
Emerson: Scripting for
Federated Virtual Worlds

Bhupesh Chandra*, Ewen Cheslack-Postava*, Behram F.T. Mistree*, Philip Levis*, David Gay✝
*Stanford University

✝Intel Labs

1

Wednesday, October 13, 2010

Virtual Worlds

Second Life WoW

2

Wednesday, October 13, 2010

Virtual Worlds

Second Life WoW

Avatar

2

Wednesday, October 13, 2010

Virtual Worlds

Second Life WoW

Building
(Entity)

Avatar

2

Wednesday, October 13, 2010

Virtual Worlds

Second Life WoW

Building
(Entity)

Tree
(Entity)

Avatar

2

Wednesday, October 13, 2010

Virtual Worlds

Second Life WoW

Building
(Entity)

Tree
(Entity)

Avatar
Fighter
(Entity)

2

Wednesday, October 13, 2010

Virtual Worlds

Second Life WoW

Building
(Entity)

Tree
(Entity)

Avatar
Fighter
(Entity)

Ship
(Entity)

2

Wednesday, October 13, 2010

Scripted Entities
Second Life

3

Wednesday, October 13, 2010

Scripted Entities

Scripted
Entity

Second Life

3

Wednesday, October 13, 2010

Scripted Entities

Scripted
Entity

Script

Second Life

3

Wednesday, October 13, 2010

Scripting in VW

4

Wednesday, October 13, 2010

Scripting in VW

• Lua (WoW), LSL (Second Life), UScript
(Unreal)

4

Wednesday, October 13, 2010

Scripting in VW

• Lua (WoW), LSL (Second Life), UScript
(Unreal)

• Emerson

• Scripting language for future VW

• Easy to Script

4

Wednesday, October 13, 2010

Future Virtual Worlds

5

Wednesday, October 13, 2010

Future Virtual Worlds

• Federation

• Multiple parties cooperate to run the world

• Web users can not only create but host
their own content => extensible, flexible

5

Wednesday, October 13, 2010

Future Virtual Worlds

• Federation

• Multiple parties cooperate to run the world

• Web users can not only create but host
their own content => extensible, flexible

• Seamless and Scalable

• Distributed simulation of billions of entities

• Entities must interact over the network

5

Wednesday, October 13, 2010

Ease of Scripting

6

Wednesday, October 13, 2010

Ease of Scripting

•Opportunistic programming

• Copy-paste and modify, code reuse

6

Wednesday, October 13, 2010

Ease of Scripting

•Opportunistic programming

• Copy-paste and modify, code reuse

• Iterative Development

• Continuously running world

• Modify entity without terminating
execution

6

Wednesday, October 13, 2010

Design Challenges

7

Wednesday, October 13, 2010

Design Challenges

• Lack of trust between entities

• Protect against untrusted operations

7

Wednesday, October 13, 2010

Design Challenges

• Lack of trust between entities

• Protect against untrusted operations

• Distributed Simulation of entities

• Large latencies, packet losses and node
failures

7

Wednesday, October 13, 2010

Design Challenges

• Lack of trust between entities

• Protect against untrusted operations

• Distributed Simulation of entities

• Large latencies, packet losses and node
failures

• Live, incremental scripting

7

Wednesday, October 13, 2010

Emerson: Main Features

8

Wednesday, October 13, 2010

Emerson: Main Features
• Entity, Presence, Object

• Federation and distributed simulation

8

Wednesday, October 13, 2010

Emerson: Main Features
• Entity, Presence, Object

• Federation and distributed simulation

• Prototyping

• Code reuse through prototypes

8

Wednesday, October 13, 2010

Emerson: Main Features
• Entity, Presence, Object

• Federation and distributed simulation

• Prototyping

• Code reuse through prototypes

• Live Programming

• Execute code dynamically to modify behavior
(more in the paper)

