
The Firecracker Protocol
Philip Levis and David Culler

{pal,culler}@eecs.berkeley.edu

EECS Department
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT
We propose the Firecracker protocol for data dissemi-
nation in wireless sensor networks. Firecracker uses a
combination of routing and broadcasts to rapidly deliver
a piece of data to every node in a network. To start dis-
semination, the data source sends data to distant points
in the network. Once the data reaches its destinations,
broadcast-based dissemination begins along the paths,
like a string of firecrackers.

By using an initial routing phase, Firecracker can dis-
seminate at a faster rate than scalable broadcasts while
sending fewer packets. The selection of points to route
to has a large effect on performance, indicating possible
requirements for any-to-any routing protocols in wireless
sensor networks.

1. INTRODUCTION
Reliably disseminating a piece of data to every node

is a fundamental primitive for wireless sensor networks.
Example uses include disseminating a new program to
re-task the network, a pattern for in-network event detec-
tion, a communication schedule for radio duty cycling,
or configuration constants to tune operation. For event-
driven or rapid response systems, such as a medical sen-
sor network, dissemination speed can be critical. How-
ever, dissemination must also be energy efficient, to main-
tain system lifetime.

Energy-efficient flooding is generally slow, to prevent
broadcast storms, where large numbers of responses lead
to collisions and high packet loss. To minimize the amount
of energy spent to deliver data, nodes must either re-
serve the channel or rebroadcast carefully enough that
collisions are unlikely. The former approach requires ad-
ditional energy in the form of control messages, which
introduce latency. The latter requires using suppression
timers, which imposes latency on each hop.

In contrast, networks can route data very quickly. As
each packet has a single destination, forwarding nodes
can retransmit without worrying about suppression or lo-
cal density. However, routing is along a path to a specific
destination. To disseminate to every node using routing,
the data source would have to name every other node in
the network and send to each of them. Routing is faster

than broadcasts, but reaching every node is less energy
efficient.

In this paper, we propose the Firecracker protocol. Fire-
cracker is designed for small pieces of data that need
to disseminate rapidly, such as tiny virtual programs or
configuration constants. Using a combination of routing
and broadcasts, Firecracker can achieve dissemination
rates close to routing while maintaining the energy effi-
ciency of broadcasts. When a node disseminates data us-
ing Firecracker, it routes the data to several distant nodes
of the network. Once the data arrives, the destinations
start a broadcast protocol. The data payload launches out
into the network, then blossoms out at its target, hence
the name: Firecracker.

Additionally, each node along the route can opportunis-
tically cache data it forwards, and nodes along the route
can overhear it. Instead of merely from a few points,
the network can start disseminating data from each of
the arcs the firecracker took. In these circumstances,
the most efficient end-to-end route is not necessarily the
best one. In sparse networks, the benefit of broadcasts
over unicast in terms of data transferred per unit of trans-
mit energy is not great: taking a long, circuitous route
through the network can propagate data more quickly
than a purely broadcast based dissemination. This raises
questions of what sort of routing protocol is best suited
to use in Firecracker dissemination.

In Section 2 we elucidate the relationship between rout-
ing and broadcasts in wireless sensor networks, consid-
ering energy, stability, and rate. In Section 3 we de-
scribe Firecracker, outlining an example implementation.
In Section 4 we evaluate how well Firecracker performs
in comparison to other approaches. We discuss related
work in Section 5 and conclude in Section 6.

2. SENSOR NETWORKS
Sensor networks are embedded deployments of large

numbers of small, wireless computing devices. The com-
bination of embedment and application requirements ne-
cessitates lasting for long periods of time on very limited
energy resources. Communication is usually the predom-
inant energy cost; how often a node must be awake to
communicate is a good estimate of energy consumption.



(a) Origin Node (b) Routing Data (c) Broadcasting (d) Completion

Figure 1: Example Firecracker protocol behavior. First, the origin node routes the data to a set of distant nodes,
with forwarding nodes opportunistically caching the data. These nodes are shown in black. These nodes then start
forwarding the data with a broadcast dissemination protocol, reaching the remainder of the network, shown in gray.

