Investigating a Physically-Based Signal Power Model for Robust Low Power Wireless Link Simulation

TAL RUSAK

tr76@cornell.edu

Department of

Computer Science

Cornell University

PHILIP LEVIS

pal@cs.stanford.edu

Computer Systems

Laboratory

Stanford University

Outline

- Introduction
- Phase correction and signal extrapolation
- Validation and Evaluation
- Conclusion

Low Power Wireless Link Performance Is Poor

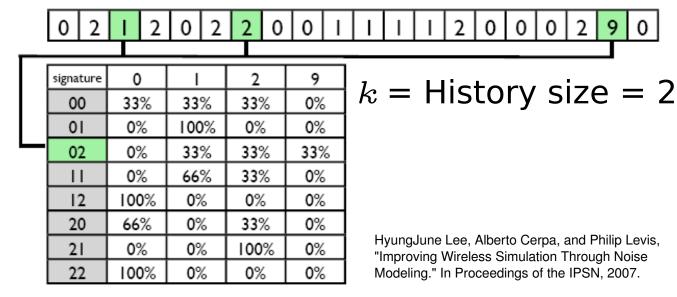
- Protocols for sensor networks are carefully designed and heavily simulated
- Packet yield in real deployments is low:
 - Volcano Study: 68% [ESWN 05]
 - Great Duck Island: 58% [SenSys 04]
 - Redwood Study: 40% [SenSys 05]
 - Potato Agriculture Study: 2% [WPDRTS 06]
- Low packet yield leads to loss of information from networks

Wireless Link Simulation

- Analytical Models
 - For example, Path Loss and Shadowing Model [ICEE 06]
 - Many assume packet reception independence
- Empirical Models
 - Packet receptions and losses are not temporally independent
 - Noise+Interference modeled using CPM [IPSN 07]

TOSSIM 2.0.1 (2007)

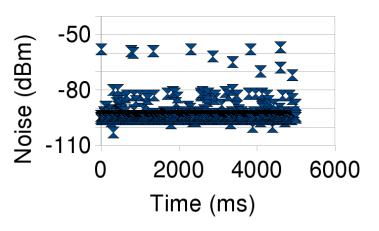
- Closest Fit Pattern Matching (CPM):
 - (1) Pre-process an experimental noise trace:

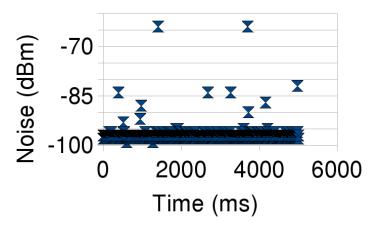


Signal power given by constant link gain value.

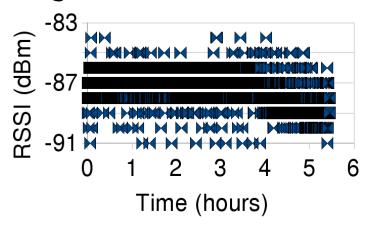
Reasons for Packet Reception Correlation

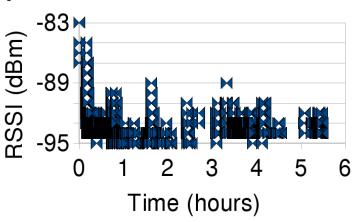
Noise+Interference in environment is correlated





Signal Power of successive packets is also correlated





Physically Modeling Signal Power

- Idea: Collect a signal power trace and use CPM to model signal power.
- Collecting power traces is more complex than collecting noise traces, since:
 - Signal power is a property of a pair of nodes in the network
 - Signal power can only be approximated by sampling the RSSI register, which actually reports signal+noise, where <u>wave phases</u> are considered
 - If a packet is lost in transmission, then even the RSSI estimate is not possible.