8

Wednesday, October 13, 2010

Emerson: Main Features
• Entity, Presence, Object

• Federation and distributed simulation

• Prototyping

• Code reuse through prototypes

• Live Programming

• Execute code dynamically to modify behavior
(more in the paper)

• Event Driven Pattern Matching

• Address sphagetti if-else problem
8

Wednesday, October 13, 2010

Fundamentals

9

Wednesday, October 13, 2010

Fundamentals

• Objects encapsulate state and functionality

9

Wednesday, October 13, 2010

Fundamentals

• Objects encapsulate state and functionality

• Entities contain objects, event handlers

• Obtain presences

• Communicate with entities in the same world

• Objects exist and are addressable within
entity

9

Wednesday, October 13, 2010

Fundamentals

• Objects encapsulate state and functionality

• Entities contain objects, event handlers

• Obtain presences

• Communicate with entities in the same world

• Objects exist and are addressable within
entity

• Presence is connection of entity in the world

• Geometry, communication
9

Wednesday, October 13, 2010

Art Gallery

10

Wednesday, October 13, 2010

Artist Entity Host

Entity Host

Art Gallery

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Artist
Avatar

(Presence)

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Artist
Avatar

(Presence)

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Artist
Avatar

(Presence)

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Art Gallery
(Presence)

Artist
Avatar

(Presence)

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Art Gallery
(Presence)

root

getArtDetails()

inventory

Object

Artist
Avatar

(Presence)

10

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Art Gallery
(Presence)

handleLoan()
action:borrow

item_id

handler

root

getArtDetails()

inventory

Object

Artist
Avatar

(Presence)

10

Wednesday, October 13, 2010

Entities

11

Wednesday, October 13, 2010

Entities

• Communicate by sending asynchronous
messages over the network

• Short event handlers; don’t block other
entities (Helps Seamless Scaling)

11

Wednesday, October 13, 2010

Entities

• Communicate by sending asynchronous
messages over the network

• Short event handlers; don’t block other
entities (Helps Seamless Scaling)

• Boundary of trust (Helps Federation)

• Exclusive right to change their state/
behavior

11

Wednesday, October 13, 2010

Code Reuse

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

size=2

length()
List

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

size=2

length()
List

next()

prototype

size=4

CustomerQueue

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

size=2

length()
List

next()

prototype

size=4

CustomerQueue

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

size=2

length()
List

next()

prototype

size=4

CustomerQueue

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Code Reuse
• Important for easy

scripting

• Class based Inheritance
(Java)

• Subclassing

• Prototype based
(JavaScript)

• No Classes

• Objects inherit from
objects

prototype

extension

size=2

length()
List

next()

prototype

size=4

CustomerQueue

CustomerQueue.length() ?
12

Wednesday, October 13, 2010

Prototypes for Objects

13

Wednesday, October 13, 2010

Prototypes for Objects

• Singleton classes are wasteful

13

Wednesday, October 13, 2010

Prototypes for Objects

• Singleton classes are wasteful

• Modify class then re-instantiate in some
languages

13

Wednesday, October 13, 2010

Prototypes for Objects

• Singleton classes are wasteful

• Modify class then re-instantiate in some
languages

• Emerson objects inherit “live” modifications
to their prototype

13

Wednesday, October 13, 2010

Inheritance: Bad For Entities

14

Wednesday, October 13, 2010

Inheritance: Bad For Entities

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

prototype =
House

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

prototype =
House

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

name = Gallery
prototype =

House

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

name = Gallery
prototype =

House

ArtInventory

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

name = Gallery
prototype =

House

ArtInventory

doorOpen

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

name = Gallery
prototype =

House

ArtInventory

doorOpen

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

name = Gallery
prototype =

House

ArtInventory

doorOpen

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Gallery
Entity
Host

Inheritance: Bad For Entities

root

name = Gallery
prototype =

House

ArtInventory

doorOpen

14

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

Entity Prototyping

15

Wednesday, October 13, 2010

Entity Prototyping

• Copy Based Prototyping

• No prototype lookup

• Prototype may be on different entity host

• Look up requires network messaging

• Copy existing entity and modify

• State gets copied too

15

Wednesday, October 13, 2010

Prototyping for entities

16

Wednesday, October 13, 2010

Prototyping for entities

16

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

root

doorOpen()

