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The story so far...

Mobicom’ 1 OL!l:

Antenna Cancellation + other techniques

[1] Choi et al.“Achieving single channel, full duplex wireless communication”,
Mobicom 2010



The story so far...

Mobicom’ 1 OL!l:

Antenna Cancellation + other techniques
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* Frequency dependent, narrowband

* Requires manual tuning

* Two transmit antennas cause complex far-field behavior



Contributions

* New full-duplex radio design: signal inversion cancellation
* Wideband, frequency independent
* Adaptive
* One transmit antenna design

* Real-time full-duplex MAC layer implementation

* Show MAC layer gains with full-duplex
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The challenge of full-duplex

> Very strong self-interference: ~70dB for 802.1 |
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The challenge of full-duplex

> Very strong self-interference: ~70dB for 802.1 |

Node I Node 2
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Combine RF and digital techniques for cancellation
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Cancellation using Phase Offset
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Cancellation using Signal Inversion
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BALUN : Balanced to Unbalanced Conversion



BALUN : Balanced to Unbalanced Conversion
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Over the air

RF Frontend

X - RX
& attenuation and delay
A fy > 2
\ VY YY VY
Xt 1
TX RX

RF Frontend




Signal Inversion Cancellation

Over the air
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Signal Inversion Cancellation:Wideband Evaluation

e Measure wideband cancellation
* Wired experiments

e 240MHz chirp at 2.4GHz to measure response
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Received signal (dBm)
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~50dB cancellation at 20MHz bandwidth with balun vs ~38dB with
phase offset cancellation.

Significant improvement in wideband cancellation
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Other advantages

TX RX
N
Attenuator and (S
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* From 3 antennas per node to 2 antennas

* Parameters adjustable with changing conditions

21



Talk Outline

RF Design using Signal Inversion: ~50dB for 20Mhz
Adaptive RF Cancellation

System Performance

Implications to Wireless Networks

Open Questions
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Adaptive RF Cancellation
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® Need to match self-interference power and delay

® (Can’t use digital samples: Saturated ADC



Adaptive RF Cancellation

X RX
'
RF Reference )
> Attenuation >[5 |
& Delay R
TBEﬂUn I'| RF Cancellation
Wireless Wireless
Transmitter Receiver

== TX Signal Path

® Need to match self-interference power and delay

® (Can’t use digital samples: Saturated ADC

RSSI : Received Signal Strength Indicator

= RX Signal Path
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Adaptive RF Cancellation

X RX
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Control

RF Reference Feedback
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#
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TBaIun I-I RF Cancellation

Wireless Wireless
Transmitter Receiver

== TX Signal Path = RX Signal Path

® Need to match self-interference power and delay

® (Can’t use digital samples: Saturated ADC

Use RSSI as an indicator of self-interference
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Objective: Minimize received power

Control variables: Delay and Attenuation
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Objective: Minimize received power

Control variables: Delay and Attenuation
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Objective: Minimize received power

Control variables: Delay and Attenuation

-> Simple gradient descent approach to optimize



Off-the-shelf electronically tunable hardware
approximation: QHx220 noise canceler
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Off-the-shelf electronically tunable hardware
approximation: QHx220 noise canceler
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Off-the-shelf electronically tunable hardware
approximation: QHx220 noise canceler

550
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Typical convergence within 8-15 iterations (~Ims total)
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Talk Outline

RF Design using Signal Inversion: ~50dB for 20Mhz
Adaptive RF Cancellation: ~I ms convergence
System Performance

Implications to Wireless Networks

Open Questions
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Digital Cancellation

Measure residual self-interference after RF
cancellation

Subtract self-interference from received digital
signal
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Bringing It All Together
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Channel Coherence

cancellation (dB)
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time (seconds)

~3dB reduction in cancellation in |-2 seconds

~6dB reduction in <10 seconds
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Performance

Combined Cancellation
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WiFi full-duplex: with reasonable antenna separation

Not enough for cellular full-duplex: need 20dB more

37



Talk Outline

RF Design using Signal Inversion: ~50dB for 20Mhz
Adaptive RF Cancellation: ~I ms convergence
System Performance: ~73dB cancellation
Implications to Wireless Networks

Open Questions
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Implications to Wireless Networks

* Breaks a basic assumption in wireless

* Can solve some fundamental problems with
wireless networks todayl!-]

e Hidden terminals

* Network congestion and VWLAN fairness

[I] Choi et al.“Achieving single channel, full duplex wireless communication”,
in Mobicom 2010

[2] Singh et al.“Efficient and Fair MAC for Wireless Networks with Self-
interference Cancellation”, in WiOpt 201 |
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http://research.microsoft.com/apps/pubs/default.aspx?id=148161
http://research.microsoft.com/apps/pubs/default.aspx?id=148161
http://research.microsoft.com/apps/pubs/default.aspx?id=148161
http://research.microsoft.com/apps/pubs/default.aspx?id=148161

