x
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Perfect Negative Correlation (Metric = -1)

Sum of Link Pair PRRs = 1

0/° QA

Every packet succeeds on only one link
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Perfect Negative Correlation (Metric = -1)

Sum of Link Pair PRRs = 1

er//»tb QA

Sum of Link Pair PRRs > 1

GF,/»GD QL

Every packet succeeds at one or both the links
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Perfect Negative Correlation (Metric = -1)

Sum of Link Pair PRRs < 1

0/° RIRERRRRRE

Opportunistic routing benefits most,
given the two PRRs
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Desired Metric Properties

a) A scalar with a finite range: [-1,1]  p ; >\Py

b) Symmetric @ @

c) lIrrespective of PRRs:
1 for perfectly positively correlated link pair

-1 for perfectly negatively correlated link pair

25



An existing metric: X

A recent inter-link correlation metric [1,2,3]:
X = P(x=0]y=0) - P(x=0)

X =0 = losses are independent
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X is not the desired metric

X = P(x=0]y=0) - P(x=0)

\/a) A scalar with a finite range of [-1,1]
X b) Symmetric

X ¢) lIrrespective of PRRs:

1 for perfectly positively correlated link pair

-1 for perfectly negatively correlated link pair
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X 1S not symmetric

—@ IIERERRRE

X, ; P(x=0]y=0) - P(x=0)
=4/7 -4/10=0.17
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X 1S not symmetric

—@ IIERERRRE

Xx’y= P(x=0]y=0) - P(x=0)
=4/7 -4/10=0.17
X, = P(y=0[x=0) - P(y=0)
=1-7/10=0.3
XX’;& Xy’x
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X does not satisfy property (c)

c) 1 for perfectly positively correlated link pair
For the same PRR case (P(x=1) = P(y=1)):

X = P(x=0]y=0) - P(x=0)

o0 NNNNNNNN .

X =P(x=1) # 1

X looks independent for low PRR link pairs

30



X does not satisfy property (c)

c) 1 for perfectly positively correlated link pair
For the same PRR case (P(x=1) = P(y=1)):

X = P(x=0]y=0) - P(x=0)

o0 NNNNNNNN .

X =P(x=1) # 1

X is not the desired metric
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Cross-correlation Index: p

P(X=1 ,)/:1) - P(X=1 ).P()’=1) nP(x=a)P()’=a)¢O

0 = { VP P=0)Pl=1)P(y=0) 2<(0.1]

0, otherwise



Cross-correlation Index: p

w [TP(x=2)P(y=a)+0
P = \/P(X= 1)P(x=0)P(y=1)P(y=0) ac{0,1}

0, otherwise
\/a) A scalar with a finite range of [-1,1]

\/ b) Symmetric

X ¢) lIrrespective of PRRs:

1 for perfectly positively correlated link pair

-1 for perfectly negatively correlated link pair
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P does not satisfy property (c)

c) | for perfectly positively correlated link pair
For the same PRR case (Px(1) = Py(1)):

~ Puy(1,1) - Px(1)
P = T (1) .Px0)

o— O NNENINNN ;)

p=1

Works when PRRs are same

34



P does not satisfy property (c)

c) 1 for perfectly positively correlated link pair
For the different PRR case (Px(1) # Py(1)):

Pxy(1,1) = min(Px(1), Py(1))

—@ IIERRRRAR

- \/PX(O).PY(’I) .
P.(1).P,(0)

Does NOT work when PRRs are different
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P does not satisfy property (c)

® Similarly, for perfectly negatively correlated
link pairs:

® is -1:only when PRRs sum to 1

® does not work for other cases

P is not the desired metric

36



Outline

® Desired Metric Properties
® The K Metric

® /{’s Usefulness

® Open Questions
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New Metric: K

P almost satisfied all the desired properties

Normalizing p satisfies all the properties:

oo 0 T P70
= p:.n , if p<0

0 , otherwise
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New Metric: K

p:ax , if p>0
K — -P
, if p<0
pmin | p
0 , otherwise

k€ [-1.0,1.0], v Px, Py € (0, 1)
K =0:independent pairs
K >0: positively correlated pairs

® 1:perfectly positively correlated pairs
K <0: negatively correlated pairs

® -1:perfectly negatively correlated pairs
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K on Mirage
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WiFi (802.11) and 802.15.4 Spectrum

5 MHz

Channel 11 12 13 14 15 16 17 18 19 20 21 24 25 26

S WATATATATIVATAYATATATA MNV\

25 MHz 3 MHz
802.11b Channel 1 Channel 6 m

L— 22 MHz —}‘

2400 2425 2450 2475 2480
MHz MHz MHz MHz MHz
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WiFi (802.11) and 802.15.4 Spectrum

WiFi
No WiFi

5 MHz
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Outline

® Desired Metric Properties
® The K Metric

® /’s Usefulness

® Open Questions
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How useful is K?

