
A Scalable Server
for 3D Metaverses

Ewen Cheslack-Postava, Tahir Azim, Behram F.T. Mistree, Daniel Reiter Horn,
Jeff Terrace, Philip Levis, and Michael J. Freedman

sirikata.com

Metaverses

2

Metaverses are shared 3D spaces with the unique feature that everything is editable and and
scriptable by users...

Metaverses

3

you can just select objects, like this car here [transition], change their appearance, and open
scripting windows [transition] to control their behavior -- real-time, live, in the system, and other
users participating will see it.

Metaverses

3

you can just select objects, like this car here [transition], change their appearance, and open
scripting windows [transition] to control their behavior -- real-time, live, in the system, and other
users participating will see it.

Metaverses

3

you can just select objects, like this car here [transition], change their appearance, and open
scripting windows [transition] to control their behavior -- real-time, live, in the system, and other
users participating will see it.

Metaverses

• Games

• Augmented reality

• Historical recreations

• Collaborative visualization

• ... what will users create?

4

Applications:

This very flexible environment leads to a wide variety of interesting applications -- games,
augmented reality, historical recreations and collaborative visualization to name a few. But more
importantly, they open the ability to create applications to users, leading to all sorts of
unexpected and novel applications. These systems really lower the bar to creating interactive,
multiuser 3D applications so you don’t need to be a professional 3D graphics developer to create
them.

5

Metaverses promise such interesting, expansive, immersive worlds...

(Images by Chris Platz)

6

...filled with all sorts of novel, user-defined experiences.

(Images by Chris Platz)

7

 Unfortunately, metaverses today don’t even come close to what’s been described in fiction.

One particular problem with today’s worlds, which we’ll look at in detail today, shows up when you
first log into Second Life. When you join, stand still for a minute and let everything load, you get
something that looks like this. But when you step forward a few meters then suddenly...

8

... a lot of content pops in that wasn’t there before. One of the first things we want to do -- join
the world and look around for something interesting -- is crippled or impossible in these systems.
And similar problems appear throughout the system, beyond just what to display; for example,
we’re also limited in how we can communicate with objects, making long distance communication
effectively useless.

9

These are systems problems.

These are all fundamentally systems problems. The application may be graphical, but these
limitations don’t exist because we can’t render more objects -- the previous scene clearly wouldn’t
stress my GPU. The problem is that we don’t yet understand how to build these systems in a way
which scales without sacrificing the user experience.

10

Object Discovery

So why can’t we see more objects in the world? The reason is that this is how we know how to
scale these systems. If we only return nearby objects, then when we carve up the world
[transition] among servers, then each server only needs state from neighboring servers
[transition]. This does allow the system to scale, but leads to an uncompelling experience.

10

Object Discovery

So why can’t we see more objects in the world? The reason is that this is how we know how to
scale these systems. If we only return nearby objects, then when we carve up the world
[transition] among servers, then each server only needs state from neighboring servers
[transition]. This does allow the system to scale, but leads to an uncompelling experience.

10

Object Discovery

So why can’t we see more objects in the world? The reason is that this is how we know how to
scale these systems. If we only return nearby objects, then when we carve up the world
[transition] among servers, then each server only needs state from neighboring servers
[transition]. This does allow the system to scale, but leads to an uncompelling experience.

11

How do we scale up the world without
limiting the scope of interaction?

We face this more general challenge throughout the system: how can we scale the world up
without limiting what we can see and what we can interact with? This paper tries to answer that
question.

Sirikata

12

Seamless, scalable, and federated metaverses

Sirikata is our new platform for seamless, scalable, and federated metaverses that addresses this
challenge. I’ve shown a few screenshots here from applications built in Sirikata by undergrads in
the summer of 2011. The system is still in development, but they were able to quickly build these
applications, none of which would have been feasible in other systems due to the constraints on
interaction I just described.

Insight

13

The real world scales.

Our solutions to these problems are based on a simple insight: the real world scales.

