Measuring a Human Contact Network for Epidemiology Research

Maria Kazandjieva, Jung Woo Lee, Marcel Salathé Marcus Feldman, James Jones, Philip Levis

Stanford University

Contact Networks

Specify physical proximity interactions over time

Used by
National Institute of Health
Center for Disease Control

Key in determining how to limit disease spread e.g. vaccinations

Epidemiology's Problem

Not enough data!

Pen-and-paper and survey methods are inaccurate have limited coverage

The Alternative

Use technology to get more fine grained and accurate data

Previous work has used cell phones and RFID on small populations

The Deployment

8-hour day at a U.S. high school

- closed network environment

850 participants

- students, teachers, staff

5+ school buildings 170 location nodes

The Code

Over 1000 motes broadcasting periodic beacons

Mote type	Number	Beacon interval	TX Power
participant	850	20 sec	-16.9 dBm
location	170	20 sec	-11 dBm

Data Format

source bcn_seqno rssi local_seqno

Preparation

Program 1000+ motes

Place 170 location motes the night before

Prepare batches of 10 to 15 motes for teachers to distribute to students

Brief the school

D-Day

In at 6:30 am, out by 9 pm

Distribute motes, pouches, and assent forms

Participants write down the time and start the mote by inserting the second battery

4 pm - motes start to come back

The Rest of This Talk

Pre-deployment considerations working with epidemiologists working with human subjects

Post-deployment woes node resets and disconnections

Epidemiology Considerations

Trade-off between time resolution of data and coverage

20 seconds is good enough

Human Subject Considerations

Opting in and out user button vs. batteries

Indicate state of the mote red vs. yellow LED

The Deployment

8-hour day at a U.S. high school

850 participants

5+ school buildings

D-Day Outcome

792 traces from participants

Total of 3 million contact entries

But During the Deployment ...

- Batteries fell out
- Batteries were taken out
- Students played with the reset button
- Motes were accidentally bumped against desks
- Students banged motes against hard surfaces
- Students swung motes by the lanyards
- Motes were rubbed together
 - ... to see what happens

Node reboots

272 nodes with uninterrupted data traces a.k.a. 'safe motes'

520 nodes with a total of over 1500 reboots

Hardware Resets

source	bcn_seqno	rssi	local_seqno
450	300	220	370
789	414	223	370
450	301	221	371
450	302	220	0

Extended Disconnection

Extended Disconnection, case 2

Global Time

No time synchronization code on the motes

Only need relative time to place all subject interactions in context

Tactic: choose a popular mote!

Global Time, p2

Everyone likes food...

93.6% of participants received a beacon from one mote in the dining area

it became the global reference clock

Global Time

mote 101 example

source	bcn_seqno	local_seqno	global
450	10	0	1700
10055	1750	50	1750

Global Time, result

A lookup table

Node ID	Global time at start
101	1700
102	1800
145	???

You did all this work, so what?

Takeaways

Sensor networks provide an opportunity improve the understanding of disease spread.

Large-scale deployments can benefit from standard tools for mass programming.