Contributions

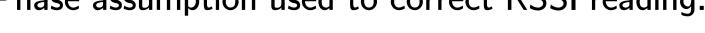
- We suggest solutions to major challenges in modeling signal power:
 - Correcting for phase
 - Two algorithms for extrapolating from lossy traces:
 Average Value and Expected Value
- Our algorithms improve simulation substantially:
 - PRR simulated to within 22% absolute difference
 - Methods reduce KW distance of simulations by 66% compared to current approaches

Outline

- Introduction
- Phase correction and signal extrapolation
- Validation and Evaluation
- Conclusion

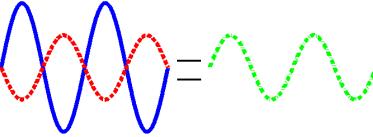
Converting RSSI Readings to Signal Power

Phase assumption used to correct RSSI reading:



- Out of phase signal power and noise

In phase signal power and noise



- Neutral phase: assumes net phases cancel out
- These assumptions are simplifications to reality.

Algorithm for Filling-In Lossy Signal Power Links

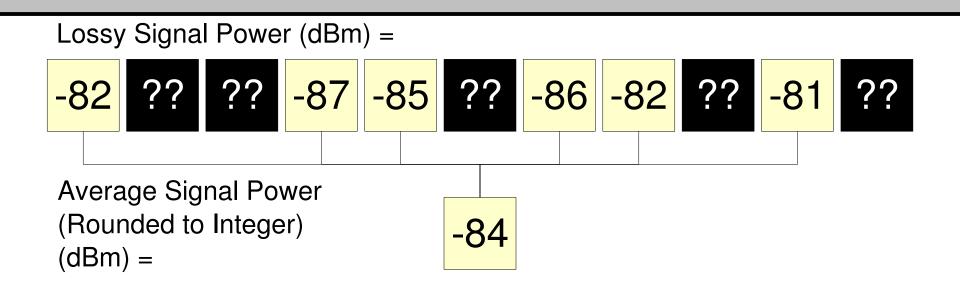
- Two algorithms suggested:
 - Fill in average value for all missing values
 - Compute expected distribution of missing signal power values over the whole trace and then sample the distribution

