
Trust but Verify: Auditing the Secure
Internet of Things

Judson Wilson*, Riad S. Wahby, Henry Corrigan-Gibbs,
Dan Boneh, Philip Levis, Keith Winstein

Stanford University

*Currently working at Google. The views expressed are personal opinions of the authors, not of Google.

pillow
bulb
light

security system assistant

doorbell

hair brush

bl
in

ds

recycling
assistant

cameratoothbrush

vent controller

Today, we have millions of smart devices in our homes:

air purifier bed

belt

bi
ke

 lo
ck

door lock

fragrance appliance

irrigation system

ov
en

refrigerator

smoke detector table

thermostat

lawn
 mower

m
irr

or

Do you know what your devices
 are saying about you?

IoT devices typically talk to a service in the cloud*:

and a vendor controls the software in both the device and the cloud service.

Vendor Control

Vendor Control

 *Grover, Feamster. “The Internet of Unpatched Things,” PrivacyCon ’16.

Recommended: Secure Communications*

● TLS encrypts traffic to prevent attackers from observing traffic plaintext.
● TLS also prevents device owners from seeing what private data

leaves their home.

TLS

Vendor Control

*OWASP. “Manufacturer IoT Security Guidance.” https://www.owasp.org/index.php/IoT_Security_Guidance

How might vendors with good intentions allow
 device owners to audit their own devices’

communications, while maintaining security?

The Goal

Conceptual auditing system sketch:

TLS

LAN Internet

Conceptual auditing system sketch:

TLS

Auditor

● “Auditors” on LAN collect ciphertext packets, somehow decrypt them.

LAN Internet

Technical Summary
We introduce and evaluate TLS-RaR, a protocol which ensures:
● Robust, delayed auditing of secure, TLS communication

Technical Summary
We introduce and evaluate TLS-RaR, a protocol which ensures:
● Robust, delayed auditing of secure, TLS communication

TLS-RaR targets adoptability by:
● Preserving wire-format and server side TLS implementation
● Ensuring tamper-proof communication

Technical Summary
We introduce and evaluate TLS-RaR, a protocol which ensures:
● Robust, delayed auditing of secure, TLS communication

TLS-RaR targets adoptability by:
● Preserving wire-format and server side TLS implementation
● Ensuring tamper-proof communication

TLS-RaR works by:
● Using built in mechanisms to rotate keys
● New concepts: “Authenticated Key-Retirement ACK” and “Sealed-History Key

Release” enable decryption of traffic before the most recently ACKed rotation.

Overview
● Introduction
● Problem Description
● Technical Summary
● Requirements
● Threat Model
● Straw Man Solutions
● Proposed Solution: TLS-RaR
● Evaluation
● Conclusion

Requirements and Threat Model

Auditing system requirements:
Security:

1. Past auditability: Ensure auditors can decrypt past traffic (or report FAIL).

2. Audit robustness: Ensure auditors can verify correctness of their audits.

Auditing system requirements:
Security:

1. Past auditability: Ensure auditors can decrypt past traffic (or report FAIL).

2. Audit robustness: Ensure auditors can verify correctness of their audits.

3. Present moment integrity: Ensure device/server end-to-end integrity.
○ Prevent tampering with data, billing information, etc.
○ Prevent cloud API and device hacking, repurposing subsidized devices, etc.

Auditing system requirements:
Security:

1. Past auditability: Ensure auditors can decrypt past traffic (or report FAIL).

2. Audit robustness: Ensure auditors can verify correctness of their audits.

3. Present moment integrity: Ensure device/server end-to-end integrity.
○ Prevent tampering with data, billing information, etc.
○ Prevent cloud API and device hacking, repurposing subsidized devices, etc.

Deployment:

4. TLS compatibility: Maintain standard TLS wire format and server
 implementation.

○ Ensure compatibility with TLS termination proxies, accelerators, load balancers, cloud
services, etc.

