ReCoML’20

GReTA: Hardware Optimized Graph
Processing for GNNs

Kevin Kiningham, Phil Levis, Chris Ré
Stanford University
March 4th, 2020

Stanford University 1



Deep Neural Networks

@ bt

Speech Recognition

Traditional DNN

[ ssons roon 3)

g
:

IZ:> “‘Dog”

Linear
Layer

Translation

PEFEERTIRENW
FHNSMNENNN
SRNH-EHONOS
MNMSMNENSRY
[SSYESSIESIC N )
SSRGS LSS
[FERSMNR NN
[SISISENEEINSIS)
FrSESNSERE
QhRNFOMNSN

Handwriting Recognition

Object Detection

2

Stanford University

Introduction



Deep Neural Networks + Graphs = ?

Q) vt a Traditional DNN

SpeeCh ReCOgnition Translation
. - ga%mamagg@ Conv E:> E:> Linear “Dog,,
A Layer Layer
31510 45 51 53 B
il Gk
Fe8d 800 T
ZUERORILZE
036 ENE 076
ZaF0RnE0E
Object Detection Handwriting Recognition

E
oSt I
efwee 7 N
PR ey
Social Networks Citations ?
.. & ; 2 :/ -

Protein Interactions Road Networks

Introduction Stanford University 3




Deep Neural Networks + Graphs = GNNs

Q) Hith-ed

Speech Recognition

Object Detection

Social Networks

Protein Interactions

Introduction

Handwri

[ ssons roon 3)

55;55 TOCITY

T

r
H
3
7]
6]
@
vl
6]
m
3
C1}

N Q
>
o)
=3
(@)
S

=

SENNE ()
ol

Sl
=]

IN N0 ey B
D SRNSNWEN

NSNRQRNANS
SEEORSNN

SRONSISESITS)
SlsiS[el=RINGIS]

SN INIISSE)

5D oNBAN
) MECSCo=wxe

Q &

Recognition

2

& g

Citations

Road Netwofks

Traditional DNN

Conv
Layer

Graph
Conv
Layer

Linear
Layer

Graph
Conv
Layer

Graph Neural Network (GNN)

Stanford University




GNN Computation Is lrregular

e Computation pattern changes depending on input graph structure

e GNN layers follow message passing architecture

Graph Graph
|::> Conv |::> |::> Conv

Introduction Stanford University 5




Existing DNN Representations Bad for GNNs

e Irregular computation is difficult to

represent with static tensor network W
o E.g. Tensorflow *
e Hard to handle large graphs MatMul | | b
o Must manually deal with partitioning ¢ | .
variables Add | ,/ ()
o Hard to make efficient when graph shape i )
can change - MP ['\—/“ZD] MP —(3)
=
Static Network Graph Neural Network

Introduction Stanford University 6




GReTA: Graph Framework for GNNs

e Simple to represent GNN layers
o Computation defined on edges and vertices of input graph
o Maps directly to message passing

e Flexible enough to allow a wide range of GNN models
o Allows each execution phase to be customized

e Efficient execution on an accelerator

o Partitioning: Limit accelerator memory usage without modifying user code
o Tiling: Increase the reuse of layer weights

Introduction Stanford University 7




Talk Agenda

e Introduction

e GReTA Overview

e Execution Model

e Partitioning

e Experimental Results

e Conclusion

GReTA Overview Stanford University 8




GReTA Overview

e GReTA represents computation using graph framework
o Functions defined on edges and vertices
o Can directly map message passing layer

e GNN layers implemented using four user-defined functions (UDFs)
1. Gather: compute message for each edges
2. Reduce: reduce incoming messages per-vertex
3. Transform: combine reduced value with per-vertex accumulator
4.

