Mateée: A Tiny Virtual Machine
for Sensor Networks

Philip Levis and David Culler
UC Berkeley
Intel Research: Berkeley

A Sensor Network

Se
nsor Network Mot
es

50 g9 1t 2o
SIS

<4 o, VW
OvoaNIY
‘\B\II]VV N

A Sensor Network

=
—
O
2
D
Z
—
O
N
c
D
)
<

Bottom Line

* Need

* Has to be:
— Small
— EXxpressive
— Concise
— Resilient
— Efficient
— Tailorable
— Simple

Proposal

Mate: A Tiny Virtual Machine

for Sensor Networks

Outline

Sensor networks
Requirements
Mateé

Evaluation
Conclusion

Technological Constraints

Mote Type

Date Oct-00 | Jun-01 | Aug-01 Feb-02
Microcontroller (4MHz)
Type AT90LS8535 ATMega163 ATMega103/128
Prog. Mem. (KB) 8 16 128

RAM (KB) 0.5 1 4
Communication

Radio RFM TR1000

Rate (Kbps) 10 10/40
Modulation Type OOK/ASK

Example Application Scenario

Monitor Storm Petrel nesting on Great Duck
Island

Inaccessible: 50 nodes in bird nests
Simple sense and send loop
Runs every 8 seconds — low duty cycle

Frequent reprogramming would be useful

— Biologists don't know what they need until they
see it!

Proposal: Use a Virtual Machine!

« Can express a wide range of applications
Abstraction of complex operations
Safe execution environment
Interpretation overhead small
Customizable instruction sets
VM can handle code dissemination

System Requirements

Requirement
STy e
Expressive
Concise
Resilient
Efficient
Tailorable
Simple

Maté provides

7286B code, 603B RAM
Bytecode interpeter

GDI app is 19 bytes

Safe execution environment
Small CPU overhead
User-definable instructions
Viral self-programming

Why We Need a New VM

Communication centric
Extensibility
Power a critical consideration

JVMs (KVM, PicoJava, etc.)
— Need over 50 KB of RAM

— Strings? Are you crazy?
FORTH

— How do you install code?
— Maté draws on FORTH's design decisions

Maté in a Nutshell

Built on TinyOS, runs on rene and mica
Three concurrent execution contexts
Execution triggered by predefined events
Two stack architecture

Tiny code capsules self-propagate

Communication and sensing instructions
— built-in multihop routing

Maté Architecture

Subroutines Events

gets/sets

<N

Q.
Return

Stack

Operand
PC =) (@) IIII-} Stack
o

£

Mate
Context

Maté Instructions

* One byte per instruction

 Three classes: basic, s-type, x-type
— basic: data, arithmetic, communication, sensing
— s-type: message headers
— x-type: embedded operands (e.g. push constant)

« usr0-7 Instructions: tailorability

basic i = instruction
s-type 0liiixxx x = argument

x-type 1ixxxxxx

Maté Sense and Send

Light is sensor 1

Push light reading on stack
Push message buffer on stack
Clear message buffer

Append reading to buffer
Send message on built-in
ad-hoc protocol

Mate Capsules

Hold up to 24 instructions Subroutines Events
Small enough to fit in a single
TinyOS packet

— atomic installation

— no buffering

Four types: send, receive, gets/sets
clock, subroutine

_ - ifie: I Operand
context-specific: send, receive, | . _, IIII 5 P
-

Stack

clock ac

— shared: subroutines 0-3 (call, Return
ret)

But, How Do Capsules Get There?

Viral Code

* Every capsule contains a version number
 Maté installs newer capsules it hears

 Programs can forward capsules
— local broadcast

— forw, forwo

Self-Forwarding Sense and Send

pushc 1
sense
pushm
clear
add

send

halt

Light is sensor 1

Push light reading on stack
Push message buffer on stack
Clear message buffer

Append reading to buffer
Send message

Forward this capsule

Propagation Example

Propagation Example

Propagation Example

Propagation Example

Propagation Example

4|

Evaluation

« What do we care about?

— CPU cycles
— bandwidth

—energy
 Execution rate
 Code propagation behavior

Mate Interpretation Overhead

 ~10,000 instructions per second
* 34:1 to 1.03:1 compared to native code

Operation Maté Native Cost
and 469 inst 14 inst 34:1
rand 435 45 9.5:1
sense 1342 396 3.4:1
send 685 + ~20,000 | ~20,000 | 1.03:1

Where Do the Cycles Go?

Instruction Time Time portion
pushc 1 40 us 0.06 %
sense 240 us 0.24 %
pushm 40 us 0.06 %
clear 40 us 0.06 %
add 50 us 0.08 %
send 60,000 us
halt 40 us 0.06%

 Dominated by send
 Aggregate overhead: ~1.15:1

Code Propagation Methodology

42 node network
3 x 14 grid, spaced 20 cm apart

3 hop network (radio at very low power)
— Cells were 15-30 nodes

TinyOS 0.61 10Kb networking stack

Time to Complete Infection

+ Self-forwarding timer capsule runs every 20
seconds

 Measures a quiet network (< 10% bandwidth)

Network Programming Rate

100%
80%
60%
40%
200/0

0%
0O 20 40 60 80 100120140160180200220240

Percent
Programmed

Time (seconds)

Propagation Rate Scalability

 Timer capsule ran every second
« Capsule had a forwarding probability:

—if ((rand & 0xl) == 0xl) forward();
 Network cell bandwidth: 16 packets/second

Probability | Expected Interval Time
12.5% 8s 23 s
25% 4s 10 s
S 2s 21s
100% 1s

Energy Consumption

 Maté imposes a CPU overhead
 Mateé provides a reprogramming savings

* Rough energy cost comparison (1 hop)
— full active: ~15mA x 3V x seconds
— sense and send overhead/sample (2.5 ms)
— sleep (~15 uA)
— reprogramming savings (120 seconds)
= 50,000 samples equals one reprogram budget
= 400,000 seconds, 5 days

Conclusions

 Mate can energy

e Spectrum of reprogramming emerges
— hardware
— native code
— bytecode interpreter

Future Work

VM-land can replace user-land

Higher-level languages: motlle
Concurrency control

Code propagation
Bombilla: application specific Mate flavors

TinyOS Sense and Send

event result t Timer.fired() ({
if (state == IDLE && call Photo.sense()) {state = SENSE;}
return SUCCESS;

}

event result t Photo.dataReady(uintlé t data) ({
if (state == SENSE) {
packet->reading = data;
if (call SendMsg.send(packet, sizeof (DataBuf)) ({
state SENDING;
} else {state = IDLE;}

}
return SUCCESS;

}

event result t SendMsg.sendDone (TOS MsgPtr msg) {
if (state == SENDING) {state = IDLE;}
return SUCCESS;