Design Principle

14

Scale by applying real-world
constraints to the system.

Therefore, throughout our design, when we encounter a scalability challenge, we can look to the
real world for guidance. We apply real-world constraints to scale the system. We apply this
principle throughout the system, but I’m going to focus on just one challenge today: object
discovery.

15

Object Discovery

So how can we remove this restriction other systems had to put in place in order to scale? How do
we enable display and interaction with objects throughout the world [transition]?

15

Object Discovery

So how can we remove this restriction other systems had to put in place in order to scale? How do
we enable display and interaction with objects throughout the world [transition]?

Solid Angle Queries

16

Insight: Limited display resolution

Solid angle: how large an object appears

Sirikata exploits the fact that displays ultimately have a limited resolution: the output on your
screen will have a limited bandwidth. Therefore, Sirikata uses a different type of query for object
discovery called solid angle queries. Solid angle measures exactly what we want: how large an
object appears to an observer, or, roughly speaking, the number of pixels the object takes up on
screen. For example, this type of query will always return the sun no matter how far away the
querier is, but small objects like a tree are only returned if they are very large or close by.

17

Ideal

To demonstrate the effect of solid angle queries, here’s the complete, ideal version of a scene we
put together in Sirikata...

18

Distance, 3000 Objects

and here’s what distance query returns, making it appear as if the world just drops off...

19

Solid Angle, 3000 Objects

And this is what it looks like with solid angle queries, using the same number of objects as the
previous slide. It’s a big improvement because the distant mountains are now visible. However,
we’re still missing all those trees. That’s because individually they are too small, so the object
discovery service doesn’t return them. To make sure we don’t miss any of these objects, Sirikata
also supports returning aggregates, collections of objects which have been combined and
simplified.

20

Solid Angle & Aggregates, 3000 Objects

This allows us to complete the scene. All the trees have been filled in, although at lower quality, by
using aggregates instead of individual objects.

21

Ideal

Flipping between the ideal and the version with aggregates that Sirikata uses, we can see some
differences, but they are very close.

22

Object Discovery

Solid angle queries are global.

How do we efficiently and scalably
evaluate solid angle queries?

So with the same number of objects we can get much better results. But solid angle queries are
global -- an object many servers away, if large enough, could be returned. But we also know there
will be a limited output to the query, so our challenge is to build a query data structure and a
distributed system upon it which can efficiently narrow the set down to only the necessary objects
so the system can scale up.

Data Structure - BVH

23

The core of our solution to this is a novel modification of an existing graphics data structure called
the bounding volume hierarchy, or BVH. It’s called a bounding volume hierarchy because we start
with a set of objects, shown geometrically on the left, and create leaf nodes [transition], shown on
the right, where each node tracks the 3D bounding sphere that surrounds the object. We then
build a hierarchy atop them, where each internal node bounds the objects below it: we add X
[transition], whose bounding sphere surrounds A and B, Y [transition] to surround C and D, and
then Z [transition] to surround both X and Y. Z is the root and bounds the entire scene.

Data Structure - BVH

23

A B

C

D

A B C D

The core of our solution to this is a novel modification of an existing graphics data structure called
the bounding volume hierarchy, or BVH. It’s called a bounding volume hierarchy because we start
with a set of objects, shown geometrically on the left, and create leaf nodes [transition], shown on
the right, where each node tracks the 3D bounding sphere that surrounds the object. We then
build a hierarchy atop them, where each internal node bounds the objects below it: we add X
[transition], whose bounding sphere surrounds A and B, Y [transition] to surround C and D, and
then Z [transition] to surround both X and Y. Z is the root and bounds the entire scene.

