Buffer sizing in 802.11 Wireless Mesh Networks

K. Jamshaid*,

B. Shihada*, L. Xia*, and P. Levis[†]

'Bufferbloat'

Impact of large buffers

- TCP cwnd grows to fill available (large) buffers
 - Impacts TCP stability
 - Increases queueing delays for other flows sharing the buffer

Problem Statement

Large buffers → high throughput, high delays small buffers → low utilization, low delays

Determine buffer size to balance throughput
 & delay trade-off in WMNs

Outline

- Buffer sizing in wired networks
- Wireless challenges
- Bottlenecks and buffers in WMNs
- Performance evaluation
- Conclusions

Buffer sizing in wired networks

- Router needs a buffer size of $B = 2T \times C$
 - 2T is the two-way propagation delay
 - C is the bottleneck link capacity

Wireless challenges

- Wireless link: abstraction for shared spectrum
 - Bottleneck spread over multiple nodes
- Variable network capacity
 - Sporadic noise and interference
 - Random MAC scheduling

Collision Domains

 Set of interfering links that contend for channel access

2-hop interference model: approximates RTS/CTS use in 802.11

Collision domain of link $\it l_{
m 5}$

Bottleneck Collision Domain

- Set of links that contend with max. no. of links
 - Limits the end-to-end rate of a flow

Cumulative Bottleneck Buffers

 Sum of buffers of nodes in the bottleneck collision domain

Two part problem

1) Determine bottleneck buffer B

2) Assign
$$b_i$$
 to nodes s.t.
$$\sum_{i \in bottleneck} b_i = B$$

Step 1: Bottleneck Buffer Size

$$B = 2T \times C$$

- Bottleneck fully utilized as long as any node in the bottleneck has a packet to transmit
- Account for channel variations by using loose bounds on T and C values

Step 2: Per-node buffer

- Strategy 1: Equal division: $\frac{B}{\# nodes}$
 - But drops closer to source are preferable to drops closer to destination

Step 2: Per-node buffer

 Strategy 2: Introduces cost function s.t. cost of drop increases with hop count

$$\min \sum_{i=1}^{M} Drop \ probability \times cost \ function$$

subject to
$$\sum_{i=1}^{M} b_i = B$$

and $b_i \ge 0, \forall i \in M$

where M is the number of nodes in the bottleneck collision domain

Step 2: Per node buffer

 If the cost of a packet drop increases linearly with hop count:

$$b_1:b_2:...:b_M=1:\sqrt{2}:...:\sqrt{M}$$

Performance Comparisons

- Compare with
 - Default ns-2 buffer size (50 pkts)
 - TCP with adaptive pacing (TCP-AP)
 - Space packet transmissions over a 4-hop propagation delay

Performance Evaluation: Single flow

 Key observation: Collectively sizing buffers lead to small buffers (1-3 pkts) at nodes

Scheme	Normalized goodput	Normalized RTT
50 pkt buffer	1	20.3
TCP-AP	0.90	1
Neighborhood buffer sizing	0.96	2.2

Performance statistics averaged over multiple topologies

Performance Evaluation: Multi-flows

Scheme	FTP		VoIP	
	Goodput (Kb/s)	RTT (ms)	Goodput (Kb/s)	Delay (ms)
50 pkt buffer	261	388	7.8	239
TCP-AP	240	54	8	37
Neighborhood buffer sizing	250	87	8	40

Performance Evaluation: Multi-flows

Scheme	FTP		VoIP	
	Goodput (Kb/s)	RTT (ms)	Goodput (Kb/s)	Delay (ms)
50 pkt buffer	382	300	7.8	187
TCP-AP	339	33	7.9	24
Neighborhood buffer sizing	368	71	7.9	35

Conclusions

- Shared wireless spectrum requires rethink of bottlenecks and buffers
- Propose mechanisms for sizing bottleneck buffers and distributing it among nodes
- Simulations improve RTT by 6x 10x over plain
 TCP with large buffers

Questions/Comments/Feedback

kamran.jamshaid@kaust.edu.sa