Implementation

 WARPV2 boards with 2 radios

 OFDM reference code from Rice
University

* |OMHz bandwidth OFDM signaling
e CSMA MAC on embedded processor
* Modified for full-duplex
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Mitigating Hidden Terminals

Current networks have g —_— === Q
hidden terminals é
N AP N>
® (CSMA/CA can’t solve this

® Schemes like RTS/CTS introduce significant overhead
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Mitigating Hidden Terminals

Current networks have Q —_— l(- ..... Q
hidden terminals
N AP

N>

® CSMA/CA can’t solve this

® Schemes like RTS/CTS introduce significant overhead

Full Duplex solves
hidden terminals N AP N

Since both sides transmit at the same time, no
hidden terminals exist
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Mitigating Hidden Terminals

Current networks have g —_— === Q
hidden terminals é
N AP N>
® (CSMA/CA can’t solve this

® Schemes like RTS/CTS introduce significant overhead

Full Duplex solves
hidden terminals N AP N

Since both sides transmit at the same time, no
hidden terminals exist

Reduces hidden terminal losses by up to 88%
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Network Congestion and WLAN Fairness
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Without full-duplex:

® |/n bandwidth for each node in network, including AP

Downlink Throughput = I/n  Uplink Throughput = (n-1)/n
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Network Congestion and WLAN Fairness

. L L L
¥ ¥\

ISPNPS QQQ QQQ QQQ

Without full-duplex:

® |/n bandwidth for each node in network, including AP

Downlink Throughput = I/n Uplink Throughput = (n-1)/n

p p p
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With full-duplex:

® AP sends and receives at the same time

Downlink Throughput = |  Uplink Throughput = |
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Network Congestion and WLAN Fairness

| AP with 4 stations without any hidden terminals

Throughput (Mbps)
Fairness (JFI)
Upstream | Downstream
Half-Duplex 5.18 2.36 0.845
Full-Duplex 5.97 4.99 0.977

Full-duplex distributes its performance gain to improve fairness
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Talk Outline

RF Design using Signal Inversion: ~50dB for 20Mhz
Adaptive RF Cancellation: ~I ms convergence

System Performance: ~73dB cancellation

Implications to Wireless Networks: Collisions, Fairness

Open Questions
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Improving Full-duplex

Non-linear channel response
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Improving Full-duplex

® Non-linear channel response

Reduce distortion: feedforward amplifiers

49



Improving Full-duplex

® Non-linear channel response
Reduce distortion: feedforward amplifiers
Compensate: non-linear digital cancellation
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Improving Full-duplex

Non-linear channel response
Reduce distortion: feedforward amplifiers
Compensate: non-linear digital cancellation

Single antenna solution: circulators

TX Signal —>©—> RX Signal

Circulator
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Improving Full-duplex

® Non-linear channel response
Reduce distortion: feedforward amplifiers
Compensate: non-linear digital cancellation

® Single antenna solution: circulators

e MIMO full-duplex
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Full-duplex Networking
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Full-duplex Networking
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Full-duplex Networking
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Full-duplex Networking

[I] Gollakota et al.““They Can Hear Your Heartbeats: Non-Invasive Security
for Implantable Medical Devices.”, in Sigcomm 201 .

[2] Lee et al.“Secured Bilateral Rendezvous using Self-interference
Cancellation in Wireless Networks”, in I[FIP 201 1.




Full-duplex Networking

- g,
ey, -

-dlen Wy

[I] Gollakota et al.““They Can Hear Your Heartbeats: Non-Invasive Security
for Implantable Medical Devices.”, in Sigcomm 201 .

[2] Lee et al.“Secured Bilateral Rendezvous using Self-interference
Cancellation in Wireless Networks”, in I[FIP 201 1.




Summary

* Design for real-time full-duplex wireless

* Makes full-duplex WiFi possible

e Still some way to go for full-duplex cellular
* Made practical using adaptive techniques
* Rethinking of wireless networks

* WiFi: hidden terminals and fairness

* Many more possibilities
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Thank You

Questions?
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Backup
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® Other cancellation techniques

Digital estimation for RF cancellationl']

RX
| %
Baseband = RF | |Baseband = RF| |RF = Baseband

X

DAC DAC ADC
TX Signal Cancellation Signal| |RX Signal

[I] Duarte et al.“Full-Duplex Wireless Communications Using Off-The-Shelf
Radios: Feasibility and First Results.”, in Asilomar 2010.



