
GReTA: Hardware Optimized Graph
Processing for GNNs

Kevin Kiningham, Phil Levis, Chris Ré
Stanford University

March 4th, 2020

1

ReCoML’20

2Introduction

Deep Neural Networks

Speech Recognition Translation

Object Detection Handwriting Recognition

“Dog”Conv
Layer

Linear
Layer

…

Traditional DNN

3Introduction

Deep Neural Networks + Graphs = ?

Speech Recognition Translation

Object Detection Handwriting Recognition

“Dog”Conv
Layer

Linear
Layer

…

Traditional DNN

Social Networks

Protein Interactions Road Networks

Citations ?

4Introduction

Deep Neural Networks + Graphs = GNNs

Social Networks

Road Networks

Citations

Speech Recognition Translation

Object Detection Handwriting Recognition

“Dog”Conv
Layer

Linear
Layer

…

Traditional DNN

Graph
Conv
Layer

Graph
Conv
Layer

…

Graph Neural Network (GNN)

Protein Interactions

GNN Computation Is Irregular

5Introduction

● Computation pattern changes depending on input graph structure

● GNN layers follow message passing architecture

1. Send messages 2. Aggregate 3. Update

Graph
Conv
Layer

Graph
Conv
Layer

…

Existing DNN Representations Bad for GNNs

6Introduction

● Irregular computation is difficult to
represent with static tensor network

○ E.g. Tensorflow

● Hard to handle large graphs
○ Must manually deal with partitioning

variables
○ Hard to make efficient when graph shape

can change

X

MatMul

Add

ReLU

Static Network Graph Neural Network

x1 x2 x3W

b
MP MP MP

MP MP MP

x2

x1 x3

x2

x1 x3

GReTA: Graph Framework for GNNs
● Simple to represent GNN layers

○ Computation defined on edges and vertices of input graph
○ Maps directly to message passing

● Flexible enough to allow a wide range of GNN models
○ Allows each execution phase to be customized

● Efficient execution on an accelerator
○ Partitioning: Limit accelerator memory usage without modifying user code
○ Tiling: Increase the reuse of layer weights

7Introduction

Talk Agenda
● Introduction

● GReTA Overview

● Execution Model

● Partitioning

● Experimental Results

● Conclusion

8GReTA Overview

GReTA Overview
● GReTA represents computation using graph framework

○ Functions defined on edges and vertices

○ Can directly map message passing layer

● GNN layers implemented using four user-defined functions (UDFs)

1. Gather: compute message for each edges

2. Reduce: reduce incoming messages per-vertex

3. Transform: combine reduced value with per-vertex accumulator

4. Activate: perform non-linear function

9GReTA Overview

Example: Graph Convolutional Network (GCN)

10GReTA Overview

GCN layer update function

Example: Graph Convolutional Network (GCN)

11GReTA Overview

GCN layer update function

1. Gather messages using connected edges

Example: Graph Convolutional Network (GCN)

12GReTA Overview

GCN layer update function

1. Gather messages using connected edges

2. Reduce to single vector by summation

Example: Graph Convolutional Network (GCN)

13GReTA Overview

GCN layer update function

1. Gather messages using connected edges

2. Reduce to single vector by summation

3. Transform result using linear transformation

Example: Graph Convolutional Network (GCN)

14GReTA Overview

GCN layer update function

1. Gather messages using connected edges

2. Reduce to single vector by summation

3. Transform result using linear transformation

4. Activate output using element-wise ReLU

ReLU

class GCNLayer(GretaInterface):
 def gather(h_u, h_v, h_uv):
 return h_u

 def reduce(a_v, m_v):
 return a_v + m_v

 def transform(z_v, a_v, W, b):
 return z_v + W * a_v + b

 def activate(z_v):
 return relu(z_v)