Activate: perform non-linear function

GReTA Overview Stanford University 9




Example: Graph Convolutional Network (GCN)

A « ReLU (W(@ : (Z hu) + b(@)

u—v

GCN layer update function

GReTA Overview Stanford University 10




Example: Graph Convolutional Network (GCN)

A « ReLU (W(@ : (Z hu) + b(@)

u—v

GCN layer update function

1. messages using connected edges @

GReTA Overview Stanford University

Ve
§




Example: Graph Convolutional Network (GCN)

A+« ReLU (W(@ (L ]) b(@)
u—)'u

GCN layer update function

1. messages using connected edges
2. Reduce to single vector by summation

GReTA Overview Stanford University 12




Example: Graph Convolutional Network (GCN)

GCN layer update function

1. messages using connected edges

2. Reduce to single vector by summation

3. Transform result using linear transformation

GReTA Overview Stanford University K




Example: Graph Convolutional Network (GCN)

GCN layer update function

1. messages using connected edges
2. Reduce to single vector by summation
3. Transform result using linear transformation RelLU !::)

4. Activate output using element-wise RelLU @5

Stanford University 14

GReTA Overview




GCN Implementation Pseudocode

GCN layer update function

GReTA Overview

class GCNLayer (Gretalnterface) :
def gather(h u, h v, h uv):
return h u

|def transform(z v, a v, W, b):
| return z v + W * a v + b

.- - .- == === I
| def actlvate(z_v):I

| return relu(z_v)]

Stanford University

15



Talk Agenda

e Introduction

e GReTA Overview

e Execution Model

e Partitioning

e Experimental Results

e Conclusion

Execution Model Stanford University 16




GReTA Execution Model

Execution conceptually split into three phases

Execution Model Stanford University 17




GReTA Execution Model

Execution conceptually split into three phases D,| [P,y |Accum
| ! '
1. Accumulate Edges Edges Acc. Edges
o Gather/compute message for each edge
o Reduce to single value per vertex Accum

Execution Model Stanford University 18




GReTA Execution Model

Execution conceptually split into three phases D,| [P,y |Accum
| ! '
1. Accumulate Edges Edges Acc. Edges
o Gather/compute message for each edge
o Reduce to single value per vertex W | | Accum

l

2. Accumulate Vertices

o Combine reduced value with prior vertex
accumulator state

Vertices

Accum

Execution Model Stanford University 19




GReTA Execution Model

Execution conceptually split into three phases D,| [P,y |Accum
| ! '
1. Accumulate Edges Edges Acc. Edges
o Gather/compute message for each edge
o Reduce to single value per vertex W | | Accum

l

2. Accumulate Vertices

o Combine reduced value with prior vertex
accumulator state

Vertices

Accum

3. Update Vertices
o  Apply activate to accumulator Update Vertices

D

\

Execution Model Stanford University 20



Talk Agenda

e Introduction

e GReTA Overview

e Execution Model

e Partitioning

e Experimental Results

e Conclusion

Partitioning Stanford University 21




Optimizations for Hardware Implementation

Execution Partitioning

e Problem: Large graphs do not fit into limited accelerator memory
o E.g. social media graphs with millions of users

e Solution: Partition graph and execute GReTA on each partition separately
e Results combined via vertex accumulators

Weight Tiling
e Problem: Bandwidth bottlenecks when layer weights are large

e Solution: Improve reuse by splitting weights into tiles
e Tiles can be reused across multiple vertices

Partitioning Stanford University 22




Graph Partitioning Example

@@
ve

Partitioning Stanford University 23




Graph Partitioning Example

- Vertex Chunks

~
~
~
~
~
\

N
1

1

1

1

1
’

Vertex Partition

Partitioning Stanford University 24




Graph Partitioning Example

Partitioning

Vertex Partition

Source

QEIOION,

Destination

@E®COE®

o—0

Oo—0

o—0O

o—0O

o—0

Edge Partition

Stanford University

25



Graph Partitioning Example

Destination
®B®CeE®

o—0

o —,

O—0||0—0||0—O

Source
@m @0 @

Vertex Partition Edge Partition

Partitioning Stanford University 26




Execution Partitioning Example

Source

LEIOIOD,

Partitioning

Destination

@ERCOE®

o—0

Accelerator
Src Dst Edge

o—0

Oo—0

o—0

Oo—0

Edge Partition

E&®

Off-chip DRAM

38388

Stanford University

27



Execution Partitioning Example

Execution
follows
columns

Partitioning

Destination

Edge Partition

Accelerator
Src Dst Edge

E&®

Off-chip DRAM

38388

Stanford University

28



Execution Partitioning Example

Destination |
ﬁ@ @E Accelerator Accumulate Edges
(A) Src  Dst Edge 0]
1 : M :
Execution , (8 i
©)
follows =
columns 3
% M ( O O—»O
Off-chip DRAM