Average Value Filling-In Algorithm

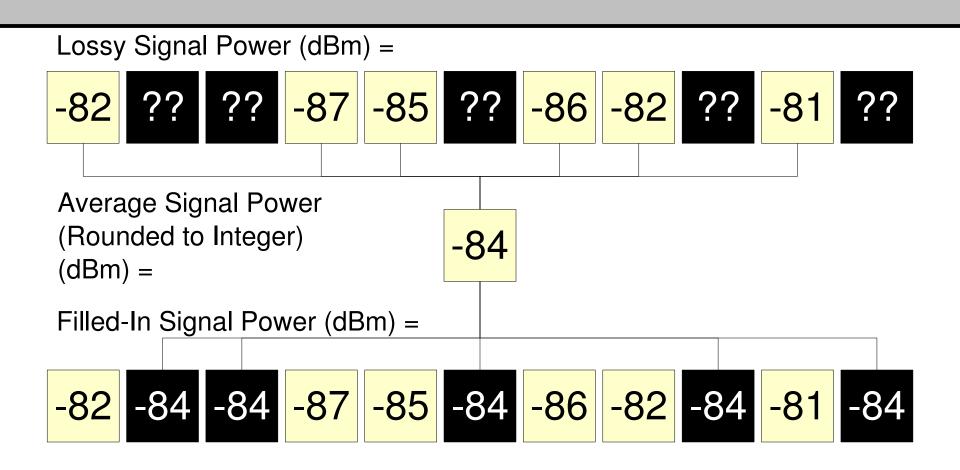
Lossy Signal Power (dBm) =

-82 **?? ??** -87 -85 **??** -86 -82 **??** -81 **??**

Average Value Filling-In Algorithm



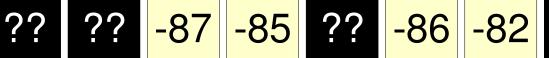
Average Value Filling-In Algorithm



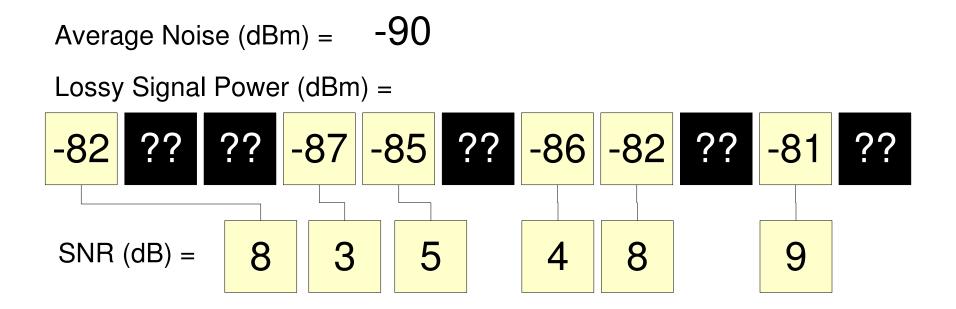
Expected Value PMF Filling-In Algorithm

-90 Average Noise (dBm) =

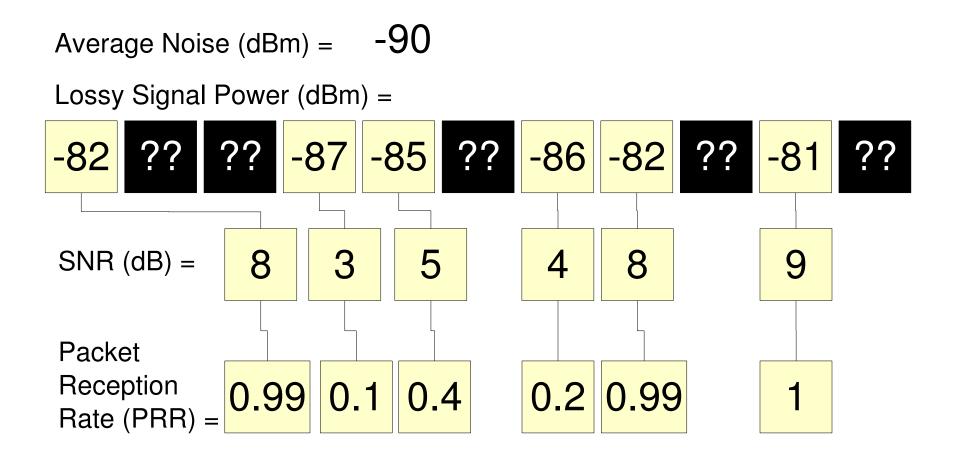
Lossy Signal Power (dBm) =



Expected Value PMF Filling-In Algorithm



Expected Value PMF Filling-In Algorithm



Packet Reception Rate (PRR) =

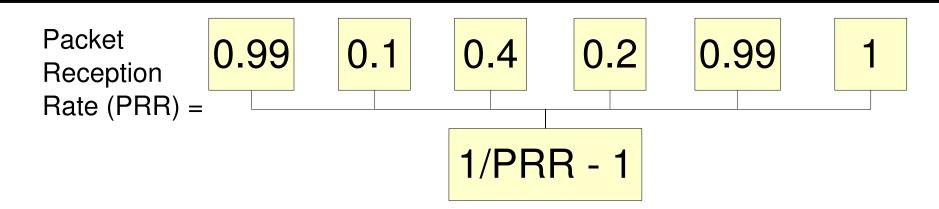
0.99

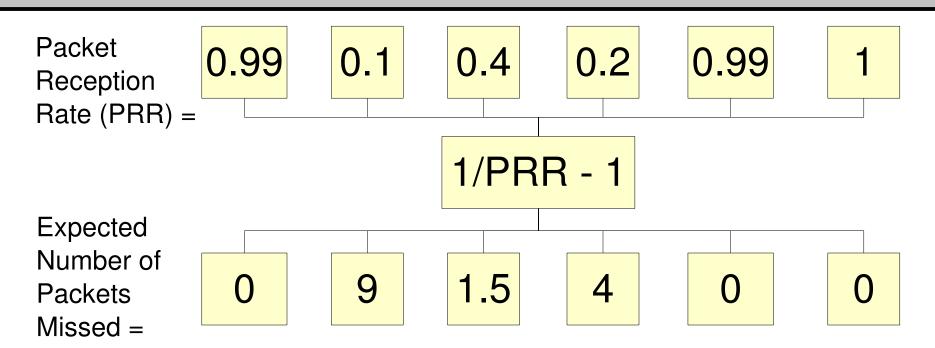
