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Scripting in VW

• Lua ( WoW ), LSL (Second Life), UScript 
( Unreal )

• Emerson 

• Scripting language for future VW

• Easy to Script
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Future Virtual Worlds

• Federation

• Multiple parties cooperate to run the world

• Web users can not only create but host 
their own content => extensible, flexible

• Seamless and Scalable

• Distributed simulation of billions of entities

• Entities must interact over the network
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Ease of Scripting

•Opportunistic programming

• Copy-paste and modify, code reuse

• Iterative Development

• Continuously running world

• Modify entity without terminating 
execution
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Design Challenges

• Lack of trust between entities

• Protect against untrusted operations

• Distributed Simulation of entities

• Large latencies, packet losses and node 
failures

• Live, incremental scripting
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Emerson: Main Features
• Entity, Presence, Object

• Federation and distributed simulation

• Prototyping

• Code reuse through prototypes

• Live Programming

• Execute code dynamically to modify behavior 
(more in the paper)

• Event Driven Pattern Matching

• Address sphagetti if-else problem
8

Wednesday, October 13, 2010



Fundamentals

9

Wednesday, October 13, 2010



Fundamentals

• Objects encapsulate state and functionality
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Fundamentals

• Objects encapsulate state and functionality

• Entities contain objects, event handlers

• Obtain presences

• Communicate with entities in the same world

• Objects exist and are addressable within 
entity
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Fundamentals

• Objects encapsulate state and functionality

• Entities contain objects, event handlers

• Obtain presences

• Communicate with entities in the same world

• Objects exist and are addressable within 
entity

• Presence is connection of entity in the world

• Geometry, communication
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Entities

• Communicate by sending asynchronous 
messages over the network

• Short event handlers; don’t block other 
entities ( Helps Seamless Scaling )
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Entities

• Communicate by sending asynchronous 
messages over the network

• Short event handlers; don’t block other 
entities ( Helps Seamless Scaling )

• Boundary of trust ( Helps Federation )

• Exclusive right to change their state/
behavior
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Prototypes for Objects

• Singleton classes are wasteful

• Modify class then re-instantiate in some 
languages

• Emerson objects inherit “live” modifications 
to their prototype
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Entity Prototyping 
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Entity Prototyping 

• Copy Based Prototyping

• No prototype lookup

• Prototype may be on different entity host

• Look up requires network messaging

• Copy existing entity and modify

• State gets copied too
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Prototyping for entities
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Events

• Multiple event types in virtual worlds

• Message send/recv, timers, proximity

• Register callbacks for specific events

• Can be painful to handle
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Event handling example

• Single Event 
handler for all 
message types

• Lots of if-else

• Ugly to fit in 
incremental model
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Events in Emerson

• Events are described by patterns

• Patterns are objects matched by field

• name, value and prototype

• Similar to patterns in Erlang

• [proto] field[.subfield[...]] [: value]

•(action:borrow,item_id)
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Messaging Example
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Messaging Example

handleLoan <-
(action:borrow,

item_id)
<-customer
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Messaging Example

// handleLoan
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(action:borrow,

item_id)
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Messaging Example

// handleLoan

handleLoan <-
(action:borrow,

item_id)
<-customer

receipt = new Receipt(status = ‘OK’)
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Messaging Example

// handleLoan

handleLoan <-
(action:borrow,

item_id)
<-customer

receipt = new Receipt(status = ‘OK’)
receipt -> customer
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Summary

22

• Emerson: Scripting for Federated, Seamless 
and Scalable VW

• Federation: Entity Isolation

• Scalability: Asynchronous Messaging

• Easy scripting 

• Reuse prototypes, Incremental Scripting

• Event Handling: Pattern based
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Current State

• Prototype based on V8 JavaScript 
interpreter

• Sirikata virtual world ( www.sirikata.com )

• Language Library 
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Future

• Need to extend Emerson for

• Persistence features

• Transactions

• Access control and ownership issues
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Thank You
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Live Programming

• Entities can dynamically execute scripts

• eval as in JavaScript

• Modification of state and behavior without 
termination

• Access control to prevent executing 
arbitrary scripts
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Still evolving...

• developing more of the syntactic features

• Writing programs to find common cases 
and embed these in the language as syntax

• Exposing more of the underlying system 
functionality into the language

• Language Library 
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Presences

• Entities hold references to presences of 
their own and other entities
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Presences

• Entities hold references to presences of 
their own and other entities

• Communication through presences

• Multiple presences to bridge worlds

• same entity can service multiple worlds
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Emerson

• Interpreted language

• similar to JavaScript
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Emerson

• Interpreted language

• similar to JavaScript

• Event-driven execution model

• Each entity executes single script

• Script consists of short event handlers
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Live Programming

• Entities can dynamically execute scripts

• More in the paper
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Scripting in VW
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Scripting in VW

• Add behavior to graphical entities

• Entities execute a program ( Scripted Entities )

• Eg. Lua ( WoW ), LSL (Second Life), UScript 
( Unreal )

• Bulletin  Boards, Intelligent Fighters
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Summary
• Entities, Presences, Objects

• Code Reuse

• prototypes for objects

• copy and modify for entities

• Incremental development by executing 
arbitrary scripts

• Patterns for events with failure callbacks
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