Edge Partition

Partitioning Stanford University 29




Execution Partitioning Example

Execution
follows
columns

Source

VLIOQIO0)

Partitioning

Accelerator
Src Dst Edge

OB BE)o—o

Destination
A Q®E®®
0—0O
O—O
el eolo=Ye

Edge Partition

@B 538
O0—0
©®|[3=8
Off-chip DRAM

ks

Accumulate Edges

09| [09) IOEDI

Accumulate Edges

Stanford University

30



Execution Partitioning Example

Execution
follows
columns

Source

QOIODIO0

Partitioning

Accelerator
Src Dst Edge

EEBE)o—o

Destination
A Q®E®®
0—0O
O—O
ool eole=Ye

Edge Partition

@B 538
O0—0
©®|[3=8
Off-chip DRAM

ks

Accumulate Edges

09| [09) IOPI

Accumulate Edges

09| [o9) IOPI

Accumulate Edges

Stanford University 31



Execution Partitioning Example

Execution
follows
columns

Source

LEIORIOD,

Partitioning

Destination

OOIFOIGE,

Oo—O

Accelerator
Src Dst Edge

A6

Oo—0O

O—O| | @O | O—O

Edge Partition

E&®

Off-chip DRAM

38388

ks

Accumulate Edges

09| [09) |Of>|

Accumulate Edges

09| [o9) |Of>|

Accumulate Edges

Accumulate Vertices

Update

Stanford University

Ky



Talk Agenda

e Introduction

e GReTA Overview

e Execution Model

e Partitioning

e Experimental Results

e Conclusion

Results Stanford University 33




Experimental Setup

e Implemented range of GNN models Dataset Nodes  Edges 2-Hop
o GCN (simple, classic GNN model) YT  YouTube 1.13M 2 98M 25
o GraphSage (max-reduce instead of sum)
o  GIN (MLP in transform layer) LJ  Livedournal 3.99M 34.6M 65
°  G-GCN (per-edge computation) PO Pokec 163M  30.6M 167
e Baseline RD Reddit 232K 47.4M 239
o CPU: 2.6 GHz Intel Xeon E5-2690v4
o GPU: Nvidia Tesla P100 Evaluation Datasets

o Models implemented using Tensorflow

e Compared to custom 32nm GReTA accelerator

e Key performance metric: Total inference latency for batch size of 1

Results Stanford University 34




9-23x Latency Reduction vs CPU

GReTA Latency Reduction vs CPU

B Youtube [ LiveJournal Pokec [ Reddit

e 15x g.mean across all 25
datasets/models

[
o

e Best results on models where
message passing dominates
(GCN, G-GCN)

Latency Reduction

(4]

o

GCN G-GCN GraphSage GIN

Results Stanford University 35




6-67x Latency Reduction vs GPU

GReTA Latency Reduction vs CPU
(] 21x g.mean acrOSS a” B Youtube [ LiveJournal Pokec [l Reddit

datasets/models N

(=)}
o

e Best speedup on models with low
overall latency (GCN, GIN)

£y
o

e Small batch size means data
transfer latency often dominates

Latency Reduction
N

GCN G-GCN GraphSage GIN

Results Stanford University 36




Conclusion

Key features of GReTA:

1. Simple representation using a graph framework
2. Expressive enough to allow for a wide range of GNNs

3. Efficient execution on an accelerator

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?