0.1

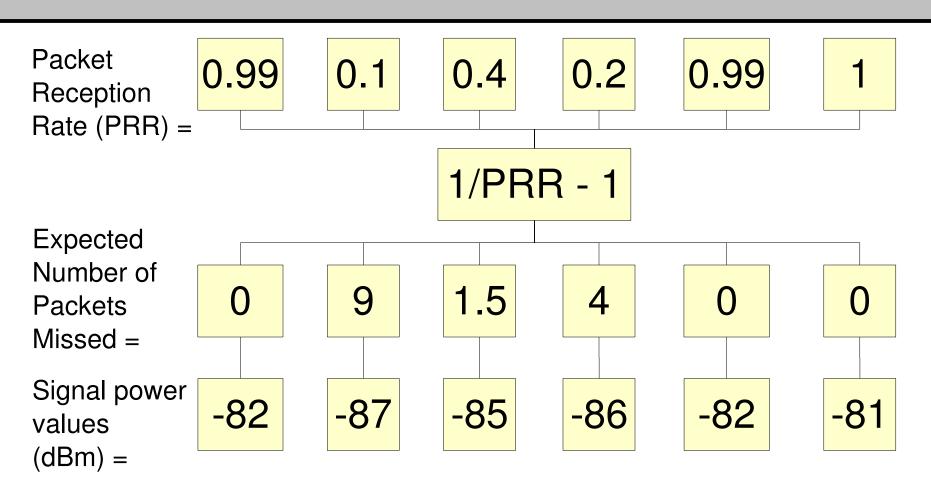
0.4

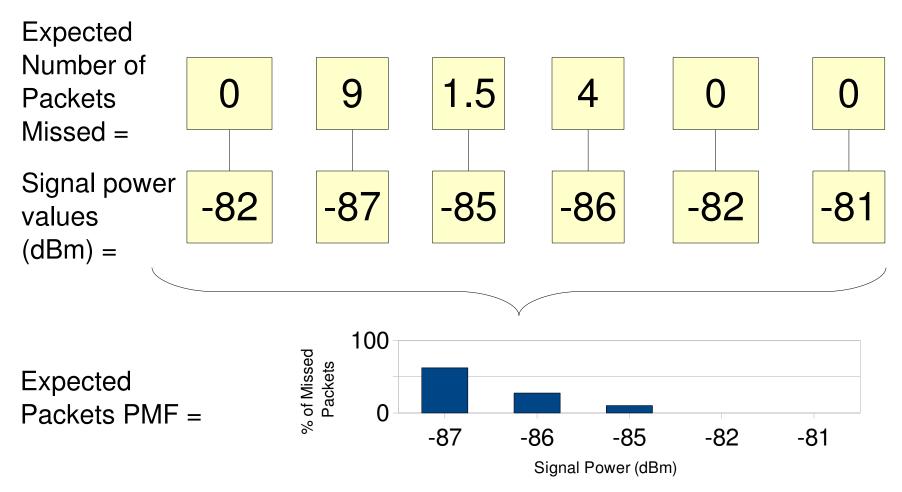
0.2

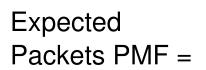
0.99

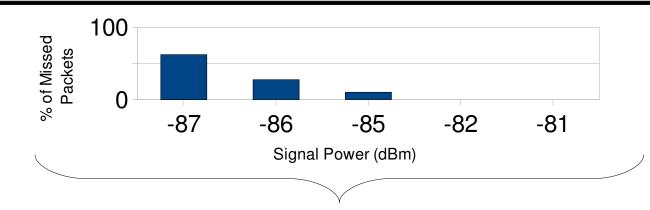












Filled-In Signal Power (dBm) =

-85 -87 -86 -82 -87 -81

Outline

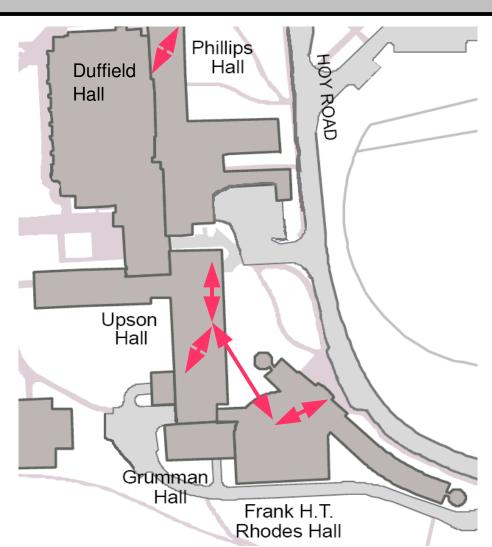
- Introduction
- Phase correction and signal extrapolation
- Validation and Evaluation
- Conclusion

Validation

- Goal is to correctly simulate a particular link between to nodes
- It is possible to use experiments to validate this simulation method

- Conducted packet delivery experiments at 4 Hz for 12 hours at various locations on the Cornell University Campus.