Dissemination:

® Deliver large data to all nodes
Eg. SPIN, RBP

® Deluge (standard protocol)

® Rateless Deluge (network coding)

® Compare the total time for dissemination

44



Dissemination

Deluge:

Number of transmissions from S: 4

original
pkts




Dissemination

RY(PI(P2 (P4
original
pkts ‘ . . .

Number of transmissions from S: 4
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Dissemination

Deluge:

need Pl
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pkts

Number of transmissions from S: 4
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Dissemination

Deluge:

g o

original

pkts ‘ . . ..

Number of transmissions from S:4+4 = 8
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Dissemination with Network Coding

Rateless Deluge:

original coded
pkts pkts
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Dissemination with Network Coding
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pkts pkts

Rateless Deluge:

Number of transmissions from S: 4
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Dissemination with Network Coding

Rateless Deluge:
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Number of transmissions from S: 4
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Dissemination with Network Coding
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Rateless Deluge:

Number of transmissions from S:4+1|=5
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Deluge vs Rateless Deluge

Correlation Deluce Rateless
Type & Deluge

(# of pkts) (# of pkts)
Perfect Negative 8 5

Rateless Deluge is great!
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Deluge vs Rateless Deluge

Correlation Deluce Rateless
Type & Deluge

(# of pkts) (# of pkts)
Perfect Negative 8 5

Perfect Positive 5 5
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Total Dissemination Time

Correlation Deluce Rateless
Type & Deluge

(# of pkts) (# of pkts)
Perfect Negative 8 5
Perfect Positive 5 5

* Jotal dissemination time:
Deluge = 5p
Rateless = 5p + 5c

p = time to send packets, ¢ = time to code

In this case, Deluge is better!
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A Controlled Study

® 1 transmitter at highest tx power

® / single-hop receivers with perfect
reception

® |ndependent Losses:
Receivers randomly (with prob. Pr) drop
packets

® Correlated Losses:
Transmitter randomly (with prob. P¢) drops

packets from tx queue
® Vary P: and P: to vary spatial correlation and
PRR of links
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When PRR is high, Deluge is better!
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Time (seconds)

A Controlled Study
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When PRR is low, Rateless Deluge is
almost always better!
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Dissemination Time Performance

0.9,

-15% ~ 0%

0% ~ 15%

PRR

Rateless Deluge
is better

>15%

049 0.2 0.4 0.6 0.8 1.0

K

® Shows how much faster Rateless Deluge is
over Deluge
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Uncontrolled Experiment

® MeasureKand then run the experiment

® | transmitter (injection point) and 8
receivers

® 3 setups
® Ch |6: high correlation
® Ch 26: medium correlation

® Movement: low correlation
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Deluge vs Rateless Deluge

Scenario Avg K Avg PRR
Chl16 (High) 0.85 0.85
60
45

PRR

Time (sec)
w
o

|5

Chlé
B Deluge

Bl Rateless Deluge
(Network Coding)
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Deluge vs Rateless Deluge

Scenario Avg K Avg PRR
Ch16 (High) 0.85 0.85
Ch26 (Medium) 0.55 091
60 0.9,
0.8
45

Time (sec)
w
o

|5

Chlé
B Deluge

Ch26

Bl Rateless Deluge
(Network Coding)
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Deluge vs Rateless Deluge

Scenario Avg K Avg PRR
Chl6 (High) 0.85 0.85
Ch26 (Medium) 0.55 091
Movement (Low) 0.04 0.57
60 0.9,
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Outline

® Desired Metric Properties
® The K Metric

® /{’s Usefulness

® Open Questions
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Open Questions

K can change over time

® how to measure it online!?

® useful for adaptive protocol design

Is K useful with adaptive protocols!?
® adaptive rate
® adaptive packet size

® adaptive channel and bandwidth
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Summary

® Presented a spatial correlation metric, £
® K does not conflate correlation with PRRs

® / has great predictive qualities

® predicts network coding protocol
performance

® K shows how well opportunistic routing
protocols perform
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A Shameless Advertisement

® |'m looking for a faculty/research position

contact: srikank(@stanford.edu

® Mayank and Jung Il are looking for industrial
research positions

contact for Mayank: mayjain(@stanford.edu
contact for Jung ll: jungilchoi@stanford.edu
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K on 802.1 |1 networks
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Anypath ETX Ratio
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