Experiences from a Decade

of jigVi=l=] Development

Philip Levis
Stanford University

@OSDI 2012

Back to 1999... g

“Information technology (IT) is on the verge of another
revolution... The use of EmNets [embedded networks]
throughout society could well dwarf previous milestones.” !

“The motes [EmNet nodes] preview a future pervaded by
networks of wireless battery-powered sensors that monitor
our environment, our machines, and even us.” 2

® |dea: operating system for “sensor networks’

’

Microcontrollers (bah, virtual memory and 32-bit words)
Low-power (2uA - 4mA)

Wireless communication (good luck with that)

Started as Perl scripts used by a handful of academics

® |3 years later...

~25,000 downloads a year, hundreds of thousands of nodes!
Worldwide community of hundreds of contributors!
Hundreds of research papers!

The Internet of Things!

v v Vv v

This Talk

® [wo design principles for embedded software

» Minimize resource use
» Structure interfaces and code to prevent bugs

® A technical result: static virtualization
® A lesson:avoid the island syndrome

Disclaimer

TinyOS is the work of hundreds of
contributors over a decade.

(of which | am only one, the core WG chair, who joined 18 months in)

This paper and talk are my personal
opinions and observations.

This Talk

® [wo design principles for embedded software

» Minimize resource use
» Structure interfaces and code to prevent bugs

Minimize Resource Use

Model

ROM RAM Sleep

F2002
F1232
FI55
F168
Fléll

| kB 128B |.3pA
8kB 256B |.6pA
| 6kB 512B 2.0pA
48kB 2048B 2.0pA
48kB 10240B 2.0pA

T1 MSP430 Microcontrollers

Minimize Resource Use

Model ROM RAM Sleep
F2002 | kB 128B |.3pA
F1232 8kB 256B |.6pA
FI55 | 6kB 512B 2.0pA
F168 48kB 2048B 2.0pA

T1 MSP430 Microcontrollers

Minimize Resource Use

ROM RAM Sleep
| kB 128B |.3pA
8kB 256B |.6uA Model ROM RAM Sleep Price
| 6kB 512B 2.0pA LM2S600 32kB 8kB 950pA $2.73
48kB 2048B 2.0pA LM3S1608 128kB 32kB 950pA $4.59

_ 2.0uA LM351968 256kB 64kB 950uA $6.27

T1 MSP430 Microcontrollers Tl ARM CortexM3 Processors

Minimize Resource Use

ROM RAM Sleep
| kB 128B |.3pA

8kB 256B |.6uA Model ROM RAM Sleep Price
| 6kB 512B 2.0pA LM2S600 32kB 8kB $2.73
48kB 2048B 2.0pA LM3S1608 128kB 32kB $4.59

_ 2.0uA LM3S1968 256kB 64kB $6.27

T1 MSP430 Microcontrollers Tl ARM CortexM3 Processors

Minimize Resource Use

ROM RAM Sleep
| kB 128B |.3pA
8kB 256B |.6uA Model ROM RAM Sleep Price
| 6kB 512B 2.0pA LM2S600 32kB 8kB $2.73
48kB 2048B 2.0pA LM3S1608 128kB 32kB $4.59

_ 2.0uA LM3S1968 256kB 64kB $6.27

T1 MSP430 Microcontrollers Tl ARM CortexM3 Processors

Sleep current necessitates microcontrollers.
Advanced applications run into ROM/RAM limits.

Two Principles

2. Structure code to prevent bugs

Interior

Microphone Light
Sensor

Crossover

Alarm Unit

Mercury
Tilt/Shock
Sensor

Interior
Pressure
Sensor

Sensor

Alarm
Speaker

Tampearature "C)

Black Box

Debugging these systems is
exceedingly hard.

Readlngs &ereless

This Talk

® A technical result: static virtualization

Static Virtualization

Operating
System

Static Virtualization

Operating
System

>
5
=i
=
o)
.
O
-

2 timers

Static Virtualization

O
o
D
3
V)
‘;’
-
0Q

2>
5
=i
=
o)
.
O
-

2 timers

Static Virtualization

O
o
D
3
V)
‘;’
-
0Q

2>
5
=i
=
o)
.
O
-

2 timers

Static Virtualization

2>
5
=i
=
o)
.
O
-

2 timers

Static Virtualization

Allocates exact RAM
No pointers

Cross-call optimization
Dead code elimination
Compile-time certainty

uonedi|ddy

—

—

—l
O

<4
<
<
« — System
«— —>

perating

2 timers

Result

Version Multihop yield

TinyOS 0.6 7
TinyOS .| 68.5%
TinyOS 2.0 99.58%

aSzewczyk et al.“An Analysis of a Large Scale Habitat Monitoring Application.” SenSys 2004.
“The multi-hop burrow motes perform worse (with a median yield of 58%) but within tolerance”

®Werner-Allen et al.“Fidelity and Yield in a Volcano Monitoring Sensor Network.” OSDI 2006.
“the median event yield was 68.5%” (events, not packets)

“Chipara et al.“Reliable Clinical Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit.” Sensys 2010.
“the system achieved a median network reliability of 99.68% (range 95.2% — 100%). In contrast, the sensing reliability was
significantly lower.”

Result

Version Multihop yield

TinyOS 0.6 7
TinyOS .| 68.5%
TinyOS 2.0 99.58%

| Static virtualization enabled applications to be
highly robust, dependable, and efficient.

“Chipara et al.“Reliable Clinical Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit.” Sensys 2010.
“the system achieved a median network reliability of 99.68% (range 95.2% — 100%). In contrast, the sensing reliability was
significantly lower.”