- 4 Hz frequency chosen as a baseline: future work will investigate different collection frequencies and the impacts on the results.

Experiment Locations

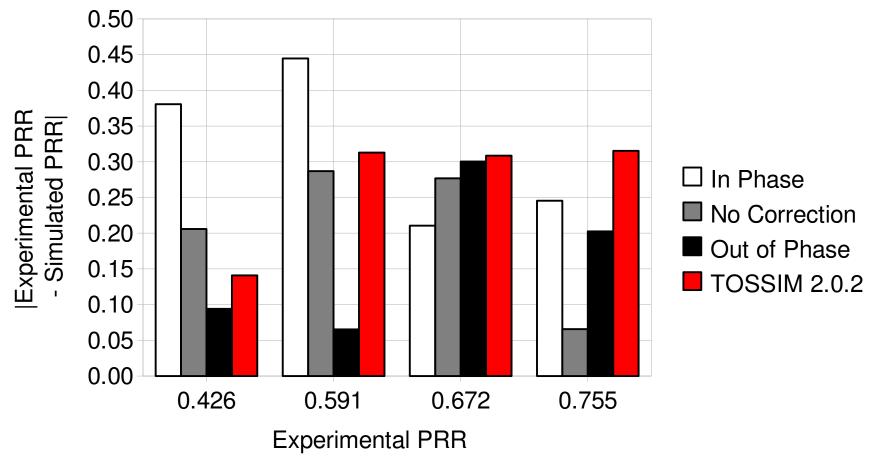


Evaluation Criteria

- Packet Reception Rate (PRR)
 - First order parameter, difficult to get right in general wireless simulators
- Kantorovich-Wasserstein (KW) distance on Conditional Packet Delivery Functions (CPDFs)
 - Rigorous measure of the similarity between two distributions, which places more emphasis on rare rather than common case
 - Captures packet burstiness at the level of individual packets.