Disseminating a piece of data throughout a network is
a common requirement for many applications. As sensor
networks deployed for long periods in uncontrolled envi-
ronments, changes to operations are inevitable, whether
in response to changing needs or environmental events.

Broadcasting code too quickly can easily overload the
network, causing the broadcast storm problem [10]. Cur-
rent mote hardware can support approximately forty pack-
ets per second: each mote broadcasting once a second
can become difficult for moderate densities. Suppression
techniques can help in this regard, but loss in the net-
work leads to unintended redundancy[7]. Without know-
ing how many other nodes may reply, nodes must broad-
cast carefully.

In contrast, networks can route data quickly. As there
is only one retransmitter (the next hop), transmissions
can be fast. However, routed data only traverses its end-
to-end path, so routing data to every node is difficult. Not
only does it require redundant traffic, wasting energy, but
individually addressing each node in these lossy, tran-
sient networks may not be possible. Additionally, verify-
ing transmission to each destination can be prohibitively
expensive.

For example, current sensor network routing protocols
running on the mica2 hardware platform [1], can route
across approximately ten hops in a second, after consid-
ering retransmissions, media access, and contention. In
contrast, the Trickle broadcast protocol [7] transmits at
most once a second, to minimize packet losses due to
collisions. Routing can transmit quickly. Broadcasts can
scalably reach every node in a network. The remainder
of this paper presents a way to combine these techniques,
to achieve rapid, scalable, complete propagation.

3. FIRECRACKER
The purpose of the Firecracker protocol is to dissem-

inate a piece of data to every node in a wireless sensor
network. The protocol has two phases. When a node de-
cides to disseminate data, it first routes the data to several

other nodes in the network. Nodes along these routes
store the data as if they had received it as well. Once
a node receives the data, it uses a broadcast-based local
dissemination protocol such as Trickle to spread the data.
Figure 1 visually depicts the operation of the protocol.

To maximize energy efficiency, Firecracker seeks to
minimize network contention and conflict. Broadcast
based dissemination begins a few seconds after routing.
This minimizes the seeding time and maximizes the num-
ber of nodes that receive broadcast messages. Because
successful routing is rapid compared to broadcasting, Fire-
cracker accomplishes this by putting a small timeout (e.g.,
three seconds) between receiving data through routing
and starting the broadcast stage.

Firecracker composes into three parts: the broadcast
protocol, the routing protocol and the selection of seed
points. We visit the requirements for each in turn.

Broadcast Protocol:The basic mode of Firecracker is to
run a broadcast-based dissemination protocol. The pro-
tocol must both propagate data to nodes that do not have
the data as well as detect when to propagate. Tempo-
rary network disconnections should not prevent recep-
tion. The protocol should minimize the cost of detection
but propagate rapidly.

Routing Protocol: The routing protocol must allow nodes
to address arbitrary nodes in the network: traditional sen-
sor network collection trees are insufficient. [13] Because
the purpose of the routing phase is to spread data to dis-
tant points in the network, a naming scheme that allows
nodes to choose such points is helpful. Nodes along
the route should be able to snoop on routed traffic to
cache the data as is passes by. Minimum hop paths are
not as important as reliability and non-redundancy. Tak-
ing a long, winding path through different regions could
quickly install the data on all the routing nodes and those
that overhead the traffic.

Seed Selection:Selecting good seed nodes is critical to
Firecracker’s improving performance over a solely broad-



cast approach. The further the seed points from the ori-
gin, the faster data can propagate. In this situation, the
distance is not physical, but logical: distance in the net-
work by hops. These seeds should also be distant from
one another, or traffic along their routes will be redun-
dant; this distance requirement influences the number of
seed nodes, as too many will lead to redundant traffic
while too few may not cover the network well.

Routing data increases the propagation rate at the cost
of increased transmissions. Using a broadcast approach
allows data to reach a node through many possible paths,
while routing defines the path to take. As routing algo-
rithms generally minimize transmissions by communi-
cating along low loss and symmetric paths, they cannot
take advantage of auspicious receptions or long unidi-
rectional links. However, as the network routes the data,
nodes can snoop on traffic, taking advantage of these oc-
currences. As the base state of Firecracker is running an
epidemic broadcast protocol, we analyze Firecracker’s
cost and benefit over a purely broadcast approach.