Data Structure - BVH

23

A B

C

D

X

A B C D

X

The core of our solution to this is a novel modification of an existing graphics data structure called
the bounding volume hierarchy, or BVH. It’s called a bounding volume hierarchy because we start
with a set of objects, shown geometrically on the left, and create leaf nodes [transition], shown on
the right, where each node tracks the 3D bounding sphere that surrounds the object. We then
build a hierarchy atop them, where each internal node bounds the objects below it: we add X
[transition], whose bounding sphere surrounds A and B, Y [transition] to surround C and D, and
then Z [transition] to surround both X and Y. Z is the root and bounds the entire scene.

Data Structure - BVH

23

A B

C

D

X

Y

A B C D

X Y

The core of our solution to this is a novel modification of an existing graphics data structure called
the bounding volume hierarchy, or BVH. It’s called a bounding volume hierarchy because we start
with a set of objects, shown geometrically on the left, and create leaf nodes [transition], shown on
the right, where each node tracks the 3D bounding sphere that surrounds the object. We then
build a hierarchy atop them, where each internal node bounds the objects below it: we add X
[transition], whose bounding sphere surrounds A and B, Y [transition] to surround C and D, and
then Z [transition] to surround both X and Y. Z is the root and bounds the entire scene.

Data Structure - BVH

23

A B

C

D

X

YZ

A B C D

X Y

Z

The core of our solution to this is a novel modification of an existing graphics data structure called
the bounding volume hierarchy, or BVH. It’s called a bounding volume hierarchy because we start
with a set of objects, shown geometrically on the left, and create leaf nodes [transition], shown on
the right, where each node tracks the 3D bounding sphere that surrounds the object. We then
build a hierarchy atop them, where each internal node bounds the objects below it: we add X
[transition], whose bounding sphere surrounds A and B, Y [transition] to surround C and D, and
then Z [transition] to surround both X and Y. Z is the root and bounds the entire scene.

Data Structure - BVH

24

A

C

D

Y

A B C D

X Y

Z

Q

B
X

Z

But now if we add a querier looking for objects that appear larger than the angle shown, we start
at the root and recurse as nodes satisfy the query. Unfortunately, with these large objects, we’ll
quickly cover the whole tree, hitting Z easily...

Data Structure - BVH

25

A

C

D

Y

A B C D

X Y

Z

Q

B
X

Z

then aiming towards X and also recursing for it...

Data Structure - BVH

26

A

C

D

Y

A B C D

X Y

Z

Q

B
X

Z

and testing A and B, even if they don’t satisfy the query. In fact, I only showed one branch, but in
this case we’ll actually check the entire tree. This happens because the bounds are very large
compared the objects below them -- not a problem for distance queries, but a big problem for
solid angle queries, which are heavily influenced by object size.

New Data Structure - LBVH

27

A

C

D

Y

A B C D

X (A) Y (C)

Z (A)

B
X

Z
Q

To make query processing efficient, we augment each node with the largest object in the subtree,
creating the largest object bounding volume hierarchy, or LBVH. This is a minor modification, but
allows for a much more efficient test. When we test query Q against a node, for example Z,
instead of testing the entire bounds, we move the largest object A as close to the querier as
possible within the bounds Z [transition] and test that object. This is a much smaller object and
therefore less likely to satisfy the query.

New Data Structure - LBVH

27

A

C

D

Y

A B C D

X (A) Y (C)

Z (A)

B
X

Z
Q

A

To make query processing efficient, we augment each node with the largest object in the subtree,
creating the largest object bounding volume hierarchy, or LBVH. This is a minor modification, but
allows for a much more efficient test. When we test query Q against a node, for example Z,
instead of testing the entire bounds, we move the largest object A as close to the querier as
possible within the bounds Z [transition] and test that object. This is a much smaller object and
therefore less likely to satisfy the query.

LBVH

28

75 - 90% fewer nodes tested
than with BVH

Overall, the LBVH reduces the number of nodes tested, and therefore the cost, of evaluating a
query by 75-90% over the corresponding BVH. This modification is really what makes it possible to
reasonably evaluate solid angle queries.