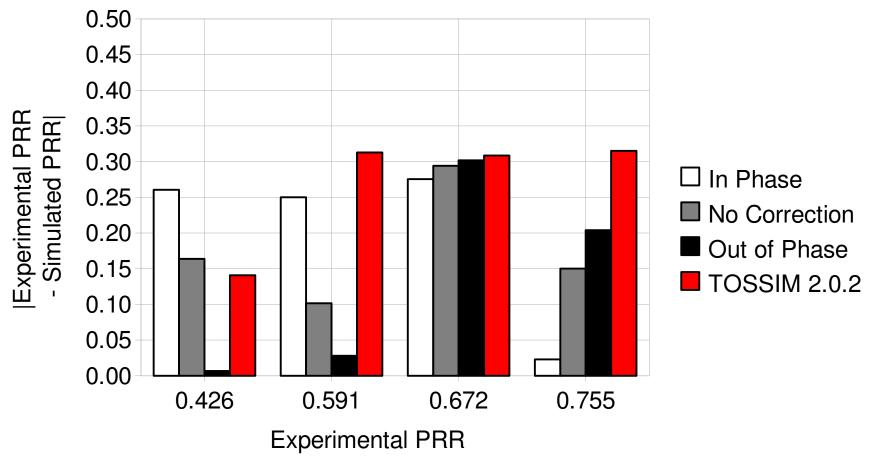
PRR for Expected Value PMF Algorithm

Maximum absolute error bounded by 22%.



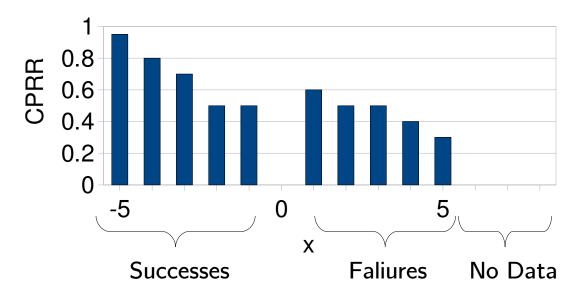
PRR for Average Value Algorithm

Maximum absolute error bounded by 28%.



Conditional Packet Delivery Function (CPDF)

• Considers the conditional packet reception rate (CPRR) after streams of |x| consecutive receptions for x < 0 or x consecutive failures for x > 0.

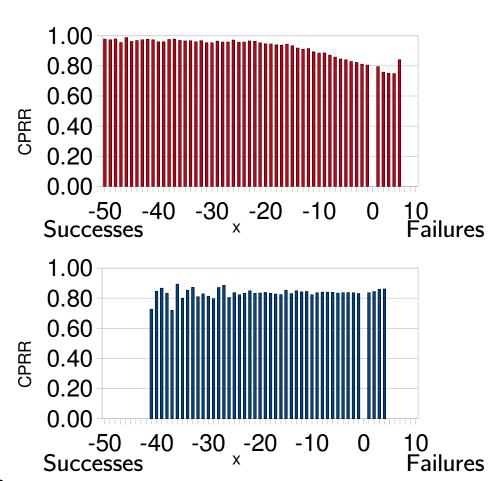


• Kantarovich-Wasserstien Distance measures differences between distributions, including CPDFs. 30