GCN Implementation Pseudocode

15GReTA Overview

GCN layer update function

Talk Agenda
● Introduction

● GReTA Overview

● Execution Model

● Partitioning

● Experimental Results

● Conclusion

16Execution Model

GReTA Execution Model

17Execution Model

Execution conceptually split into three phases

GReTA Execution Model

18Execution Model

Acc. EdgesEdges

Du Du→v Accum

Accum

Execution conceptually split into three phases

1. Accumulate Edges
○ Gather/compute message for each edge
○ Reduce to single value per vertex

GReTA Execution Model

19Execution Model

Acc. Edges

Acc. Vertices

Edges

Vertices

Du Du→v

AccumW

Accum

Accum

Execution conceptually split into three phases

1. Accumulate Edges
○ Gather/compute message for each edge
○ Reduce to single value per vertex

2. Accumulate Vertices
○ Combine reduced value with prior vertex

accumulator state

GReTA Execution Model

20Execution Model

Execution conceptually split into three phases

1. Accumulate Edges
○ Gather/compute message for each edge
○ Reduce to single value per vertex

2. Accumulate Vertices
○ Combine reduced value with prior vertex

accumulator state

3. Update Vertices
○ Apply activate to accumulator

Acc. Edges

Acc. Vertices

Update Vertices

Edges

Vertices

Du Du→v

Accum

Accum

W

Accum

Dv

Talk Agenda
● Introduction

● GReTA Overview

● Execution Model

● Partitioning

● Experimental Results

● Conclusion

21Partitioning

Optimizations for Hardware Implementation

Execution Partitioning
● Problem: Large graphs do not fit into limited accelerator memory

○ E.g. social media graphs with millions of users

● Solution: Partition graph and execute GReTA on each partition separately
● Results combined via vertex accumulators

Weight Tiling
● Problem: Bandwidth bottlenecks when layer weights are large
● Solution: Improve reuse by splitting weights into tiles
● Tiles can be reused across multiple vertices

22Partitioning

Graph Partitioning Example

23Partitioning

A

F

B

E D

C

Graph Partitioning Example

24Partitioning

A

F

B

E D

C

V1

V2V3

Vertex Partition

Vertex Chunks

Graph Partitioning Example

25Partitioning
S

ou
rc

e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

A

F

B

E D

C

V1

V2V3

Vertex Partition

Graph Partitioning Example

26Partitioning
S

ou
rc

e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

A

F

B

E D

C

V1

V2V3

Vertex Partition

E2,1

Execution Partitioning Example

27Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F

Execution Partitioning Example

28Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Execution
follows

columns

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F

Execution Partitioning Example

29Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Execution
follows

columns

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F

A B A B

Accumulate Edges

Execution Partitioning Example

30Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Execution
follows

columns

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F

A BC D

Accumulate Edges

Accumulate Edges

Execution Partitioning Example

31Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Execution
follows

columns

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F

A BE F

Accumulate Edges

Accumulate Edges

Accumulate Edges

Execution Partitioning Example

32Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Execution
follows

columns

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F

A B

Accumulate Edges

Accumulate Edges

Accumulate Vertices

Update

Accumulate Edges

Talk Agenda
● Introduction

● GReTA Overview

● Execution Model

● Partitioning

● Experimental Results

● Conclusion

33Results

Experimental Setup
● Implemented range of GNN models

○ GCN (simple, classic GNN model)
○ GraphSage (max-reduce instead of sum)
○ GIN (MLP in transform layer)
○ G-GCN (per-edge computation)

● Baseline
○ CPU: 2.6 GHz Intel Xeon E5-2690v4
○ GPU: Nvidia Tesla P100
○ Models implemented using Tensorflow

● Compared to custom 32nm GReTA accelerator

● Key performance metric: Total inference latency for batch size of 1

34Results

Dataset Nodes Edges 2-Hop

YT YouTube 1.13M 2.98M 25

LJ LiveJournal 3.99M 34.6M 65

PO Pokec 1.63M 30.6M 167

RD Reddit 232K 47.4M 239

Evaluation Datasets

9-23x Latency Reduction vs CPU

● 15x g.mean across all
datasets/models

● Best results on models where
message passing dominates
(GCN, G-GCN)

35Results

6-67x Latency Reduction vs GPU

36Results

● 21x g.mean across all
datasets/models

● Best speedup on models with low
overall latency (GCN, GIN)

● Small batch size means data
transfer latency often dominates

Conclusion

Key features of GReTA:

1. Simple representation using a graph framework

2. Expressive enough to allow for a wide range of GNNs

3. Efficient execution on an accelerator

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?