Dynamic Objects

29

Moving objects make the LBVH inefficient over time

A B
X

However, the LBVH alone isn’t sufficient. One major problem with the LBVH is that moving objects
make it inefficient over time: as objects move apart, maintaining the same tree structure but
updating the bounds results in the bounding spheres getting stretched out [transition].

Dynamic Objects

29

Moving objects make the LBVH inefficient over time

A B
X

However, the LBVH alone isn’t sufficient. One major problem with the LBVH is that moving objects
make it inefficient over time: as objects move apart, maintaining the same tree structure but
updating the bounds results in the bounding spheres getting stretched out [transition].

Dynamic Objects

30

We could try to use a complicated approach for updating and reorganizing the tree to keep it
efficient, and in fact we investigated that for awhile. But it turns out natural object movement
distributions have a nice property: they’re heavily static. This histogram, collected from objects in
Second Life, shows that this is true -- note the broken Y-axis. We can exploit this very simply, just
separating static objects into their own tree. The dynamic tree is much smaller and can safely
become a bit inefficient, while the static tree changes very slowly and covers the vast majority of
objects.

Dynamic Objects

30

Split between static and dynamic objects

We could try to use a complicated approach for updating and reorganizing the tree to keep it
efficient, and in fact we investigated that for awhile. But it turns out natural object movement
distributions have a nice property: they’re heavily static. This histogram, collected from objects in
Second Life, shows that this is true -- note the broken Y-axis. We can exploit this very simply, just
separating static objects into their own tree. The dynamic tree is much smaller and can safely
become a bit inefficient, while the static tree changes very slowly and covers the vast majority of
objects.

Dynamic Objects

31

10 - 15% less expensive during
short, 100 second experiment

Benefit improves over time

A simple experiment of just 100 seconds shows a 10 - 15% reduction in cost in evaluating a query
compared to a single tree. But the benefit actually improves over time because the bounds get
worse over time.

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

We also exploit the fact that queries are standing, meaning that we register it once and then
continue to receive updates, such as when an object comes closer to us and becomes relevant. To
avoid redundant work when updating queries, we maintain a cut through the tree, indicating
where we finished evaluating the query on the last iteration. To update the query, instead of
starting at the root, we just walk and update the cut, moving it down or up the tree. For example if
the querier moved, we might update this cut by walking horizontally, [transition] finding that node
X does now satisfy the query...

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

We also exploit the fact that queries are standing, meaning that we register it once and then
continue to receive updates, such as when an object comes closer to us and becomes relevant. To
avoid redundant work when updating queries, we maintain a cut through the tree, indicating
where we finished evaluating the query on the last iteration. To update the query, instead of
starting at the root, we just walk and update the cut, moving it down or up the tree. For example if
the querier moved, we might update this cut by walking horizontally, [transition] finding that node
X does now satisfy the query...

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

refine the cut by splitting to nodes A and B. We then recursively evaluate them, checking A and
adding it to the results...

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

and the same for B...

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

Now we continue, and let’s say for this example that C now fails the test -- it no longer appears
large enough to the querier. We remove it from the results, but don’t change the cut...

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

because we still need to evaluate D, finding it is also no longer part of the results. Now that we’ve
found all children of Y do not satisfy the query, we can move the cut up...

Standing Queries

A B C D

X (A) Y (C)

Z (A)

Cuts avoid redundant work

and check Y, then finally finish by leaving the end of the cut.

Standing Queries

38

20 - 56% increase in
query evaluation rate

This example doesn’t make it look like a lot of savings, but they can be substantial when you have
deeper trees as you avoid retesting all the internal nodes. Exploiting standing queries with cuts
improves query evaluation rate by 20% with an LBVH. Aggregates, which I’ll talk about next,
change the way cuts work a little, resulting in even more improvement, up to 56%.

