
Automatically Distributing Eulerian and
Hybrid Fluid Simulations in the Cloud

Omid Mashayekhi, Chinmayee Shah, Hang Qu,
 Andrew Lim, and Philip Levis

Stanford University

SIGGRAPH 2018

Fluid Simulation Disconnect

• Computing today: the cloud/datacenters
- Thousands of nodes, commodity parts: failures, "stragglers" common
- Systems for past 30 years: many cheap parts >> few expensive parts
- Seminal MapReduce paper: 1600 out of 1800 hosts failed in one run!

• Fluid simulation today: 1990s technologies
- Single, powerful server (or GPU)
- Small, high-performance compute cluster
- HPC: application has complete control over scheduling and placement

• Why? Running software in the cloud is hard
- Application needs dynamic scheduling, fault tolerance, consistency management
- Data analytics relies on platforms such as Spark, Hadoop, etc., to handle complexities
- But we don't want to write brand new simulation libraries for some new framework...

Automatically Distributing Eulerian and
Hybrid Fluid Simulations in the Cloud

With a bit of glue code, Nimbus runs an existing, single-threaded
simulation library on many machines and hundreds of cores.

Automatically Distributing Eulerian and
Hybrid Fluid Simulations in the Cloud

Does this for libraries that have an underlying Eulerian
representation, including hybrid methods such as particle level set,

fluid implicit particle (FLIP), and affine particle in cell (APIC).

Automatically Distributing Eulerian and
Hybrid Fluid Simulations in the Cloud

Run in the cost-effective computing cloud, which has high latency
networks, where cores straggle and node failures are common.

How?
• Partition the simulation into many smaller stand-

alone simulations across the domain
- Simulation must have an Eulerian representation

• Between simulation operations, automatically
stitch together the sub-simulations
- Transfer ghost cells after fluid advection
- Update ghost elements after projection iteration

• Centralized controller monitors, schedules, and
controls entire simulation

1523 PhysBAM simulation
24 frames in 335 minutes
1 nodes (1 core)

2563 PhysBAM simulation
24 frames in 268 minutes
8 nodes (64 cores) with Nimbus

Nimbus Programming, Data and
System Model

Single-Threaded Simulation Library

velocity advect(sim.velocity())

Geometrically Specify Partitioning

Write

Write

Read
Read

parallel {
 apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
 apply(advect, {vel, rread_bb}, {vel, rwrite_bb});
}

Nimbus

Nimbus Parallelizes Simulation

velocity advect(sim.velocity())

Write

Write

Read
Read

parallel {
 apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
 apply(advect, {vel, rread_bb}, {vel, rwrite_bb});
}

Nimbus

velocity advect(sim.velocity())

velocity advect(sim.velocity())

Two Bits of Glue Code

Write

Write

Read
Read

parallel {
 apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
 apply(advect, {vel, rread_bb}, {vel, rwrite_bb});
}

Nimbus

velocity advect(sim.velocity())

velocity advect(sim.velocity())

glue code to invoke library functions

glue code to build simulation data types

written once by simulation
library developer

Key Mechanism: 4 Layer Data Model

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

Variables are defined over the domain with a
partitioning and ghost cell width.

Each variable is divided into a set of disjoint
logical objects.

Each logical object has one or more physical
instances, stored in memory on nodes.

Application objects are automatically generated
and updated from physical objects.

Simulation Simulation

Simulation

Driver node

Central Controller

Worker nodes

Geometric

Logical

Application Application Application Application Application Application Application Application

Program Representations

Physical Physical Physical Physical Physical Physical PhysicalPhysical

Problem: Data Representations

• Distributed system sees logical and physical objects

• Application library sees application objects, made of many physical objects

• Both expect their objects to be contiguous in memory

1 2 3

97

13 14 15

8

4 5 6

1210

16 17 18

11

19 20 21

2725

31 32 33

26

22 23 24

3028

34 35 36

29

physical objects

A B

C D

application objects

translator

A B

C D

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

Translator Cache

• Maintains consistency between application and physical
data objects

• Strawman: maintain both, write-through policy
- On application write, immediately copy to physical copy
- Problem: 100% memory overhead, unnecessary copies

• Nimbus approach: write-back cache, free physical
objects older than their application objects
- Instantiate physical object when a transfer starts
- Application layer is primary data store
- Physical objects are usually <10% overhead

Problem: Task Rate

• Most centralized controllers scale
to 10,000 tasks/second

• Fluid simulations easily execute
100,000 tasks/second
- Controller quickly becomes a bottleneck

at scale: workers fall idle

2 8 16 32 48 64
1umber of worNers

0

1

2

3

4

5

6
S

e
e
d

u
S

 v
s.

 s
in

g
le

 w
o
rN

e
r

1.0x

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

Controller Cache

• Key observation: iterative simulations have repetitive control
traffic/task patterns