name = House

Gallery
Entity
Host

Prototyping for entities

16

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

root

doorOpen()

name = House

Gallery
Entity
Host

Prototyping for entities

16

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

root

doorOpen()

name = House

Gallery
Entity
Host name = Gallery

Prototyping for entities

16

root

doorOpen() name = House

Building
Entity
Host

Wednesday, October 13, 2010

root

doorOpen()

name = House

Gallery
Entity
Host name = Gallery

Prototyping for entities

16

root

doorOpen() name = House

Building
Entity
Host

ArtInventory

Wednesday, October 13, 2010

Events

• Multiple event types in virtual worlds

• Message send/recv, timers, proximity

• Register callbacks for specific events

• Can be painful to handle

17

Wednesday, October 13, 2010

Event handling example

• Single Event
handler for all
message types

• Lots of if-else

• Ugly to fit in
incremental model

18

Wednesday, October 13, 2010

Events in Emerson

• Events are described by patterns

• Patterns are objects matched by field

• name, value and prototype

• Similar to patterns in Erlang

• [proto] field[.subfield[...]] [: value]

•(action:borrow,item_id)

19

Wednesday, October 13, 2010

Messaging Example

20

Wednesday, October 13, 2010

Messaging Example

handleLoan <-
(action:borrow,

item_id)
<-customer

20

Wednesday, October 13, 2010

Messaging Example

// handleLoan

handleLoan <-
(action:borrow,

item_id)
<-customer

20

Wednesday, October 13, 2010

Messaging Example

// handleLoan

handleLoan <-
(action:borrow,

item_id)
<-customer

receipt = new Receipt(status = ‘OK’)

20

Wednesday, October 13, 2010

Messaging Example

// handleLoan

handleLoan <-
(action:borrow,

item_id)
<-customer

receipt = new Receipt(status = ‘OK’)
receipt -> customer

20

Wednesday, October 13, 2010

Message Handlers

Wednesday, October 13, 2010

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

Wednesday, October 13, 2010

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

handleLoan

Wednesday, October 13, 2010

Customer
Entity

Customer Entity Host

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

handleLoan

Wednesday, October 13, 2010

Customer
Entity

Customer Entity Host

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

handleLoan

Wednesday, October 13, 2010

Customer
Entity

Customer Entity Host

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

action=borrow
item_id = 65

handleLoan

Wednesday, October 13, 2010

Customer
Entity

Customer Entity Host

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

action=borrow
item_id = 65

handleLoan

Wednesday, October 13, 2010

Customer
Entity

Customer Entity Host

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

action=borrow
item_id = 65

handleLoan

Wednesday, October 13, 2010

Customer
Entity

Customer Entity Host

Message Handlers
LONDON

action:borrowaction:borrow
item_id
item_id

Artist Entity Host Art Gallery Entity

root

Artinventory
getArtDetails

action=borrow
item_id = 65

handleLoan

Wednesday, October 13, 2010

Summary

22

Wednesday, October 13, 2010

Summary

22

• Emerson: Scripting for Federated, Seamless
and Scalable VW

• Federation: Entity Isolation

• Scalability: Asynchronous Messaging

Wednesday, October 13, 2010

Summary

22

• Emerson: Scripting for Federated, Seamless
and Scalable VW

• Federation: Entity Isolation

• Scalability: Asynchronous Messaging

• Easy scripting

• Reuse prototypes, Incremental Scripting

Wednesday, October 13, 2010

Summary

22

• Emerson: Scripting for Federated, Seamless
and Scalable VW

• Federation: Entity Isolation

• Scalability: Asynchronous Messaging

• Easy scripting

• Reuse prototypes, Incremental Scripting

• Event Handling: Pattern based

Wednesday, October 13, 2010

Current State

• Prototype based on V8 JavaScript
interpreter

• Sirikata virtual world (www.sirikata.com)