Aggregation

39

A B C D

X (A) Y (C)

Z (A)

Finally, we use this data structure to generate aggregates. Recall that aggregates are collections of
objects which are used if individual objects are too small. Leaf nodes contain single object meshes
[transition]. An internal node represents an aggregate of all leaf nodes below it. We generate an
aggregate mesh and simplify it so internal nodes have approximately the same complexity. The
node Y [transition] above C and D contains 2, simpler trees and the node Z [transition] contains
the entire simplified scene. [transition] We use the cut to decide which aggregates to return
[transition]. With aggregates we see the entire scene, but some is lower quality.

Aggregation

39

A B C D

X (A) Y (C)

Z (A)

Finally, we use this data structure to generate aggregates. Recall that aggregates are collections of
objects which are used if individual objects are too small. Leaf nodes contain single object meshes
[transition]. An internal node represents an aggregate of all leaf nodes below it. We generate an
aggregate mesh and simplify it so internal nodes have approximately the same complexity. The
node Y [transition] above C and D contains 2, simpler trees and the node Z [transition] contains
the entire simplified scene. [transition] We use the cut to decide which aggregates to return
[transition]. With aggregates we see the entire scene, but some is lower quality.

Aggregation

39

A B C D

X (A) Y (C)

Z (A)

Finally, we use this data structure to generate aggregates. Recall that aggregates are collections of
objects which are used if individual objects are too small. Leaf nodes contain single object meshes
[transition]. An internal node represents an aggregate of all leaf nodes below it. We generate an
aggregate mesh and simplify it so internal nodes have approximately the same complexity. The
node Y [transition] above C and D contains 2, simpler trees and the node Z [transition] contains
the entire simplified scene. [transition] We use the cut to decide which aggregates to return
[transition]. With aggregates we see the entire scene, but some is lower quality.

Aggregation

39

A B C D

X (A) Y (C)

Z (A)

Finally, we use this data structure to generate aggregates. Recall that aggregates are collections of
objects which are used if individual objects are too small. Leaf nodes contain single object meshes
[transition]. An internal node represents an aggregate of all leaf nodes below it. We generate an
aggregate mesh and simplify it so internal nodes have approximately the same complexity. The
node Y [transition] above C and D contains 2, simpler trees and the node Z [transition] contains
the entire simplified scene. [transition] We use the cut to decide which aggregates to return
[transition]. With aggregates we see the entire scene, but some is lower quality.

Aggregation

39

A B C D

X (A) Y (C)

Z (A)

Finally, we use this data structure to generate aggregates. Recall that aggregates are collections of
objects which are used if individual objects are too small. Leaf nodes contain single object meshes
[transition]. An internal node represents an aggregate of all leaf nodes below it. We generate an
aggregate mesh and simplify it so internal nodes have approximately the same complexity. The
node Y [transition] above C and D contains 2, simpler trees and the node Z [transition] contains
the entire simplified scene. [transition] We use the cut to decide which aggregates to return
[transition]. With aggregates we see the entire scene, but some is lower quality.

Aggregate Queries

• Queries on a server are all similar

• Aggregate queries to reduce inter-
server querying load

• Filter results further before returning
results to querier

40

Extending to distributed queries is complicated so I’m going to gloss over it a bit -- see the paper
for details. At a high level, we keep distributed queries cheap in two ways. First, we recognize that
all queries from objects on a server will be similar because all the queriers are near each other.
Therefore, instead of having every server answer every query, we aggregate all queries on a
server and send a single query to other servers. The origin server then filters results further for
individual objects.

Server Discovery

411010
This only requires 1 query for each other server, but that’s still a lot if your world is large and run
by thousands of servers. However, the natural distribution of object sizes lets us do better. The
queries from a server will mostly get results from nearby servers, and maybe a few results -- very
large objects -- from a few, more distant servers. Therefore, we can collect the same information
about servers -- bounds and largest objects -- and reduce the number of servers that need to be
queried by ignoring servers that don’t even have a large enough object to be returned.

Server Discovery

• Geometric server discovery

• Determine which other servers need to
be queried

• Built on same LBVH data structure

42

We call this geometric server discovery. This is a natural extension of the LBVH to servers and has
a similar effect: it can reduce the number of servers queried by an order of magnitude.