Talk Outline

RF Cancellation using Signal Inversion: ~50dB for 20Mhz
Adaptive RF Cancellation: ~I ms convergence

Adaptive Digital Cancellation

System Performance

Implications to Wireless Networks

Looking Forward
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Digital Cancellation

Create a precise “digital replica” of the self-
interference signal using TX digital samples

Subtract self-interference replica from received
digital signal

Requires ADC not saturated: RF cancellation
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OFDM processing

Signal
Band



OFDM processing

Sub-bands




IIIIII

OFDM processing

Channel
Distortion

o [
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OFDM processing

Channel
Distortion

— IIIIII—)IEquaIization |—> IIIIII
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OFDM processing

Channel .
I — v Ml —Eezzser—

RX RF Mixer
I Carrier Frequency
®_) Offset Correction .
FFT Engine
1 Packet Detect]—>
Carrier
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Demapping j[€«———] Equalization

Channel
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Step |: Estimation

Self-interference
Sounding

FIR Filter

Training

Self-interference
Estimate

Preamble
Sequence

RX RF Mixer
I Carrier Frequency
®_) Offset Correction .
FFT Engine
1 Packet Detect]—>
Carrier
Frequency

Demapping j€«———| Equalization

Channel
Estimation

Estimation includes effect of RF cancellation .



Step 2: Cancellation

FIR Filter

Cancellation
Signal

TX Signal

Self-interference
Estimate

RX  RF Mixer
I ®_)-_) Carrier Frequency
Offset Correction FFT Engine
Packet Detect —)
Carrler
Frequency

Demapping | €| Equalization

Channel
Estimation
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Step 2: Cancellation

FIR Filter

Cancellation
Signal

TX Signal

Self-interference
Estimate

RX  RF Mixer
I ®_)-_) Carrier Frequency
Offset Correction FFT Engine
Packet Detect —)
Carrler
Frequency

Demapping | €| Equalization

Channel
Estimation
30dB Cancellation
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Talk Outline

RF Cancellation using Signal Inversion: ~50dB for 20Mhz
Adaptive RF Cancellation: ~I ms convergence

Adaptive Digital Cancellation: ~30dB cancellation
System Performance

Implications to Wireless Networks

Looking Forward
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Phase Offset Cancellation: Block Diagram

TX] d RX d+)/2  TX2
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Phase Offset Cancellation: Performance
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Phase Offset Cancellation: Performance

RSSI (dBm)
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Phase Offset Cancellation: Performance
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Phase Offset Cancellation: Performance
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What about attenuation at intended receivers?
Destructive interference can affect this signal too!

® Different transmit powers for two TX helps

30 / | \ -52.dBm 30
— 20 4 — 207
S 10 3 10-
e |0 % 10
Z-10 %_10-
> >

-201 N, o7 | -20-

30 >~ 30 - -

-30 -20 -10 O 10 20 30 -30 -20 -10 0 10 20 30
X axis (meters) X axis (meters)

Single Transmit Antenna Two Transmit Antennas
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Cancellation (dB)
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30dB cancellation < 5% (~0.5dB) amplitude mismatch

Sensitivity of Phase Offset Cancellation
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Cancellation (dB)
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Rough prototype good for 802.15.4

More precision needed for higher power systems (802.11)
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Bandwidth Constraint

A A2 offset is precise for one frequency

TXI RX TX2

T d T d+ A2 T
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Bandwidth Constraint

A A2 offset is precise for one frequency
not for the whole bandwidth
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Bandwidth Constraint

A A2 offset is precise for one frequency
not for the whole bandwidth

TXI RX . X2
< > <—: >
T d T ; di + \.p/2 T
SV -1I l[""" . :
A v TXI RX X2
s \ T d T d + \/2 T
f.-B fe f+B :
TXI 'RX X2
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Bandwidth Constraint

A A2 offset is precise for one frequency
not for the whole bandwidth

TXI RX TX2
< >\ >
T of T : d, + \.p/2 T
| :
A A TXI RX TX?2
i \ T d T d+ M2 T
f.-B fe f-+B :
TXI RX TX2

T d; : T dy + A+p/2 T

WiFi (2.4G, 20MHz) => ~0.26mm precision error
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Bandwidth Constraint
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Bandwidth Constraint

1
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Cancellation (dB)
NOWw D
o O

0 20 40 60 80 100
Signal bandwidth (MHz)

* WiFi (2.4GHz, 20MHz): Max 4/7dB reduction

e Bandwidth® => Cancellation ¥
e Carrier Frequency # => Cancellation t
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Packet Reception Ratio
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* Full-duplex reduces hidden terminal related losses by 88% at 2 Mbps

Mitigating Hidden Terminals
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Mitigating Hidden Terminals
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* Full-duplex reduces hidden terminal related losses by 88% at 2 Mbps
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e At higher loads, half-duplex improves PRR at the expense of fairness
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X RX

N
Attenuator and (S
! 1 Delay Line
AAAAAA
Xt 1
TX RX
RF Frontend RF Frontend

Passive components better than active components
* No gain required
e Saturation can lead to non-linearity

* Passive components are more frequency flat
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Number of iterations

~65% converge without going through a local minima

98% converge in <20 iterations
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TX Signal

Analog
Conversion
and Shaping

Digital Cancellation

Filtering and
Digital
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Residual

Self-interference

Digital
Receiver
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® Other cancellation techniques

Digital estimation for RF cancellationl']

® Non-linear channel response

Reduce distortion: feedforward amplifiers

E
Distortion

High Power

TX Signal Amplifier
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