
Surviving Sensor
Network Software Faults

Yang Chen (University of Utah)
Omprakash Gnawali (USC, Stanford)

Maria Kazandjieva (Stanford)
Philip Levis (Stanford)

John Regehr (University of Utah)

22nd SOSP
October 13, 2009

In Atypical Places for
Networked Systems

2

Volcanoes

Landmarks

Really tall trees

Forest fires

Challenges

• Operate unattended for months, years

• Diagnosing failures is hard

• Input is unknown, no debugger

• Memory bugs are excruciating to find

• No hardware memory protection

3

Safe TinyOS
(memory safety)

4

Deputy

Safety Violation

• Lab: blink LEDs, spit out error message

• Deployment: reboot entire node (costly!)

• Lose valuable soft state (e.g., routing tables)
‣ takes time and energy to recover

• Lose application data
‣ unrecoverable

5

Neutron

• Changes response to a safety violation

• Divides a program into recovery units

• Precious state can persist across a reboot

• Reduces the cost of a violation by 95-99%

• Applications unaffected by kernel violations

• Near-zero CPU overhead in execution

• Works on a 16-bit low-power microcontroller
6

Outline

• Recovery units

• Precious state

• Results

• Conclusion

7

Outline

• Recovery units

• Precious state

• Results

• Conclusion

8

A TinyOS Program

• Graph of software components

• Code and state, statically instantiated

• Connections typed by interface

• Minimal state sharing

9

A TinyOS Program

• Graph of software components

• Code and state, statically instantiated

• Connections typed by interface

• Minimal state sharing

• Preemptive multithreading

• Kernel is non blocking, single-threaded

• Kernel API uses message passing

10

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscalls

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Recovery Units

• Separate program into independent units

• Infer boundaries at compile-time using:
1. A unit cannot directly call another

2. A unit instantiates at least one thread

3. A component is in one unit exactly

4. A component below syscalls is in the kernel unit

5. The kernel unit has one thread

11

Recovery Units

12

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Recovery Units

13

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Recovery Units

14

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Recovery Units

15

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Recovery Units

16

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Rebooting Application
Units

• Halt threads, cancel outstanding syscalls

• Reclaim malloc() memory

• Re-initialize RAM

• Restart threads

17

Canceling System Calls

• Problem: kernel may still be
executing prior call

• Next call will return EBUSY

• Pending flag in syscall structure

• Block if flag is set

• On completion, issue new syscall

18

Kernel API

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

?

Memory

• Allocator tags blocks with recovery unit

• On reboot, walk the heap and free unit’s blocks

• Must wait for syscalls that pass pointers to
complete before rebooting

• On reboot, re-run unit’s C initializers

• Each unit has its own .data and .bss

• Restart application threads

19

Kernel Unit Reboot

• Cancel pending system calls with ERETRY

• Reboot kernel

• Maintain thread memory structures

• Applications continue after kernel reboots

20

Outline

• Recovery units

• Precious state

• Results

• Conclusion

21

Coupling

22

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Coupling

23

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Coupling

24

syscalls

Application
Threads

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Kernel
Thread

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

syscall API

kernel recovery unit

kernel
thread

hardware interrupts

precious

state

state

precious

app. recovery unit 1 app. recovery unit 2

Precious State

• Components can make variables “precious”

• Precious groups can persist across a reboot

• Compiler clusters all precious variables in a
component into a precious group

• Restrict what precious pointers can point to

25

TableItem @precious table[MAX_ENTRIES];
uint8_t @precious tableEntries;

Persisting

• Precious variables must be accessed in
atomic{} blocks

• Only current thread can be cause of violation

• Static analysis determines tainted variables

• Tainted precious state does not persist on violation

26

Persisting Variables

• If memory check fails, reboot unit

• Reset current stack, re-run initializers, zero
out .bss, restore variables

• Need space to store persisting variables

• Simple option: scratch space, wastes RAM

• Neutron approach: place on stack

• Stack has been reset

• Often smaller than worst-case stack

27

Outline

• Recovery units

• Precious state

• Results

• Conclusion

28

Methodology

• Evaluate cost of a kernel violation in
Neutron compared to Safe TinyOS

• Three libraries, 55 node testbed (Tutornet)