43

Once we put these all together, we go from this type of image in current systems...

44

....to this final display of a large world with many objects. The view is complete, although at lower
quality for some regions. This querying isn’t just for display either, it also bootstraps further
interaction through messaging. The query format works well for that as well -- you’re only able to
start communicating with objects you were able to make out visually (or learned about indirectly).

Also in the Paper

• Globally consistent distributed data
structure mapping regions to servers

• Global routing table enabling all-pairs
communication

• Forwarder with intuitive, physically-
based weighting emphasizing local
traffic

45

The paper addresses other scalability challenges as well. Here I’ll just give the flavor of each.

* First, we need a globally consistent distributed data structure that maps regions of the world to
servers, allowing any server in the system to direct objects to the appropriate server for a location.
This data structure exploits the fact that at large scales, object distributions move slowly.

Also in the Paper

• Globally consistent distributed data
structure mapping regions to servers

• Global routing table enabling all-pairs
communication

• Forwarder with intuitive, physically-
based weighting emphasizing local
traffic

46

* To allow all pairs of objects to communicate, ensuring we don’t restrict interaction through
messaging, we have a global routing table enabling routing to any object in the system. Aggressive
caching allows us to scale this to billions of objects.

* Finally, to get messages to their destination, or drop them under load, the forwarder uses an
intuitive, physically-motivated weighting scheme which emphasizes local traffic, giving much nicer
behavior than naive uniform weighting or the drastic cutoffs used in other systems.

Wiki World

47

Automatically find information about
objects on Wikipedia

So what kinds of applications does Sirikata enable with these new features? One example that a
student built last summer is called wiki-world and it helps with that first task a user performs
when they join a world -- finding something interesting to interact with. For example, when I join
the world, as objects load, I might click on a distant building and pull up wiki-world. It collects tags
and search terms from the object using messaging, searches wikipedia for relevant articles, and
presents them to the user.

Wiki World

48

Automatically find information about
objects on Wikipedia

This is a very simple application, but the results you get in Sirikata wouldn’t have been possible in
other systems. For a large class of objects which are very relevant to the user, like the Petronas
towers seen here, other systems would not have returned them because they limit visibility to only
nearby objects. Other constraints in those systems would limit further interaction, through
messaging with this object.

But wait, there’s more...

• Audio: distant siren, roar of a crowd

• Efficient property updates

49

There are many more systems challenges
at the intersection of systems, graphics, PL,
databases, ...

A few examples:

We’ve come a long way over the past couple of years, but we still have a lot to do. We hope Sirikata
can be the basis for additional research at this interesting intersection of systems, graphics,
programming languages, databases, and other areas.

But wait, there’s more...

• Audio: distant siren, roar of a crowd

• Efficient property updates

50

There are many more systems challenges
at the intersection of systems, graphics, PL,
databases, ...

A few examples:

To give a taste for some other challenges we’ve encountered, here are a few other examples of
challenges. How would you add audio support to this large distributed system that can convey
both a loud, distant siren and the roar of a crowd, handling thousands of streams, mixing them
spatially, and doing so under the latency constraints of real-time audio? Or how can we most
efficiently propagate property updates, where we might not care about intermediate values, but
the stable state must be reliably provided?

But wait, there’s more...

• Audio: distant siren, roar of a crowd

• Efficient property updates

51

There are many more systems challenges
at the intersection of systems, graphics, PL,
databases, ...

A few examples:

Novel challenges like these arise throughout the system, and we think this community has a lot to
offer in this space.

Thank You

Download and code at

sirikata.com

Questions?

52

If you’re interested in seeing Sirikata for yourself, we have binaries for download and a couple of
test worlds, or videos if you don’t want to install the client. We also hope you’ll check out the code
and we’d love to see contributions and new extensions. All of this can be found at sirikata.com.

