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Bottom Line

* Need

* Has to be:
— Small
— EXxpressive
— Concise
— Resilient
— Efficient
— Tailorable
— Simple




Proposal

Mate: A Tiny Virtual Machine

for Sensor Networks
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Technological Constraints

Mote Type

Date Oct-00 | Jun-01 | Aug-01 Feb-02
Microcontroller (4MHz)
Type AT90LS8535 ATMega163 ATMega103/128
Prog. Mem. (KB) 8 16 128

RAM (KB) 0.5 1 4
Communication

Radio RFM TR1000

Rate (Kbps) 10 10/40
Modulation Type OOK/ASK




Example Application Scenario

Monitor Storm Petrel nesting on Great Duck
Island

Inaccessible: 50 nodes in bird nests
Simple sense and send loop
Runs every 8 seconds — low duty cycle

Frequent reprogramming would be useful

— Biologists don't know what they need until they
see it!




Proposal: Use a Virtual Machine!

« Can express a wide range of applications
Abstraction of complex operations
Safe execution environment
Interpretation overhead small
Customizable instruction sets
VM can handle code dissemination




System Requirements

Requirement
STy e
Expressive
Concise
Resilient
Efficient
Tailorable
Simple

Maté provides

7286B code, 603B RAM
Bytecode interpeter

GDI app is 19 bytes

Safe execution environment
Small CPU overhead
User-definable instructions
Viral self-programming




Why We Need a New VM

Communication centric
Extensibility
Power a critical consideration

JVMs (KVM, PicoJava, etc.)
— Need over 50 KB of RAM

— Strings? Are you crazy?
FORTH

— How do you install code?
— Maté draws on FORTH's design decisions




Maté in a Nutshell

Built on TinyOS, runs on rene and mica
Three concurrent execution contexts
Execution triggered by predefined events
Two stack architecture

Tiny code capsules self-propagate

Communication and sensing instructions
— built-in multihop routing




Maté Architecture
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Maté Instructions

* One byte per instruction

 Three classes: basic, s-type, x-type
— basic: data, arithmetic, communication, sensing
— s-type: message headers
— x-type: embedded operands (e.g. push constant)

« usr0-7 Instructions: tailorability

basic i = instruction
s-type 0liiixxx x = argument

x-type 1ixxxxxx




Maté Sense and Send

Light is sensor 1

Push light reading on stack
Push message buffer on stack
Clear message buffer

Append reading to buffer
Send message on built-in
ad-hoc protocol




Mate Capsules

Hold up to 24 instructions Subroutines  Events
Small enough to fit in a single
TinyOS packet

— atomic installation

— no buffering

Four types: send, receive, gets/sets
clock, subroutine

_ - ifie: I Operand
context-specific: send, receive, | . _, IIII 5 P
-

Stack

clock ac

— shared: subroutines 0-3 (call, Return
ret)




But, How Do Capsules Get There?




Viral Code

* Every capsule contains a version number
 Maté installs newer capsules it hears

 Programs can forward capsules
— local broadcast

— forw, forwo




Self-Forwarding Sense and Send

pushc 1
sense
pushm
clear
add

send

halt

Light is sensor 1

Push light reading on stack
Push message buffer on stack
Clear message buffer

Append reading to buffer
Send message

Forward this capsule




Propagation Example
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Evaluation

« What do we care about?

— CPU cycles
— bandwidth

—energy
 Execution rate
 Code propagation behavior




Mate Interpretation Overhead

 ~10,000 instructions per second
* 34:1 to 1.03:1 compared to native code

Operation Maté Native Cost
and 469 inst 14 inst 34:1
rand 435 45 9.5:1
sense 1342 396 3.4:1
send 685 + ~20,000 | ~20,000 | 1.03:1




Where Do the Cycles Go?

Instruction Time Time portion
pushc 1 40 us 0.06 %
sense 240 us 0.24 %
pushm 40 us 0.06 %
clear 40 us 0.06 %
add 50 us 0.08 %
send 60,000 us
halt 40 us 0.06%

 Dominated by send
 Aggregate overhead: ~1.15:1




Code Propagation Methodology

42 node network
3 x 14 grid, spaced 20 cm apart

3 hop network (radio at very low power)
— Cells were 15-30 nodes

TinyOS 0.61 10Kb networking stack




Time to Complete Infection

+ Self-forwarding timer capsule runs every 20
seconds

 Measures a quiet network (< 10% bandwidth)

Network Programming Rate
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Propagation Rate Scalability

 Timer capsule ran every second
« Capsule had a forwarding probability:

—if ((rand & 0xl) == 0xl) forward();
 Network cell bandwidth: 16 packets/second

Probability | Expected Interval Time
12.5% 8s 23 s
25% 4s 10 s
S 2s 21s
100% 1s




Energy Consumption

 Maté imposes a CPU overhead
 Mateé provides a reprogramming savings

* Rough energy cost comparison (1 hop)
— full active: ~15mA x 3V x seconds
— sense and send overhead/sample (2.5 ms)
— sleep (~15 uA)
— reprogramming savings (120 seconds)
= 50,000 samples equals one reprogram budget
= 400,000 seconds, 5 days




Conclusions

 Mate can energy

e Spectrum of reprogramming emerges
— hardware
— native code
— bytecode interpreter




Future Work

VM-land can replace user-land

Higher-level languages: motlle
Concurrency control

Code propagation
Bombilla: application specific Mate flavors




TinyOS Sense and Send

event result t Timer.fired() ({
if (state == IDLE && call Photo.sense()) {state = SENSE;}
return SUCCESS;

}

event result t Photo.dataReady(uintlé t data) ({
if (state == SENSE) {
packet->reading = data;
if (call SendMsg.send(packet, sizeof (DataBuf)) ({
state SENDING;
} else {state = IDLE;}

}
return SUCCESS;

}

event result t SendMsg.sendDone (TOS MsgPtr msg) {
if (state == SENDING) {state = IDLE;}
return SUCCESS;




