
Maté: A Tiny Virtual Machine
for Sensor Networks

Philip Levis and David Culler
UC Berkeley

Intel Research: Berkeley

A Sensor Network

Sensor Network Motes

A Sensor Network

A Sensor Network

Bottom Line

•  Need in-situ programming
•  Has to be:

–  Small
–  Expressive
–  Concise
–  Resilient
–  Efficient
–  Tailorable
–  Simple

Proposal

Maté: A Tiny Virtual Machine
for Sensor Networks

Outline

•  Sensor networks
•  Requirements
•  Maté
•  Evaluation
•  Conclusion

Technological Constraints
Mote Type WeC Rene Rene2 Dot Mica

Date Sep-99 Oct-00 Jun-01 Aug-01 Feb-02

Microcontroller (4MHz)

Type AT90LS8535 ATMega163 ATMega103/128

Prog. Mem. (KB) 8 16 128

RAM (KB) 0.5 1 4
Communication

Radio RFM TR1000

Rate (Kbps) 10 10/40
Modulation Type OOK OOK/ASK

Example Application Scenario

•  Monitor Storm Petrel nesting on Great Duck
Island

•  Inaccessible: 50 nodes in bird nests
•  Simple sense and send loop
•  Runs every 8 seconds – low duty cycle
•  Frequent reprogramming would be useful

–  Biologists don't know what they need until they
see it!

Proposal: Use a Virtual Machine!

•  Can express a wide range of applications
•  Abstraction of complex operations
•  Safe execution environment
•  Interpretation overhead small
•  Customizable instruction sets
•  VM can handle code dissemination

System Requirements

Requirement
•  Small
•  Expressive
•  Concise
•  Resilient
•  Efficient
•  Tailorable
•  Simple

Maté provides
•  7286B code, 603B RAM
•  Bytecode interpeter
•  GDI app is 19 bytes
•  Safe execution environment
•  Small CPU overhead
•  User-definable instructions
•  Viral self-programming

Why We Need a New VM

•  Communication centric
•  Extensibility
•  Power a critical consideration
•  JVMs (KVM, PicoJava, etc.)

–  Need over 50 KB of RAM
–  Strings? Are you crazy?

•  FORTH
–  How do you install code?
–  Maté draws on FORTH's design decisions

Maté in a Nutshell

•  Built on TinyOS, runs on rene and mica
•  Three concurrent execution contexts
•  Execution triggered by predefined events
•  Two stack architecture
•  Tiny code capsules self-propagate
•  Communication and sensing instructions

–  built-in multihop routing

Maté Architecture

0 1 2 3

Subroutines

C
lock

Send

R
eceive

Events

gets/sets

C
ode

Operand
Stack

Return
Stack

Maté

PC Mate
Context

Maté Instructions

•  One byte per instruction
•  Three classes: basic, s-type, x-type

–  basic: data, arithmetic, communication, sensing
–  s-type: message headers
–  x-type: embedded operands (e.g. push constant)

•  usr0-7 instructions: tailorability

basic 00iiiiii i = instruction
s-type 01iiixxx x = argument
x-type 1ixxxxxx

Maté Sense and Send

pushc 1 # Light is sensor 1
sense # Push light reading on stack
pushm # Push message buffer on stack
clear # Clear message buffer
add # Append reading to buffer
send # Send message on built-in
halt # ad-hoc protocol

Maté Capsules

•  Hold up to 24 instructions
•  Small enough to fit in a single

TinyOS packet
–  atomic installation
–  no buffering

•  Four types: send, receive,
clock, subroutine
–  context-specific: send, receive,

clock
–  shared: subroutines 0-3 (call,
ret)

0 1 2 3

Subroutines
C

lock

Send

R
eceive

Events

gets/sets

C
ode

Operand
Stack

Return
Stack

PC

But, How Do Capsules Get There?

Viral Code

•  Every capsule contains a version number
•  Maté installs newer capsules it hears
•  Programs can forward capsules

–  local broadcast
–  forw, forwo

Self-Forwarding Sense and Send

pushc 1 # Light is sensor 1
sense # Push light reading on stack
pushm # Push message buffer on stack
clear # Clear message buffer
add # Append reading to buffer
send # Send message
forw # Forward this capsule
halt

Propagation Example

Propagation Example

Propagation Example

Propagation Example

Propagation Example

Propagation Example

Propagation Complete

Node Enters the Network

Node Joins the Network

Evaluation

•  What do we care about?
–  CPU cycles
–  bandwidth

– energy
•  Execution rate
•  Code propagation behavior

Maté Interpretation Overhead

•  ~10,000 instructions per second
•  34:1 to 1.03:1 compared to native code

Operation Maté Native Cost
and 469 inst 14 inst 34:1
rand 435 45 9.5:1
sense 1342 396 3.4:1
send 685 + ~20,000 ~20,000 1.03:1

Where Do the Cycles Go?
Instruction Time Time portion
pushc 1 40 us 0.06 %
sense 240 us 0.24 %
pushm 40 us 0.06 %
clear 40 us 0.06 %
add 50 us 0.08 %
send 60,000 us 99.44 %
halt 40 us 0.06%

•  Dominated by send
•  Aggregate overhead: ~1.15:1

Code Propagation Methodology

•  42 node network
•  3 x 14 grid, spaced 20 cm apart
•  3 hop network (radio at very low power)

–  Cells were 15-30 nodes
•  TinyOS 0.61 10Kb networking stack

Time to Complete Infection

•  Self-forwarding timer capsule runs every 20
seconds

•  Measures a quiet network (< 10% bandwidth)

Network Programming Rate

0%
20%
40%
60%
80%
100%

0 20 40 60 80 100120140 160180200 220240

Time (seconds)

Pe
rc

en
t

P
ro

gr
am

m
ed

Propagation Rate Scalability

•  Timer capsule ran every second
•  Capsule had a forwarding probability:

–  if ((rand & 0x1) == 0x1) forward();
•  Network cell bandwidth: 16 packets/second

Probability Expected Interval Time
12.5% 8 s 23 s
25% 4 s 10 s
50% 2 s 21 s

100% 1 s 400 s

Energy Consumption

•  Maté imposes a CPU overhead
•  Maté provides a reprogramming savings

•  Rough energy cost comparison (1 hop)
–  full active: ~15mA x 3V x seconds
–  sense and send overhead/sample (2.5 ms)
–  sleep (~15 uA)
–  reprogramming savings (120 seconds)
⇒  50,000 samples equals one reprogram budget
⇒  400,000 seconds, 5 days

Conclusions

•  Maté can conserve energy
•  Spectrum of reprogramming emerges

–  hardware
–  native code
–  bytecode interpreter

Future Work

•  VM-land can replace user-land
•  Higher-level languages: motlle
•  Concurrency control
•  Code propagation
•  Bombilla: application specific Maté flavors

TinyOS Sense and Send
event result_t Timer.fired() {
 if (state == IDLE && call Photo.sense()) {state = SENSE;}
 return SUCCESS;
}

event result_t Photo.dataReady(uint16_t data) {
 if (state == SENSE) {
 packet->reading = data;
 if (call SendMsg.send(packet, sizeof(DataBuf)) {
 state = SENDING;
 } else {state = IDLE;}
 }
 return SUCCESS;
}

event result_t SendMsg.sendDone(TOS_MsgPtr msg) {
 if (state == SENDING) {state = IDLE;}
 return SUCCESS;
}