37Conclusion

Conclusion

Key features of GReTA:

1. Simple representation using a graph framework

2. Expressive enough to allow for a wide range of GNNs

3. Efficient execution on an accelerator

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?

Q&A?
38Conclusion

39Conclusion

GReTA Accelerator
● Replace setup with unit for Gather-ing

edge/vertex values

○ Uses graph adjacency info stored in Unified
Buffer

● New accumulator unit for Reduce

● Note: Existing NN ops can still run on
new architecture!

○ Gather unit just performs single load

○ Reduce unit performs no-op

40Hardware Acceleration

Unified
Buffer

GEMM
Engine

Gather

Accumulators

Activation

Off-chip DRAM

Reduce

Compiling GReTA to a TPU-like Architecture

41Hardware Acceleration

Unified
Buffer

GEMM
Engine

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

Setup Unit

Accumulators

Activation

Off-chip DRAM

Traditional DNN Accelerator Model

42Hardware Acceleration

Unified
Buffer

GEMM
Engine

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

Setup Unit

Accumulators

Activation

Off-chip DRAM

Traditional DNN Accelerator Model

43Hardware Acceleration

Unified
Buffer

GEMM
Engine

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

3. Accumulate: Collect output
from compute over N cycles

Setup Unit

Accumulators

Activation

Off-chip DRAM

Traditional DNN Accelerator Model

44Hardware Acceleration

Unified
Buffer

GEMM
Engine

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

3. Accumulate: Collect output
from compute over N cycles

4. Activate: Execute required
activation/normalization and
store result

Setup Unit

Accumulators

Activation

Off-chip DRAM

Traditional DNN Accelerator Model

45Hardware Acceleration

Unified
Buffer

GEMM
Engine

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

3. Accumulate: Collect output
from compute over N cycles

4. Activate: Execute required
activation/normalization and
store result

Setup Unit

Accumulators

Activation

Off-chip DRAM

● Key insight: Stages 2-4 can already execute
GReTA’s Transform and Activate UDFs

● Only need to add hardware for Gather and
Reduce

Graph Partitioning
● Problem: Data for full graph may be too large to fit entirely on accelerator

● Solution: Partition graph and execute phases for each partition separately

46GReTA Overview

Vertex Partition

0 1

0 0

0 1

0 0

0 0

0 0

1 1

0 1

S
ou

rc
e

Destination

Edge Partition

Load Acc. E Acc. V Act.

Interleaving Execution
● Multiple GReTA programs in a layer may reuse data

○ Read identical edge/vertex data
○ Reuse accumulator values

● Interleaving execution improves data locality

47Optimizations

accum_edges 1

accum_verts 1

accum_edges 2

accum_verts 2

Execution

Identical vertex
data read twice Vertex accumulator

must be unloaded
and reloaded

Interleaving Execution
● Multiple GReTA programs in a layer may reuse data

○ Read identical edge/vertex data
○ Reuse accumulator values

● Interleaving execution improves data locality

48Optimizations

accum_edges 1

accum_verts 1

accum_edges 2

accum_verts 2

Vertex data read
once, reused

Vertex accumulator
stays loaded

Execution

Weight Tiling
● Problem: Layer weights can be too large to fully load into GEMM unit

● Existing solution: Slice weights into tiles and reloading for each new vertex

○ Unfortunately, gives worst case reuse of each tile

○ Accelerator often bottlenecked on loading/reload weight tiles

49Optimizations

Unified Buffer Reduction GEMM Accumulate

X +=