Threat Model Summary
● Standard TLS threats

○ (except trusted auditors can see plaintext)

● Auditors or endpoints may try to sidestep the security requirements, i.e.
○ either may attempt to fool an auditor into reporting incorrect output, or
○ auditors may attempt to tamper with traffic.

Threat Model Summary
● Standard TLS threats

○ (except trusted auditors can see plaintext)

● Auditors or endpoints may try to sidestep the security requirements, i.e.
○ either may attempt to fool an auditor into reporting incorrect output, or
○ auditors may attempt to tamper with traffic.

Out of scope:
● Denial of Service
● Covert channel attacks: hiding information in other layers to evade audit

○ e.g. steganography, double encryption, packet timing.
○ (Problem exists even when auditing plaintext communication.)

Straw Man Solutions

Straw Man (in-the-Middle) Solution:

Traditional devices support trusting a TLS man-in-the-middle* by installing a
root certificate to bypass authentication. IoT devices typically DO NOT!

Advantages: Simple, effective.

TLS TLS

Man-In-The-Middle
Middlebox

*Huang et al. Analyzing forged SSL certicates in the wild. SP '14.

Straw Man (in-the-Middle) Solution:

Traditional devices support trusting a TLS man-in-the-middle* by installing a
root certificate to bypass authentication. IoT devices typically DO NOT!

Advantages: Simple, effective.

Problem: No end-to-end integrity! Broken authentication!

TLS TLS

Man-In-The-Middle
Middlebox

*Huang et al. Analyzing forged SSL certicates in the wild. SP '14.

Straw Man Solution: different protocols

Other protocols, such as mcTLS [1], satisfy different requirements.

Advantages: Already exist. Can audit data before relaying it. (Others…)

mcTLS
Read-Only Middlebox

*Naylor et al. Multi-context TLS (mcTLS): Enabling secure in-network functionality in TLS. SIGCOMM '15.

Straw Man Solution: different protocols

Other protocols, such as mcTLS [1], satisfy different requirements.

Advantages: Already exist. Can audit data before relaying it. (Others…)

Problems: Different wire format. Not compatible with existing data centers.

mcTLS

*Naylor et al. Multi-context TLS (mcTLS): Enabling secure in-network functionality in TLS. SIGCOMM '15.

Read-Only Middlebox

Proposed Solution:
TLS-Rotate and Release (TLS-RaR)

TLS-Rotate and Release (TLS-RaR)
TLDR:

When it is time to audit past traffic,

1) the IoT device rotates traffic keys.

Once the device verifies rotation is complete,*

2) the IoT device securely* releases previous traffic keys to auditors.

* Performing these steps securely is NOT trivial.

Let’s look at this...

Life of a typical TLS Connection

time

Life of a typical TLS Connection

time

TCP SYN
(Open Transport)

Life of a typical TLS Connection

time
SYN

TCP
TLS

Handshake

TLS with Rotate and Release

time
SYN

TCP
Handshake

Key Rotation
Reconnect (TCP+TLS)

Renegotiate (TLS <= 1.2)
Resume (TLS <= 1.2)
KeyUpdate (TLS 1.3)

TLS

TLS with Rotate and Release

time
Key RotationN N+1TrafficN TrafficN+1

“Epoch N” “Epoch N+1”

TLS with Rotate and Release

time

NTrafficN
Key Rotation N+1TrafficN+1

“Epoch N” “Epoch N+1”“auth-ack”

TLS with Rotate and Release

time

“auth-ack”

NTrafficN
Key Rotation N+1TrafficN+1

N, TrafficN Hashes, Signature

To Auditors
(via separate secure channels)

Delayed “Sealed-History Key Release” of Epoch N:

“Epoch N”

Evaluation

Evaluation Summary - See Paper for Details

To evaluate TLS-RaR, we:

1. Implemented TLS-RaR In our own ARM-based IoT device, as well as an
auditor and server software stack.

2. Evaluated the relative performance costs of TLS-RaR on the IoT device.

3. Probed the Alexa Top 1,000,00 Sites* to assess server compatibility.

4. Observed the traffic patterns of several off-the-shelf devices to reason about
feasibility.

*Top 1,000,000 sites (updated daily). Alexa Internet Inc.
 http://s3:amazonaws:com/alexa-static/top-1m:csv:zip. Accessed: 2016-01-18.

