Burstiness and Scaling in Low Power Wireless Link Simulation

TAL RUSAK

tr76@cornell.edu

Department of

Computer Science

Cornell University

PHILIP LEVIS

pal@cs.stanford.edu

Computer Systems

Laboratory

Stanford University

Burstiness in Low Power Wireless Networks

- Burstiness is the quality of a link having periods of success and periods of losses at certain time scales.
 - Considers *temporal correlation* between successes and failures in packet reception.
- It has been observed that wireless networks have a correlated (i.e. bursty) reception patterns.
 - IEEE 802.11 Mesh Networks [SIGCOMM 2004]
 - Low Power Wireless Sensor Networks (IEEE 802.15.4) [IPSN 2007, MSWiM 2008, SENSYS 2008]

Burstiness in Low Power Wireless Networks

- Burstiness is the quality of a link having periods of success and periods of losses at certain time scales.
 - Considers *temporal correlation* between successes and failures in packet reception.
- It has been observed that wireless networks have a correlated (i.e. bursty) reception patterns.
 - IEEE 802.11 Mesh Networks [SIGCOMM 2004]
 - Low Power Wireless Sensor Networks (IEEE 802.15.4) [IPSN 2007, MSWiM 2008, SENSYS 2008]

Number of Packets Received over Different Time Scales

Studied with respect to Ethernet traffic [TON 1994]

Number of Packets Received over Different Time Scales

Studied with respect to Ethernet traffic [TON 1994]

Real 802.15.4 Link Packets/100s 10000 000 6090 8000 10000 2000 Time (s) Packets/10s 1000 4600 4800 5000 5200 4400 Time (s) Packets/1s 4310 433⁄0 4350 4370 4390 4410 Time (s) Packets/0.1s 4349

Time (s)

Simulated with TOSSIM

Observations

- Burstiness is observed at many time scales in the real link, but not in the simulated link.
- Simulation that does not capture burstiness leads to incorrect prediction of network behavior, which makes deployments less predictable.
- It is difficult to develop reliable protocols with incorrect underlying assumptions.

Physical Layer Scaling

 Logscale diagram used to investigate scaling at the physical layer (RSSI trace) using method of Abry et. al.

N=10 [
$$(j_1,j_2)=(12,20)$$
, $\alpha-est=1.4$, Q=0.056248], D-init

- α is the slope in the asymptotic domain.
- If $\alpha > 1$ (as seen here), then the data may be consistent with *statistical self similarity* or *asymptotic self similarity*, but not with long range dependence.

Probability of Self Similarity vs. RSSI Variance

• Relationship between average variance over groups of ten links to probability that $\alpha > 1$ in logscale diagram:

Point of the Onset of Scaling

 Onset point is timescale where scaling starts, estimated using a method suggested by Abry et. al.:

• It was previously observed by Srinivasan et. al. [SENSYS 2008] that waiting 500 ms before retransmissions improves link reliability. 500 ms may be the onset point for that study.

Simulation Framework

- Low-variance (stable) RSSI links can use classic techniques
- Evaluate if scaling is present in higher variance links
- If scaling present, determine the type of scaling and onset point
 - Model traces for time scales beyond onset point in the asymptotic domain (current, ongoing work)
 - Use current interference/signal power modeling techniques for transient domain [IPSN 2007, MSWiM 2008], possibly based on seed value from longer term simulation

Thank you!

tr76@cornell.edu