
The Emergence of Networking
Abstractions and Techniques in

TinyOS Sam Madden
MIT CSAIL

madden@csail.mit.edu

With Phil Levis, David Gay, Joe Polastre, Rob Szewczyk, Alec
Woo, Eric Brewer, and David Culler

UC Berkeley + Intel Research Berkeley

The Rise of Sensor Networks
•  Sensornets:

–  tiny, cheap ⇒ Many, limited resource devices
–  embedded ⇒ Non-interactive, self-maintaining
–  power-constrained ⇒ Lifetime is a critical constraint
–  radio-equipped ⇒ Ad-hoc networking issues

•  Promise to revolutionize industrial, scientific
monitoring

•  Emerging experimental platform: TinyOS + Motes
–  In use by hundreds of research groups and companies

Is sensornet system design
(exemplified by TinyOS)
substantially different than
system design in conventional
environments?

A Brief History of TinyOS
•  TinyOS: initial versions developed at Berkeley in

2000
–  Perl scripts, cruft

•  Moved to SourceForge in Summer 2001
•  Intel-Berkeley heavily involved in development

–  Real programming language (nesC)
–  Many tools (simulators, gcc support, etc.)

•  Now a large, community supported project
–  Berkeley, Intel, UCLA, Vanderbilt largest

contributors

Methodology
•  Using CVS, we study TinyOS evolution

–  Records covering 3 years, 10,000+ commits
•  Focus on networking:

–  Software abstractions
•  General (e.g., active messages)
•  Application specialized (e.g., power management)
•  In-flux (e.g., epidemic dissemination protocols)

–  Unusual system design techniques, e.g.:
•  Cross-layer control
•  Static allocation discipline

•  Highlight successes and failures
•  Not an analysis of programming model

Outline
•  TinyOS and Motes
•  Single Hop Networking
•  Multihop Networking
•  Network Services
•  Lessons and Conclusions

Outline
•  TinyOS and Motes
•  Single Hop Networking
•  Multihop Networking
•  Network Services
•  Lessons and Conclusions

The Mote Platform
•  3 Generations: Rene, Mica, Mica2(Dot)

•  Non-Berkeley Platforms:
–  Intel iMote
–  BTNode

512 Bytes RAM	

8K Code	

4Mhz	

10 kbps Radio	

4K RAM	

128K Code	

4 Mhz	

40 kbps Radio	

4K RAM	

128K Code	

4/7 Mhz	

38.6 kbps Radio	

64K RAM	

512K Code	

12 Mhz	

38.6 kbps Radio	

4K RAM	

128K Code	

8 Mhz	

460 kbps Radio	

TinyOS
•  Programming model and language (nesC)
•  Set of software abstractions

–  Single and multi-hop communication
–  Power management
–  Time Synchronization
–  Flash file system, timers, clocks, etc.

•  Simple concurrency model
–  Hardware events (interrupts): fire asynchronously

•  E.g., timers, peripheral activity, reset
–  Tasks: “posted” to a queue (by events), execute serially

•  No “kernel”; single application at a time
–  Each application includes its own set of OS services

Programming Model & nesC
•  Component-based modularity

–  Components provide and require interfaces
–  Configurations wire components + configurations
–  Provides for easy composition, interposition

•  Event-driven
–  Single (interruptable) thread of execution

•  Dictated by serial ordering of tasks
–  Tasks must be non-blocking, short-lived

•  Instead of blocking, use timer events or other interrupts
–  Upside: Mostly synchronization-free, only one stack
–  Downside: Complicates programs

Applications and Requirements
•  Habitat Monitoring

–  E.g., TinyDB
–  Many-to-one routing
–  Collaborative, low sample rates,
 loose time sync, power management

•  Localization
–  E.g., Vanderbilt shooter localization
–  Precise time sync, high sample rates

•  Tracking
–  E.g., NEST Pursuer-Evader Games demo
–  Localization, any-to-any routing/collaboration

Outline
•  TinyOS and Motes
•  Single Hop Networking
•  Multihop Networking
•  Network Services
•  Lessons and Conclusions

Single Hop Networking
•  Fundamental link-layer primitive

–  Broadcast a message from A to nearby motes
•  Trivially: send from A to its neighbor B

–  General service since TinyOS 0.1

•  Active Messages (AM)
–  Message handler dispatch based on AM type

•  Issues/Tensions:
–  Bit/byte level timing and software decomposition
–  Hardware / software boundary

•  Relationship to time stamping and acknowledgments
–  MAC layer (CSMA/TDMA/Hybrid)

Interface SendMsg {
 command result_t send(uint16_t addr,

 uint16_t len,
 TOS_MsgPtr msg);

 event result_t sendDone(TOS_MsgPtr msg,
 result_t success);

}

Interface ReceiveMsg {
 event TOS_MsgPtr receive(TOS_MsgPtr msg);
}

The Rene Radio Stack
•  RFM TR1000 Radio
•  Hardware interface: read/write bit
•  Software manages:

–  Timer interrupt to read/write bits
–  SEC/DED and CRC coding, DC balancing

•  Interrupt rate limits to 10kbps
–  Encode/decode in tasks to limit per-interrupt time
–  1-byte buffer limits task runtime to 1 byte time (~1.8ms)

•  Low-power listening
–  Sample radio periodically, wake on transmission

•  Synchronous acknowledgments
–  Sender and receiver switch roles without reacquiring channel

•  Enabled by quick start up and switching times

The Mica2 Stack
•  Chipcon CC1000 Radio
•  1-byte buffer with:

–  HW encoding
–  Interrupt per byte
–  CRC computation/checking in event handlers
–  Operation up to 38.6 kbps
–  1 task per message