Conclusions
● Auditing IoT communication is important, but security prevents it.

● TLS-RaR allows read-only auditing of secured communication, and has these
useful properties:
○ Auditors see the exact plaintext encrypted by TLS (or report failure).
○ The format of TLS on the wire is not changed.
○ No TLS-layer changes are required for some servers.

 (Likely improved compatibility once TLS 1.3 rolls out.)
○ Only minimal changes to OpenSSL are required on the device.

Contact: Judson Wilson <judsonw@cs.stanford.edu>

Backup Slides

Potential vendor & consumer concerns:
● Maintain privacy.

○ Don’t introduce mechanisms for unauthorized snooping.

● Prevent communications tampering.
○ No device control takeover (e.g. unlocking your front door).
○ No cloud API hacking.
○ No falsifying data (e.g. billing data, software updates)
○ No unintended use of subsidized devices.
○ …

● Don’t change lower layers of cloud service.
○ Maintain compatibility with TLS accelerator boxes, load balancers and reverse proxies.
○ Different layers on different physical devices - maintain separation of concerns.
○ Much of this may be provided by cloud provider, out of vendor’s control.

while device vendors can be sure:

● end-to-end integrity is preserved,
● the TLS wire format is unchanged,
● and their TLS terminators, load balancers, and web servers are unchanged.

Introducing TLS-Rotate and Release (TLS-RaR)
Using built-in features of TLS to rotate keys, and a secure delayed key-release
procedure, device owners can receive keys to:

● audit plaintext of past TLS communications

Vital: Authenticated Acknowledgement (Auth-Ack)
Before releasing keys to auditors, IoT devices MUST wait for an authenticated
message from the server acknowledging it has rotated keys, otherwise:

1) Malicious auditor can spoof message indicating rotation is complete.
2) Malicious auditor receives keys which it can then use to spoof TLS records to

the server, breaking integrity requirements.

TCP FIN, RST, ACK, etc. are NOT authenticated. Must use TLS layer (and above).

Auth-Ack Mechanisms

Rotation Method Auth-Ack methods

Reconnect CLOSE_NOTIFY*

Renegotiation Built-in

Resume Heartbeat or app. request/response (HTTP OPTIONS)

KeyUpdate Heartbeat or app. request/response (HTTP OPTIONS)

* Implementation dependent.

Evaluation Platform
Temperature Sensing Evaluation-Device

- Raspberry Pi 3 B (ARM, 4 cores)
- OpenSSL

- Added: key exporting callback

- Custom C Application

Auditor (Desktop PC)
- tshark (modified to import released keys)
- Python scripts for verification

Web Server (Desktop PC)
- Python Twisted ReactorAuditor Server

App.

Desktop PCRaspberry
Pi

ethernet
App.

Takeaway:
 Hashing cost (for sealed-history key release) is a significant but modest portion
of ongoing TLS CPU cost.

Evaluation-Device Performance Measurements

Ongoing Encryption Overhead:

Takeaway:
 Rotation + release using Resume consumes as much CPU as encrypting,
hashing and sending approximately 160kB of plaintext. KeyUpdate should be
similar. Renegotiate is approximately 25 times more expensive.

Evaluation-Device Performance Measurements

Per-Rotation Overhead:Ongoing Encryption Overhead:

Server Compatibility Survey
We surveyed servers in the Alexa Top 1,000,000 sites that support long-lived
HTTPS connections to see which features they support:

We believe servers using TLS 1.3 in the future will widely support KeyUpdate.
It is a standard part of the RFC draft 19 standard that is simple, light weight, and
enhances security.

*Top 1,000,000 sites (updated daily). Alexa Internet Inc.
 http://s3:amazonaws:com/alexa-static/top-1m:csv:zip. Accessed: 2016-01-18.