• Collection Tree Protocol (CTP), 5 variables

• Flooding Time Synch Protocol (FTSP), 7 variables

• Tenet bytecode interpreter in the paper

• Quantifies benefit of precious state

29

Kernel Reboot: CTP

30

Kernel Reboot: CTP

31

Kernel Reboot: CTP

32

Kernel Reboot: CTP

33

99.5%
reduction

Kernel Reboot: FTSP

34

Kernel Reboot: FTSP

35

Kernel Reboot: FTSP

36

Kernel Reboot: FTSP

37

94%
reduction

Fault Isolation

• CTP/FTSP persist on an application fault

• Application data persists on a kernel fault

38

Cost (ROM bytes)

39

Safe TinyOS Neutron Increase Increase

Blink 6402 8978 2576 40%

BaseStation 26834 31556 4722 18%

CTPThreadNonRoot 39636 43040 3404 8%

TestCollection 44842 48614 3772 8%

TestFtsp (no threads) 29608 30672 1064 3%

Customized reboot
code is small, still fits on these devices

Cost (reboot, ms)

40

Node Kernel Application

Blink 12.2 11.4 1.16

BaseStation 22.1 14.1 9.18

CTPThreadNonRoot 15.6 15.5 1.01

TestCollection 15.6 15.5 0.984

TestFtsp (no threads) 14.8 - -

Node Kernel Application

Blink 12.2 11.4 1.16

BaseStation 22.1 14.1 9.18

CTPThreadNonRoot 15.6 15.5 1.01

TestCollection 15.6 15.5 0.984

TestFtsp (no threads) 14.8 - -

Kernel fault: CPU busy
for 10-20 ms

Cost (reboot, ms)

41

Outline

• Recovery units

• Precious state

• Results

• Conclusion

42

What’s Different Here

• Persistent data in the OS (RioVista, Lowell
1997)

• Neutron: no backing store, modify in place

• Microreboots (Candea 2004)

• Kernel and applications, rather than J2E

• Doesn’t require a transactional database

43

What’s Different Here

• Rx (Qin 2007) and recovery domains
(Lenharth 2009)

• Almost no CPU cost in execution, microreboots

• Failure oblivious computing (Rinard 2004)

• Recover from, rather than mask faults

44

What’s Different Here

• Changing the TinyOS toolchain is easy

• Changing the TinyOS programming model
isn’t (e.g., adding transactions)

• 90,000 lines of tight embedded code

• 35,000 downloads/year

45

Neutron

• Divides a program into recovery units

• Precious state can persist across a reboot

• Near-zero CPU overhead in execution

• Applications survive kernel violations

• Reduces the cost of a violation by 95-99%

• Works on a 16-bit low-power microcontroller

46

Questions

47

Diagnosing Faults

48

Given the logistics of our deployment we weren't really able to do much
information gathering once Deluge went down in the field, as we simply couldn't
communicate with the testbed until the problem was resolved and it was more
important to us, at the time, to get our system back on its feet than to debug
Deluge. Note that I believe that the reboots were really more the *symptom*, not
the *cause* of the Deluge issue (I think)....

.... Anyway, in short this is a long way of saying that we actually have no idea what
happened to Deluge.

At label (2) on August 8, a software command was transmitted to reboot the
network, using Deluge [6], in an attempt to correct the time synchronization fault
described in Section 7. This caused a software failure affecting all nodes, with only a
few reports being received at the base station later on August 8. After repeated
attempts to recover the network, we returned to the deployment site on August
11 (label (3)) to manually reprogram each node....

...In this case, the mean node uptime is 69%. However, with the 3-day outage
factored out, nodes achieved an average uptime of 96%.

“Fidelity and Yield in a Volcano Monitoring Sensor Network.” Geoff Werner-Allen, Konrad Lorincz,
Jeff Johnson, Jonathan Lees, and Matt Welsh. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2006), Seattle, November 2006.

From:
challen@eecs.harvard.edu

Subject:
 Re: reventador reboots
Date:
July 18, 2009 9:15:26 AM PDT