•  Synchronous acknowledgements are impractical
–  Long send/receive switch time

•  another sender could acquire channel
•  Low-power listen less effective than on RFM

–  On/off times much longer; can’t sample channel as quickly

Trends & Observations
•  SW/HW boundary moving towards HW

–  802.15.4 provides packet-level interface
•  Encryption, authentication, acknowledgments, CRC

–  Decreases CPU load, software complexity
–  Decreases flexibility

•  E.g., link-layer acks infeasible on Mica2

•  Fine line between useful and over-specified
–  E.g., bluetooth inappropriate for sensornets [Leopold

et al, Sensys 2003]

Outline
•  TinyOS and Motes
•  Single Hop Networking
•  Multihop Networking
•  Network Services
•  Lessons and Conclusions

3 Types of Multihop
Networking

•  Many-to-one
–  “Tree-based routing”
–  Recently: general implementation

•  One-to-many
–  Broadcast flood
–  Epidemic/gossip
–  Hybrid
–  Largely application-specific

•  Many-to-many
–  Geographic routing
–  Landmark-based full routes

interface Send {
 command result_t send(TOS_MsgPtr msg,

 uint16_t length);
 command void* getBuffer(TOS_MsgPtr msg,

 uint16_t* length);
 event result_t sendDone(TOS_MsgPtr msg,

 result_t success);
}
interface Intercept {
 event result_t intercept(TOS_MsgPtr msg,
 void* payload,
 uint16_t payloadLen);
}

Many-to-1: AMROUTE vs.
MultihopRouter

•  AMRoute: Proto-routing
–  Pick first neighbor who

transmits beacon as parent

A

B C

D

F
E

B B

B

B B

B

B

B
B

B B B

R:{…}
R:{…}

R:{…}

R:{…} R:{…}

Problems:
Bad Parent Selection
Asymmetric Links
Adaptation vs. Stability

Node D	

Neigh 	

Qual	

B 	

.75	

C 	

.66	

E 	

.45	

F 	

.82	

Node C	

Neigh 	

Qual	

A 	

.5	

B 	

.44	

D 	

.53	

F 	

.35	

•  MultihopRouter
– Estimate link-quality to neighbors

– Using neighbor beacons
– Pick path of fewest hops

• Or fewest xmissions

Broadcast Floods and Epidemics
•  Common app need: reliable dissemination

–  E.g., TinyDB queries, PEG parameters
•  Floods

–  Used extensively
–  Effective way to reach most nodes
–  Randomize retransmits to avoid collisions

•  Epidemics
–  Nodes “infect” neighbors with data, programs
–  Reach all nodes eventually
–  Requires careful tuning of transmit rate

•  Hybrid
–  Flood + epidemic patchup
–  E.g., tinydb, network reprogramming algorithms

Trends & Observations
•  Standard multihop interface has emerged

–  Including promiscuous “intercept” interface
•  Common abstractions

–  Cross-layer neighbor table
•  Link state (e.g., qualities)
•  Network state (e.g., parent, depth, location)

–  Link quality estimation
•  Appears in MultihopRoute, DSDV, TinyDiffusion

–  Forwarding queue; app-configurable length
•  Surprising

–  No receive queues
–  Segmentation/framing generally done by applications
–  Most apps are many-to-one

Outline
•  TinyOS and Motes
•  Single Hop Networking
•  Multihop Networking
•  Network Services

–  Time Sync, Power Management
•  Lessons and Conclusions

Power Management &
Scheduling

•  HPLPowerManagement monitors processor state
–  Powers down when not in use
–  Brittle, platform specific technique

•  Application uses stop interface to power down components
–  Uses timers to power back up

•  Common forms of power management:
–  Low-power listening,
–  Scheduled operation (require synchronization)

•  Power management is app-specific, with simple OS
mechanism
–  Application knows when it should be on or off

•  Versus traditional mobile environments
–  Where needs multiple apps, interactivity requirements conflict

Time Synchronization
•  Many implementations

–  Vanderbilt, UCLA, Berkeley
–  Most rely on low-level events from radio

•  Cross-layer optimization
•  Building a general purpose time sync is hard

–  Not for the reasons the research community is concerned with
–  Instead, due to interactions with application/OS timers

•  Similar to NTP observations

•  Application controlled time-sync much easier
–  Application knows when changes are safe
–  E.g., TinyDB adjusts length of sleep intervals

Trends & Observations
•  Application control of OS mechanism

–  Single app makes this more feasible
–  Low-interactivity enables aggressive policies

•  Tailored to each application

•  Power management surprisingly rare in apps
– Many apps are “demos”, not “deployments”

Outline
•  TinyOS and Motes
•  Single Hop Networking
•  Multihop Networking
•  Network Services
•  Lessons and Conclusions

Widespread Abstractions
•  AM, single, multihop interfaces are “standards”

–  Several link/many-to-one network implementations
•  Time sync, power management: app specific policy

–  Standardized mechanisms
•  Many abstractions still in-flux

–  E.g., many-to-many routing, epidemic protocols

•  Some abstractions have never emerged
–  Where is distributed cluster formation?

Interesting Development
Techniques

•  Cross layer control
•  Scheduling vs. snooping
•  Static Resource Allocation

Conclusions
•  So what’s really different?

–  Limited memory constrains software design
•  E.g, RAM limitations imply a static discipline

–  Timing sensitive net services imply cross-layer control
•  E.g, time-sync, power-scheduling, localization

–  Single, non-interactive app
•  Services are different from their laptop counterparts

–  In-network processing vs. end-to-end connectivity
•  Traditional networking focuses on the latter

•  Conclusion: TinyOS isn’t solely a product of a crippled
hardware platform!