This Talk

® A lesson: avoid the island syndrome

Applications

Interior
Interior
Microphone Light Pressure
Sensor Sensor

Crossover

Alarm Unit

Mercury
Tilt/Shock
Sensor

Sensor

Alarm
Speaker

Lights

Research vs. Practice

® TinyOS technically focused on enabling users
to build larger, more complex applications

® Doing so increased the learning curve to
building simple ones

Timeline

2(

20§7

200

nesC, bidirectional and atomic, generics,
parameterized interfaces uniqueCount nx_types

safe,
threads

Timeline

threads

Statically Virtualized Timer

(TinyOS 2.x)

AppC.nc

T = new TimerC()
AppP.Timer -> TimerC.Timer

Control.start() {
Timer.start(..)

}

Timer.fired() {
send packet();

}

Implementation

(TinyOS 2.x)

TimerC.nc

AppC.nc

#define TS unique(“T")
T = new TimercC() TimerC.Timer =

AppP.Timer -> TimerC.Timer TimerP.Timer[TS]

Control.start() { TimerP.nc
Timer.start(..)

}

Timer.fired() { f@efini ET ;go?nt(“T")
send packet(); imer_t ts[NT];
}

clock interrupt ({
update ts()
for i = 0 to NT-1
if (ts[i].fire)
Timer[i].fired();

}

Timer[i].start(...) {
startTimer(i, ..)

}

Implementation

(TinyOS 2.x)

#define TS unique(“T")
TimerC.Timer =

T = new TimerC()
TimerP.Timer[TS]

AppP.Timer -> TimerC.Timer

Control.start()
Timer.start(..)

Timer.fired() #define NT uCount(“T")

}

Timer[i].fired();

Timer[i].start(...) {

}

inyOS 0.6

APP TIMER INIT TIMER START
TIMER FIRE APP TIMER

Code Evolution

® Code evolved to use nesC features in more
complex and intricate ways

» Improved software dependability
» Allowed more complex applications
» Served the needs of the community

® |ncreased barrier to entry:island syndrome

Death by Components

® Fine-grained component toolkits are great for
building and evolving a system

® The end result is difficult for a new user to
understand: increases the learning curve

® Need to transition to structurally simpler
implementations

Death by Components

TimerC VirtualizeTimerC
: CounterToTimeC AlarmToTimerC

HpITlmerOC

HplTimerOP McuSleepC

Another Approach

HplAlarmP McuSleepC

Fetch_-O-Matic .40 o
Build This
Aweso
BallLa

search

PROJECTS J
15+ 5 f »Generate . »Attack of
thunderstorms 3

1AL

l -— Arduino can sense the environment by receiving
].“lvm—innw & N R . . - .
Foeenze oAt input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and
other actuators. The microcontroller on the board
is programmed using the Arduino programming

language (based on Wiring) and the Arduino

development environment (based on Processing).
Arduino projects can be stand-alone or they can
communicate with software running on a

. O'REILLY
computer (e.g. Flash, Processing, MaxMSP).

® Tremendously successful academic project

» Started as Perl scripts used by a handful of academics
» Now ~100 downloads a day, hundreds of thousands of nodes
» Has a worldwide community of hundreds of contributors

® But it could have been more so

Missed being a platform for simple sensing apps (Arduino)
Missed being a platform for the Internet of Things (Contiki)
“Applications” became “hard applications”

Should have focused on the simple as much as the complex
(the island syndrome)

Disclaimer

TinyOS is the work of hundreds of
contributors over a decade.

(of which | am only one, the core WG chair, who joined 18 months in)

This paper and talk are my personal
opinions and observations.

TinyOS is an open source, BSD-licensed operating
system designed for low-power wireless devices,

such as those used in sensor networks, ubiquitous
computing, personal area networks, smart buildings,
and smart meters. A worldwide community from
academia and industry use, develop, and support the

operating system as well as its associated tools,
averaging 35,000 downloads a year.

Latest News

August 20, 2012: TinyOS 2.1.2 is now officially released; you can download it from the debian packages on
tinyos.stanford.edu. Manual installation with RPMs with the instructions on docs.tinyos.net will be
forthcoming. TinyOS 2.1.2 includes:

« Support for updated msp430-gcc (4.6.3) and avr-gcc (4.1.2).
« A complete 6lowpan/RPL IPv6 stack.

« Support for the ucmini platform and ATmega128RFA1 chip.
« Numerous bug fixes and improvements.

July 21, 2010: The transition from hosting TinyOS at Sourceforge to Google code is now complete. Part of
this transition included placing all of TinyOS under a New BSD license (in Sourceforge several compatible
licenses were used). Thanks to all of the developers for agreeing to move to a uniform license!

FAQ Learn Community

Frequently asked questions Download TinyOS and learn TinyOS Working Groups, mailing
about TinyOS how to use it lists, and TEPs

I'd like to especially acknowledge Jason Hill, David Culler, David Gay, Cory Sharp, Eric
Brewer, Shankar Sastry, Joe Polastre,Vlado Handziski, Jan Heinrich-Hauer, Kevin Klues,
David Moss, Omprakash Gnawali, Jonathan Hui, John Regehr, Matt Welsh, Alec Woo,
Robert Szewczyk, Kamin Whitehouse, Philip Buonadonna, Ben Greenstein, Miklos
Maroti, Andreas Koepke, and Janos Sallai, as well as Razvan Musaloiu-E., JeongGil Ko,
Philipp Huppertz, Antonio Linan, Steve Ayers, Kristin Wright, Steven Dawson-

Haggerty, Jan Beutel, Branislav Kusy, Prabal Dutta, Gilman Tolle, Thomas Schmid, Chad
Metcalf, Henri Dubois-Ferriere, Deepak Ganesan, Laurynas Riliskis, Eric Decker, Martin
Turon, and Peter Bigot.

TinyOS is also deeply indebted to its users, their bug reports, feature requests, and
hard work.