Conclusion

Stanford University 37



Conclusion

Key features of GReTA:

1. Simple representation using a graph framework
2. Expressive enough to allow for a wide range of GNNs

3. Efficient execution on an accelerator

Future work: Apply GReTA beyond GNNs? Integration with existing frameworks?

Q8A? &

Conclusion Stanford University 38




Conclusion Stanford University 39




GReTA Accelerator

e Replace setup with unit for Gather-ing
edge/vertex values

o Uses graph adjacency info stored in Unified
Buffer

e New accumulator unit for Reduce

e Note: Existing NN ops can still run on
new architecture!

o  Gather unit just performs single load

o Reduce unit performs no-op

Hardware Acceleration

Unified
Buffer

|:> Gather

Reduce

GEMM
Engine

Accumulators

<:I Activation

g

Off-chip DRAM

Stanford University

40




Compiling GReTA to a TPU-like Architecture

Execution in four stages

1. Load: Move data from unified > | Setup Unit
buffer into setup unit
P Unified GEMM
Buffer Engine

Accumulators

<j Activation

g

Off-chip DRAM

Hardware Acceleration Stanford University 41




Traditional DNN Accelerator Model

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

Hardware Acceleration

Unified
Buffer

|:> Setup Unit

GEMM
Engine

Accumulators

<:I Activation

g

Off-chip DRAM

Stanford University

42




Traditional DNN Accelerator Model

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

3. Accumulate: Collect output
from compute over N cycles

Hardware Acceleration

Unified
Buffer

|:> Setup Unit

GEMM
Engine

Accumulators

<:I Activation

g

Off-chip DRAM

Stanford University

43




Traditional DNN Accelerator Model

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

3. Accumulate: Collect output
from compute over N cycles

4. Activate: Execute required
activation/normalization and
store result

Hardware Acceleration

Unified
Buffer

|:> Setup Unit

GEMM
Engine

Accumulators

<:I Activation

g

Off-chip DRAM

Stanford University

44




Traditional DNN Accelerator Model

Execution in four stages

1. Load: Move data from unified
buffer into setup unit

2. Compute: Multiply setup data
by pre-loaded weight values

3. Accumulate: Collect output
from compute over N cycles

4. Activate: Execute required
activation/normalization and
store result

Hardware Acceleration

(—
(—

()

|:> Setup Unit

Linifiad GEMM

Key insight: Stages 2-4 can already execute
GReTA's Transform and Activate UDFs

Only need to add hardware for Gather and

Reduce

On-cnip DRAM

Stanford University

45




Graph Partitioning

e Problem: Data for full graph may be too large to fit entirely on accelerator

e Solution: Partition graph and execute phases for each partition separately

Destination Load Acc. E Acc. V Act.
! o0 00 L .
@ [o/[][1] o000
2@ LILIEIE e Co @
§@ L[] o
| ® O[] o
Vertex Partition Edge Partition

GReTA Overview Stanford University 46




Interleaving Execution

e Multiple GReTA programs in a layer may reuse data
o Read identical edge/vertex data
o Reuse accumulator values

e Interleaving execution improves data locality

I lu—v al

Optimizations

Identical vertex
data read twice

2

accum edges

accum verts

accum edges

accum verts

Execution

Vertex accumulator

must be unloaded
and reloaded

Stanford University

47




Interleaving Execution

e Multiple GReTA programs in a layer may reuse data
o Read identical edge/vertex data
o Reuse accumulator values

e Interleaving execution improves data locality

I lu—v al

Optimizations

Vertex data read
once, reused

accum edges

accum edges

accum verts

accum verts

Execution

Vertex accumulator
stays loaded

Stanford University

48




Weight Tiling

e Problem: Layer weights can be too large to fully load into GEMM unit

e EXxisting solution: Slice weights into tiles and reloading for each new vertex
o Unfortunately, gives worst case reuse of each tile

o Accelerator often bottlenecked on loading/reload weight tiles

?:mx +=

Unified Buffer Reduction GEMM Accumulate

Optimizations Stanford University 49