CPDF: PRR = 82.5%

Real Signal Power

Log Normal
Shadowing Model

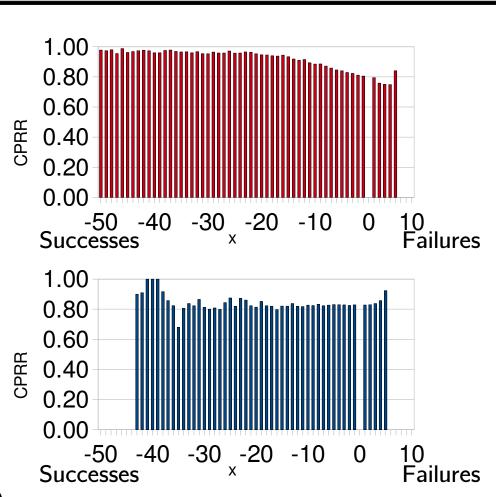


CPDF: PRR = 82.5%

Real Signal

Power

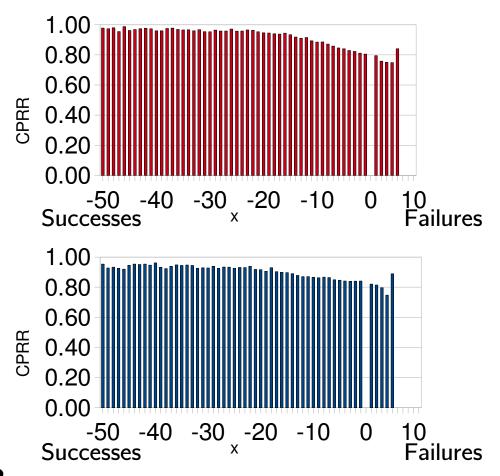
TOSSIM 2.0.2



CPDF: PRR = 82.5%

Real Signal Power

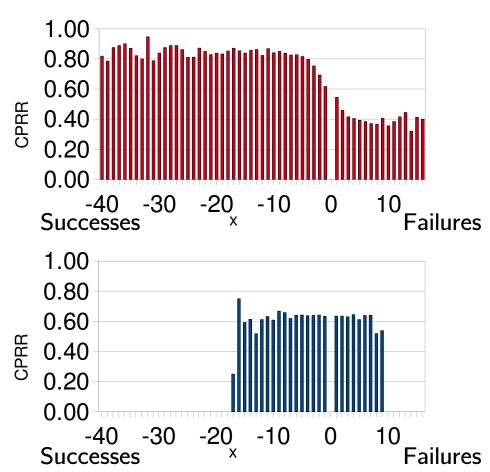
CPM+Expected Value PMF



CPDF: PRR = 58.5%

Real Signal Power

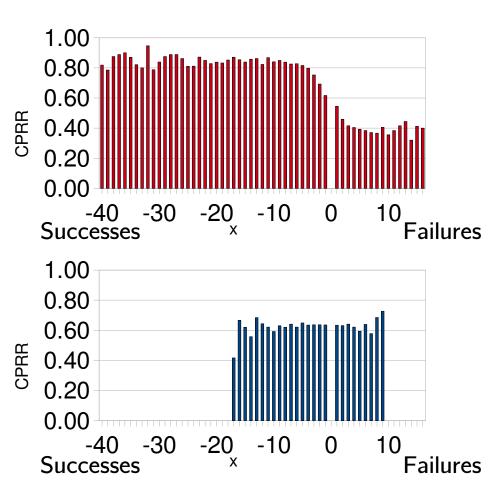
Log Normal
Shadowing Model



CPDF: PRR = 58.5%

Real Signal Power

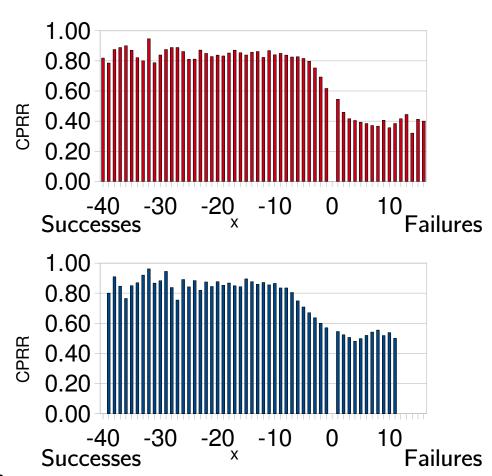
TOSSIM 2.0.2



CPDF: PRR = 58.5%

Real Signal Power

CPM+Expected Value PMF



Outline

- Introduction
- Phase correction and signal extrapolation
- Validation and Evaluation
- Conclusion

Conclusions and Future Work

- KW distance < 0.1 for our experiments (substantially reduced as compared to current methods)
- PRR estimated to within 22% (typically to 10%)
- As expected, different assumptions work more effectively for different experiments.
- Future work: Development of an automated optimization layer to predict the most reasonable assumptions for a given environment.
- Future work: Investigate a signal power model that considers burstiness at many time scales, not just that of an individual packet.

Thank you.