• Language Library

23

Wednesday, October 13, 2010

http://www.sirikata.com
http://www.sirikata.com

Future

• Need to extend Emerson for

• Persistence features

• Transactions

• Access control and ownership issues

24

Wednesday, October 13, 2010

Thank You

25

Wednesday, October 13, 2010

Live Programming

• Entities can dynamically execute scripts

• eval as in JavaScript

• Modification of state and behavior without
termination

• Access control to prevent executing
arbitrary scripts

26

Wednesday, October 13, 2010

Artist Entity Host

Artist
Entity

LONDON

root

inventory getArtDetails()

addArt()

Live modification

Gallery Entity
27

Wednesday, October 13, 2010

Artist Entity Host

Artist
Entity

LONDON

root

inventory getArtDetails()

addArt()

Live modification

function
deleteArt()

Gallery Entity
27

Wednesday, October 13, 2010

Artist Entity Host

Artist
Entity

LONDON

root

inventory getArtDetails()

addArt()

Live modification

function
deleteArt()

Gallery Entity
27

Wednesday, October 13, 2010

Artist Entity Host

Artist
Entity

LONDON

root

inventory getArtDetails()

addArt()

Live modification

function
deleteArt()

deleteArt()

Gallery Entity
27

Wednesday, October 13, 2010

Still evolving...

• developing more of the syntactic features

• Writing programs to find common cases
and embed these in the language as syntax

• Exposing more of the underlying system
functionality into the language

• Language Library

28

Wednesday, October 13, 2010

Presences

29

Wednesday, October 13, 2010

Presences

• Entities hold references to presences of
their own and other entities

29

Wednesday, October 13, 2010

Presences

• Entities hold references to presences of
their own and other entities

• Communication through presences

29

Wednesday, October 13, 2010

Presences

• Entities hold references to presences of
their own and other entities

• Communication through presences

• Multiple presences to bridge worlds

• same entity can service multiple worlds

29

Wednesday, October 13, 2010

Emerson

30

Wednesday, October 13, 2010

Emerson

• Interpreted language

• similar to JavaScript

30

Wednesday, October 13, 2010

Emerson

• Interpreted language

• similar to JavaScript

• Event-driven execution model

• Each entity executes single script

• Script consists of short event handlers

30

Wednesday, October 13, 2010

Live Programming

• Entities can dynamically execute scripts

• More in the paper

31

Wednesday, October 13, 2010

Scripting in VW

32

Wednesday, October 13, 2010

Scripting in VW

• Add behavior to graphical entities

• Entities execute a program (Scripted Entities)

• Eg. Lua (WoW), LSL (Second Life), UScript
(Unreal)

• Bulletin Boards, Intelligent Fighters

32

Wednesday, October 13, 2010

Summary
• Entities, Presences, Objects

• Code Reuse

• prototypes for objects

• copy and modify for entities

• Incremental development by executing
arbitrary scripts

• Patterns for events with failure callbacks

33

Wednesday, October 13, 2010

Art Gallery

34

Wednesday, October 13, 2010

Artist Entity Host

Entity Host

Art Gallery

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Artist
Avatar

(Presence)

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Artist
Avatar

(Presence)

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Artist
Avatar

(Presence)

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Art Gallery
(Presence)

Artist
Avatar

(Presence)

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Art Gallery
(Presence)

root

getArtDetails()
inventory

Object

Artist
Avatar

(Presence)

34

Wednesday, October 13, 2010

LONDON

VirtualWorld

Artist Entity Host

Entity Host

Art Gallery

Artist
Entity

Entity

Art Gallery Entity

Entity

Art Gallery
(Presence)

handleLoan() action:borrow
item_id

handler
root

getArtDetails()
inventory

Object

Artist
Avatar

(Presence)

34

Wednesday, October 13, 2010

