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GNN Computation Is Irregular
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● Computation pattern changes depending on input graph structure

● GNN layers follow message passing architecture

1. Send messages 2. Aggregate 3. Update
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Existing DNN Representations Bad for GNNs
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● Irregular computation is difficult to 
represent with static tensor network

○ E.g. Tensorflow

● Hard to handle large graphs
○ Must manually deal with partitioning 

variables
○ Hard to make efficient when graph shape 

can change
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GReTA: Graph Framework for GNNs
● Simple to represent GNN layers

○ Computation defined on edges and vertices of input graph
○ Maps directly to message passing

● Flexible enough to allow a wide range of GNN models
○ Allows each execution phase to be customized

● Efficient execution on an accelerator
○ Partitioning: Limit accelerator memory usage without modifying user code
○ Tiling: Increase the reuse of layer weights
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GReTA Overview
● GReTA represents computation using graph framework

○ Functions defined on edges and vertices

○ Can directly map message passing layer

● GNN layers implemented using four user-defined functions (UDFs)

1. Gather: compute message for each edges

2. Reduce: reduce incoming messages per-vertex

3. Transform: combine reduced value with per-vertex accumulator

4. Activate: perform non-linear function
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Example: Graph Convolutional Network (GCN)
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Example: Graph Convolutional Network (GCN)
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GCN layer update function

1. Gather messages using connected edges

2. Reduce to single vector by summation

3. Transform result using linear transformation

4. Activate output using element-wise ReLU

ReLU



class GCNLayer(GretaInterface):
  def gather(h_u, h_v, h_uv):
    return h_u

  def reduce(a_v, m_v):
    return a_v + m_v

  def transform(z_v, a_v, W, b):
    return z_v + W * a_v + b

  def activate(z_v):
    return relu(z_v)

GCN Implementation Pseudocode
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GReTA Execution Model
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GReTA Execution Model
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GReTA Execution Model
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GReTA Execution Model

20Execution Model

Execution conceptually split into three phases

1. Accumulate Edges
○ Gather/compute message for each edge
○ Reduce to single value per vertex

2. Accumulate Vertices
○ Combine reduced value with prior vertex 

accumulator state

3. Update Vertices
○ Apply activate to accumulator
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Optimizations for Hardware Implementation

Execution Partitioning
● Problem: Large graphs do not fit into limited accelerator memory

○ E.g. social media graphs with millions of users

● Solution: Partition graph and execute GReTA on each partition separately
● Results combined via vertex accumulators

Weight Tiling
● Problem: Bandwidth bottlenecks when layer weights are large
● Solution: Improve reuse by splitting weights into tiles
● Tiles can be reused across multiple vertices

22Partitioning



Graph Partitioning Example
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Graph Partitioning Example
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Graph Partitioning Example
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Graph Partitioning Example
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Execution Partitioning Example
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Execution Partitioning Example

28Partitioning

S
ou

rc
e

A
B

C
D

E
F

A B C D E F

Destination

Edge Partition

Execution 
follows 

columns

Accelerator
Src Dst Edge

Off-chip DRAM

A B
C D
E F



Execution Partitioning Example
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Execution Partitioning Example
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Execution Partitioning Example
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Execution Partitioning Example
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Experimental Setup
● Implemented range of GNN models

○ GCN (simple, classic GNN model)
○ GraphSage (max-reduce instead of sum)
○ GIN (MLP in transform layer)
○ G-GCN (per-edge computation)

● Baseline
○ CPU: 2.6 GHz Intel Xeon E5-2690v4
○ GPU: Nvidia Tesla P100
○ Models implemented using Tensorflow

● Compared to custom 32nm GReTA accelerator

● Key performance metric: Total inference latency for batch size of 1

34Results

Dataset Nodes Edges 2-Hop

YT YouTube 1.13M 2.98M 25

LJ LiveJournal 3.99M 34.6M 65

PO Pokec 1.63M 30.6M 167

RD Reddit 232K 47.4M 239

Evaluation Datasets



9-23x Latency Reduction vs CPU

● 15x g.mean across all 
datasets/models

● Best results on models where 
message passing dominates 
(GCN, G-GCN)
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6-67x Latency Reduction vs GPU
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● 21x g.mean across all 
datasets/models

● Best speedup on models with low 
overall latency (GCN, GIN)

● Small batch size means data 
transfer latency often dominates



Conclusion

Key features of GReTA:

1. Simple representation using a graph framework

2. Expressive enough to allow for a wide range of GNNs

3. Efficient execution on an accelerator 

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?
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Conclusion
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GReTA Accelerator
● Replace setup with unit for Gather-ing 

edge/vertex values

○ Uses graph adjacency info stored in Unified 
Buffer

● New accumulator unit for Reduce

● Note: Existing NN ops can still run on 
new architecture!

○ Gather unit just performs single load

○ Reduce unit performs no-op

40Hardware Acceleration

Unified 
Buffer

GEMM
Engine

Gather

Accumulators

Activation

Off-chip DRAM

Reduce



Compiling GReTA to a TPU-like Architecture
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Traditional DNN Accelerator Model
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Traditional DNN Accelerator Model
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Traditional DNN Accelerator Model
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Traditional DNN Accelerator Model
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Reduce



Graph Partitioning
● Problem: Data for full graph may be too large to fit entirely on accelerator

● Solution: Partition graph and execute phases for each partition separately
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Interleaving Execution
● Multiple GReTA programs in a layer may reuse data

○ Read identical edge/vertex data
○ Reuse accumulator values

● Interleaving execution improves data locality
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Interleaving Execution
● Multiple GReTA programs in a layer may reuse data

○ Read identical edge/vertex data
○ Reuse accumulator values

● Interleaving execution improves data locality
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Weight Tiling
● Problem: Layer weights can be too large to fully load into GEMM unit

● Existing solution: Slice weights into tiles and reloading for each new vertex

○ Unfortunately, gives worst case reuse of each tile

○ Accelerator often bottlenecked on loading/reload weight tiles

49Optimizations

Unified Buffer Reduction GEMM Accumulate

X +=