Questions?

tr76@cornell.edu

CPM Model for Trace Histories

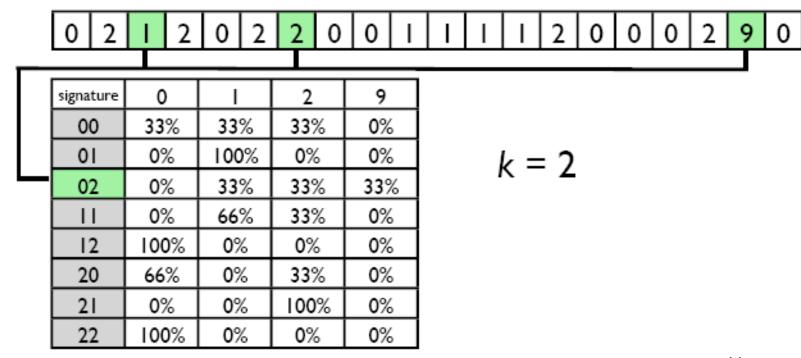
- Scan noise trace, keeping a history of size k.
- For each signature of *k* prior noise readings, construct the probability distribution for the next reading.

signature	0	I	2	9
00	33%	33%	33%	0%
01	0%	100%	0%	0%
02	0%	33%	33%	33%
- 11	0%	66%	33%	0%
12	100%	0%	0%	0%
20	66%	0%	33%	0%
21	0%	0%	100%	0%
22	100%	0%	0%	0%

$$k = 2$$

CPM Model for Trace Histories

- Scan noise trace, keeping a history of size k.
- For each signature of *k* prior noise readings, construct the probability distribution for the next reading.



0	2				
---	---	--	--	--	--

signature	0	I	2	9
00	33%	33%	33%	0%
01	0%	100%	0%	0%
02	0%	33%	33%	33%
- 11	0%	66%	33%	0%
12	100%	0%	0%	0%
20	66%	0%	33%	0%
21	0%	0%	100%	0%
22	100%	0%	0%	0%

$$k = 2$$

0 2	2			
-----	---	--	--	--

signature	0	I	2	9
00	33%	33%	33%	0%
01	0%	100%	0%	0%
02	0%	33%	33%	33%
- 11	0%	66%	33%	0%
12	100%	0%	0%	0%
20	66%	0%	33%	0%
21	0%	0%	100%	0%
22	100%	0%	0%	0%

0 2 2	0		
-------	---	--	--

signature	0	I	2	9
00	33%	33%	33%	0%
01	0%	100%	0%	0%
02	0%	33%	33%	33%
Ш	0%	66%	33%	0%
12	100%	0%	0%	0%
20	66%	0%	33%	0%
21	0%	0%	100%	0%
22	100%	0%	0%	0%

$$k = 2$$

0 2	2	0	0	
-----	---	---	---	--

signature	0	I	2	9
00	33%	33%	33%	0%
01	0%	100%	0%	0%
02	0%	33%	33%	33%
- 11	0%	66%	33%	0%
12	100%	0%	0%	0%
20	66%	0%	33%	0%
21	0%	0%	100%	0%
22	100%	0%	0%	0%

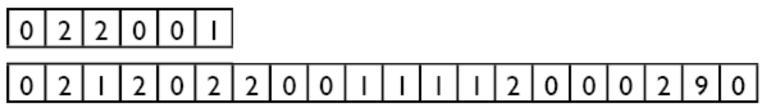
0	2	2	0	0	1
---	---	---	---	---	---

signature	0	I	2	9
00	33%	33%	33%	0%
01	0%	100%	0%	0%
02	0%	33%	33%	33%
- 11	0%	66%	33%	0%
12	100%	0%	0%	0%
20	66%	0%	33%	0%
21	0%	0%	100%	0%
22	100%	0%	0%	0%

$$k = 2$$

CPM Sampling Result

Modeled trace is not the same as the experimental trace:



- This increases the randomness of simulation output and thus decreases the predictability of the simulation.
- This allows for substantial representative simulation.