• Controller and workers cache blocks of tasks in templates
- A single control message can instantiate a template and create

thousands of tasks
- A template binds some values (e.g., data objects read and written) but

leaves some free (task IDs)

Evaluation

Evaluation Summary

• Nimbus is general, supporting a wide range of Eulerian and hybrid methods

• You can port production quality simulations in ~2,000 lines of code

• You can run bigger, more detailed simulations faster

• System scales past current simulation methods (it's not the bottleneck)

• Nimbus recovers from faults and schedules computations for you

Simulations on Nimbus

• Ported three simulations on two different libraries
- PhysBAM water and smoke
- StencilProbe 3D heat diffusion simulation

Sim Library Driver
Heat diffusion 118 94

Water
<1500

620

Smoke 400

Benefits of Parallelization

1523 PhysBAM simulation
24 frames in 335 minutes

1 nodes (1 core)

2563 PhysBAM simulation
24 frames in 268 minutes

8 nodes (64 cores) with Nimbus

Benefits of Caches

2 8 16 32 48 64
1umber of worNers

0

10

20

30

6
S

e
e
d

u
S

 v
s.

 s
in

g
le

 w
o
rN

e
r

19.2x

11.1x

1.0x

w/ translator and controller cache

w/ only controller cache

w/ only translator cache

no caching

• Heat diffusion application with ghost cell width
of 1

• At scale, controller is bottleneck due to high
task rate: controller cache allows application
to scale

• Translator cache further improves speed by
72%

• Performance caps out at 19.2x: is this Nimbus
or the simulation method?

Scalability

• Heat diffusion simulation with caches
enabled

• With no data exchanges, Nimbus
overhead is <1%

• Data exchanges (simulation method)
are the bottleneck

2 8 16 32 48 64
1umber of worNers

0

20

40

60

6
S

e
e
d

u
S

 v
s.

 s
in

g
le

 w
o
rN

e
r

63.8x

19.2x
15.2x

8.2x

ghost bw: 0

ghost bw: 1

ghost bw: 2

ghost bw: 3

Managing System Complexity

• 2563 PhysBAM water simulation

• 8 nodes (64 cores)

• Fault tolerance/load balancing
enabled and disabled

• Nimbus automatically schedules
computations away from slow
nodes and recovers from node
failures

0 20 40 60
Time (minute)

0

200

400

It
e
ra

ti
o
n

 N
u

m
b

e
r Enabled

Disabled

rewind from checkpoint
checkpoint

checkpoint
one node fails

one node straggles

Summary

• Nimbus is an open-source software framework for automatically distributing
Eulerian and hybrid simulations on computing cloud nodes
- Job management, data communication, execution consistency, load balancing, recovery
- Designed for use with existing simulation libraries

• Nimbus runs higher detail simulations faster

• Key-value stores have dominated distributed systems for 20 years, distributed
graphics systems should instead rely on geometry
- Geometry is concise, defines partitioning as well as locality
- In Nimbus, geometry is what allows driver program to map to translation cache

• Motivates new distributed graphics simulation methods that scale

https://nimbus.stanford.edu

Students

Omid Chinmayee Hang Andrew

Questions

Scalability

• 10243 PhysBAM water simulation (largest ever?)

• 64 nodes (512 cores)

• 15% slower than hand-tuned PhysBAM MPI libraries

0 20 40
Iteration tiPe (s)

03I

1iPbus

12.4 19.3 31.7

12.2 19.4 4.9 36.5

CoPputation CoPPunication Controller

Data Analytics and HPC

Data Analytics HPC

MPI

Spark

Per-task dispatch
Centralized, dynamic
Explicit data model

Program Flow
Distributed, static

Implicit data model

Data Analytics and HPC

Data Analytics HPC

MPI

Spark

Per-task dispatch
Centralized, dynamic
Explicit data model

Program Flow
Distributed, static

Implicit data model

TensorFlow

Data Flow
Distributed, static
Explicit data model

Data Analytics and HPC

Data Analytics HPC

MPI

Spark

Per-task dispatch
Centralized, dynamic
Explicit data model

Program Flow
Distributed, static

Implicit data model

TensorFlow

Data Flow
Distributed, static
Explicit data model

Legion

Per-task dispatch
Distributed, static
Explicit data model

Data Analytics Systems

• A centralized controller node schedules and
dispatches tasks to worker nodes
- Tasks load data as needed (try to send tasks to nodes

that have data locally)
- Scheduler can move computations from slow nodes,

recover system from failures
- Much simpler to program than HPC

• Key-value data model, keys hashed to nodes
- Two types of operators: narrow (read one key) and wide

(read all keys)

Controller

Workers

16

12

96

68

81

33

29

74

22

34

18

3

99

45

SIGGRAPH 2012

• My first SIGGRAPH!
- Most fun ACM conference: I mean, you can buy Magic cards

• VDB: super-interesting and sophisticated data structures

• But, every paper and system essentially runs on a single machine

• Large-scale distributed data analytics all the rage in systems research
- Write a complex program, framework automatically handles all of the hard systems problems,

such as data transfer, load balancing, fault recovery

• Pixar's "Brave FX: River Running Through It" talk used Ron's PhysBAM

• Lightbulb: Let's take PhysBAM and run it in the cloud!

