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Low Power Wireless Link
Performance Is Poor

 Protocols for sensor networks are carefully designed
and heavily simulated

e Packet yield in real deployments is low:
- Volcano Study: 68% [ESWN 05]
— Great Duck Island: 58% [SenSys 04]
- Redwood Study: 40% [SenSys 05]
- Potato Agriculture Study: 2% [WPDRTS 06]

e | ow packet yield leads to loss of information from
networks




Wireless Link Simulation

e Analytical Models

- For example, Path Loss and Shadowing Model
[ICEE 06]

- Many assume packet reception independence
e Empirical Models

- Packet receptions and losses are not temporally
Independent

- Noise+Interference modeled using CPM [IPSN 07]



TOSSIM 2.0.1 (2007)

e Closest Fit Pattern Matching (CPM):

- (1) Pre-process an experimental noise trace:
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HyungJune Lee, Alberto Cerpa, and Philip Levis,
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- (2) Take k values from experiment; then sample
PMF: 0l2]2 ol2]2]0 ol2[2]0]0

e Signal power given by constant link gain value. 5



Reasons for Packet Reception

Correlation
Noise+Interference in environment is correlated
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Physically Modeling Signal Power

e ldea: Collect a signal power trace and use CPM to
model signal power.

e Collecting power traces is more complex than collecting
noise traces, since:

- Signal power is a property of a pair of nodes in the
network

- Signal power can only be approximated by sampling
the RSSI register, which actually reports
signal+noise, where wave phases are considered

- If a packet is lost in transmission, then even the
RSSI estimate is not possible.



Contributions

e We suggest solutions to major challenges in modeling
signal power:

— Correcting for phase

- Two algorithms for extrapolating from lossy traces:
Average Value and Expected Value

e Qur algorithms improve simulation substantially:
- PRR simulated to within 22% absolute difference

- Methods reduce KW distance of simulations by 66%
compared to current approaches



Introduction

Phase correction and signal extrapolation
Validation and Evaluation

Conclusion



Converting RSSI Readings to Signal
Power

e Phase assumption used to correct RSSI reading:
— In phase signal power and noise

- Out of phase signal power and noise

- Neutral phase: assumes net phases cancel out

e These assumptions are simplifications to reality. o



Algorithm for Filling-In Lossy Signal
Power Links

e Two algorithms suggested:
- Fill in average value for all missing values

- Compute expected distribution of missing signal
power values over the whole trace and then sample
the distribution

11



Average Value Filling-In Algorithm

Lossy Signal Power (dBm) =
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Average Value Filling-In Algorithm

Lossy Signal Power (dBm) =

Average Signal Power
(Rounded to Integer) -84
(dBm) = 3
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Average Value Filling-In Algorithm

Lossy Signal Power (dBm) =

Average Signal Power
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Expected Value PMF Filling-In
Algorithm

Average Noise (dBm) = -90
Lossy Signal Power (dBm) =

<2 KR 7 o5
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Expected Value PMF Filling-In
Algorithm

Average Noise (dBm) = -90
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Expected Value PMF Filling-In
Algorithm

Average Noise (dBm) = -90
Lossy Signal Power (dBm) =

<2 KR 7 o5

* SO =
SNR(@B)= 8 3 5 4 8

ket |

R ti
ot o . 0:99 0.1 0.4 0.2 0.99

17



Expected Value PMF Filling-In

Algorithm (continued)
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Expected Value PMF Filling-In

Algorithm (continued)
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Expected Value PMF Filling-In
Algorithm (continued)
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Expected Value PMF Filling-In
Algorithm (continued)
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Expected Value PMF Filling-In
Algorithm (continued)
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Expected Value PMF Filling-In
Algorithm (continued)
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Validation

Goal is to correctly simulate a particular link between
to nodes

It Is possible to use experiments to validate this
simulation method

Conducted packet delivery experiments at 4 Hz for 12
hours at various locations on the Cornell University
Campus.

4 Hz frequency chosen as a baseline: future work will
investigate different collection frequencies and the

Impacts on the results. oe
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Evaluation Criteria

e Packet Reception Rate (PRR)

- First order parameter, difficult to get right in general
wireless simulators

e Kantorovich-Wasserstein (KW) distance on Conditional
Packet Delivery Functions (CPDFs)

- Rigorous measure of the similarity between two
distributions, which places more emphasis on rare
rather than common case

— Captures packet burstiness at the level of individual
packets.
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PRR for Expected Value PMF

Algorithm

e Maximum absolute error bounded by 22%.
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PRR for Average Value Algorithm

e Maximum absolute error bounded by 28%.
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Conditional Packet Delivery Function
(CPDF)

e Considers the conditional packet reception rate
(CPRR) after streams of |x| consecutive receptions for

x < 0 or & consecutive failures for £ > 0.
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o Kantarovich-Wasserstien Distance measures differences
between distributions, including CPDFs. 30
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CPDF:

PRR = 82.5%

Real Signal

Power

TOSSIM
2.0.2

KW Distance = 0.09

1.00
0.80
0.60
0.40
0.20

0.00
-50 -40 30 20 -10 0 10
Successes Failures

1.00
0.80
0.60
0.40
0.20

0.00

-50 -40 30 20 -10 0 10
Successes Failures

CPRR

CPRR

32



CPDF: PRR = 82.5%

1.00
Real Signal 0.80
0.60
0.40
0.20

0.00
-50 -40 30 20 -10 0 10
Successes Failures

1.00
0.80

CPM+Expected 0.60

0.40
Value PMF 0.20

0.00

Power

CPRR

CPRR

-50 -40 30 20 -10 0 10
Successes Failures

KW Distance = 0.03



CPDF: PRR = 58.5%
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CPDF: PRR = 58.5%
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CPDF: PRR = 58.5%
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Conclusions and Future Work

KW distance < 0.1 for our experiments (substantially
reduced as compared to current methods)

PRR estimated to within 22% (typically to 10%)

As expected, different assumptions work more
effectively for different experiments.

Future work: Development of an automated
optimization layer to predict the most reasonable
assumptions for a given environment.

Future work: Investigate a signal power model that
considers burstiness at many time scales, not just that
of an individual packet. 38



Thank you.

Questions?

tr76@cornell.edu
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CPM Model for Trace Histories

e Scan noise trace, keeping a history of size k.

e For each signature of k prior noise readings, construct

the probability ¢

Istribution for the next reading.

HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.
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CPM Model for Trace Histories

e Scan noise trace, keeping a history of size k.

e For each signature of k prior noise readings, construct

the probability ¢

Istribution for the next reading.
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HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.
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CPM Sampling Demo
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HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.



CPM Sampling Demo
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HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.



CPM Sampling Demo
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HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.



CPM Sampling Demo
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HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.



CPM Sampling Demo
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HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.



CPM Sampling Result

e Modeled trace is not the same as the experimental
trace:

e This increases the randomness of simulation output and
thus decreases the predictability of the simulation.

 This allows for substantial representative simulation.

47

HyungJune Lee, Alberto Cerpa, and Philip Levis, "Improving Wireless Simulation Through Noise Modeling." In
Proceedings of the IPSN, 2007.
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