What's Hard and Why
• Simulations have much more complex data models and operations

- Geometric stencils, Eulerian, semi-Lagrangian, projection
- MAC grids (cell-centered and face-centered), particles, boundary conditions
- Not just wide or narrow: (3d-1)-to-1, 1-to-(3d-1), 1-to-all, all-to-1

• Units of transfer and operation are different
- Simulations see data in terms of large, contiguous regions (slices/partitions), networked system

needs to be able to name and transfer only boundaries (ghost cells)

• Simulations are compute-bound: fast in comparison to data analytics
- CPU-bound, not I/O bound, so executes orders of magnitude more tasks/second

• Challenge: need a data model that allows the central controller to quickly and
correctly manage execution across hundreds/thousands of cores

Geometric Layer

• Variables are defined over the geometric domain with a partitioning and ghost
cell width

• Sequential program makes simulation library calls on geometric regions

parallel {
 apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
 apply(advect, {vel, rread_bb}, {vel, rwrite_bb});
}

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

Geometric Layer

• Variables are defined over the geometric domain with a partitioning and ghost
cell width

• Sequential program makes simulation library calls on geometric regions

parallel {
 apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
 apply(advect, {vel, rread_bb}, {vel, rwrite_bb});
}

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

Logical Layer

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

parallel {
 apply(advect, read:{A, B, C}, write:{A, B});
 apply(advect, read:{B, C, D}, write:{C, D});
}

• Variables are defined as disjoint geometric partitions (shared memory)

• Every logical object has a read/write order, with a linear write order

• Launcher translates geometric calls into logical calls

Logical Layer

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

parallel {
 apply(advect, read:{A, B, C}, write:{A, B});
 apply(advect, read:{B, C, D}, write:{C, D});
}

• Variables are defined as disjoint geometric partitions (shared memory)

• Every logical object has a read/write order, with a linear write order

• Launcher translates geometric calls into logical calls

Physical Layer

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

apply(advect, read:{1, 2, 3}, write:{1, 2});
network_copy(from:2, to:4);

• Variables are memory objects that reside on specific worker nodes
- Logical object with an associated version number (incremented on each write)
- One-to-many logical-to-physical mapping

• Central controller transforms logical program into operations on nodes

apply(advect, read:{4, 5, 6}, write:{5, 6});
network_copy(from:5, to:3);

Physical Layer

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

apply(advect, read:{1, 2, 3}, write:{1, 2});
network_copy(from:2, to:4);

apply(advect, read:{4, 5, 6}, write:{5, 6});
network_copy(from:5, to:3);

• Variables are memory objects that reside on specific worker nodes
- Logical object with an associated version number (incremented on each write)
- One-to-many logical-to-physical mapping

• Central controller transforms logical program into operations on nodes

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read

Write

Write

Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

• Variables are the native data objects of the simulation library

• Translator copies between simulation and physical to maintain consistency

advect(sim.velocity); advect(sim.velocity);

Application Layer

Driver node

Central Controller

Worker nodes

Geometric

Logical

Physical

Application Application Application Application Application Application Application Application

Program Representations
parallel {
 apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
 apply(advect, {vel, rread_bb}, {vel, rwrite_bb});
}

parallel {
 apply(advect, read:{A, B, C}, write:{A, B});
 apply(advect, read:{B, C, D}, write:{C, D});
}

advect(velocity); advect(velocity); advect(velocity); advect(velocity); advect(velocity); advect(velocity); advect(velocity); advect(velocity);

apply(advect, read:{1, 2, 3}, write:{1, 2});
network_copy(from:2, to:4);

apply(advect, read:{4, 5, 6}, write:{5, 6});
network_copy(from:5, to:3);

Optimized Program Flow

Driver node

Central Controller

Worker nodes

Geometric

Optimized Program Flow

Driver node

Central Controller

Worker nodes

Geometric

instantiate
template

Optimized Program Flow

Driver node

Central Controller

Worker nodes

Geometric

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

Optimized Program Flow

Driver node

Central Controller

Worker nodes

Geometric

1000s of
tasks

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

instantiate
template

1000s of
tasks

1000s of
tasks

1000s of
tasks

1000s of
tasks

1000s of
tasks

1000s of
tasks

1000s of
tasks