4. EVALUATION
To evaluate Firecracker’s cost/rate trade-offs, we in-

corporated it into the Maté virtual machine [6]. In the
Maté programming model, a user writes high level scripts
and compiles them to tiny (tens of bytes) VM bytecode
programs. The user then sends the programs to a base
station node, which starts propagating the code. As each
Maté VM is customized for a specific application or de-
ployment, complex programs within the application do-
main can be represented in a few packets.

4.1 Known Distant Destinations
To evaluate how Firecracker performs with respect to a

basic dissemination algorithm, we built a Maté VM that
allows nodes to route their code to other nodes using
a geographic grid-based routing protocol. Maté nodes
periodically exchange summaries of the programs they
have using the Trickle [7] algorithm.

Using TOSSIM, a TinyOS simulator, we organized nodes
in a twenty by twenty grids, following the methodol-
ogy used in our Trickle work. In these simulations, we
sampled network loss rates using distributions generated
from empirical data. Node spacing was ten feet: the grids
were one hundred and ninety feet on a side. In this topol-
ogy, the network is approximately sixteen hops across
from corner to corner.

Just after the network had booted (but before Trickle
started), we introduced a program at one corner that routed
code to specified nodes in the network. Figure 2 shows
the results. The program originated at the bottom left
corner. Figure 2(a) shows propagation time using only
broadcast-based dissemination. Figure 2(c) shows seed-

36-40
32-36
28-32
24-28
20-24
16-20
12-16
8-12
4-8
0-4

(a) Raw Trickle

20-24
16-20
12-16
8-12
4-8
0-4

(b) Route to Opposite Corner

20-24
16-20
12-16
8-12
4-8
0-4

(c) Route to Near Corners

20-24
16-20
12-16
8-12
4-8
0-4

(d) Route to All Corners
Seeding Mean (s) Last (s) Sends (packets)

Raw Trickle 25 60 20835
Opposite Corner 14 53 18275
Near Corners 12 43 19544
All Corners 5 25 6665

(e) Summary

Figure 2: Topographic Plots and Histograms of Prop-
agation Time for Four Sample Executions.The plots
on the left show time to data reception for nodes on the
grid. The histograms on the right show the percentage
of nodes that were programmed in a given two-second
interval. The table shows average and worst-case time
to reception in seconds as well as the number of packets
transmitted.



0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

P
er

ce
nt

 o
f N

od
es

Time to Reception (seconds)

(a) One Seed

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

P
er

ce
nt

 o
f N

od
es

Time to Reception (seconds)

(b) Three Seeds

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

P
er

ce
nt

 o
f N

od
es

Time to Reception (seconds)

(c) Three from Center

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

P
er

ce
nt

 o
f N

od
es

Time to Reception (seconds)

(d) Three Distant from
Corner

Seeding Mean Last Sends

One from Corner 22 55 21635
Three from Corner 16 51 19789
Three from Center 13 40 19251
Three Distant from Corner 8 24 6424

(e) Summary

Figure 3: Histograms of Propagation Time with Random Destination Selection.Figures show one and three
seeds from a corner, three seeds from the center, and three seeds from a corner that are assuredly distant. The table
shows the average and worst-case time to reception in seconds as well as the number of packets transmitted across all
experiments.

ing at the two adjacent corners, Figure 2(b) shows to the
opposite corner, and Figure 2(d) to all three corners. The
network ran for twenty minutes.

Figure 2(e) shows summarized results for these ex-
periments, including the mean time to reception for the
nodes in the network, the time to the last reception, and
the number of packets transmitted. Increasing the num-
ber and distances of seed points improves the reprogram-
ming time. In addition, as routing to all corners shows,
it can also reduce the number of network transmissions,
for two reasons. First, routed data does not go through
an advertisement-request metadata exchange. Second,
increased synchronization improves Trickle’s efficiency,
up to a factor of two, and rapid routing of data effectively
synchronizes nodes along the path (they reset timers when
they receive the data).

4.2 Random Selection
Section 4.1 showed that by picking a small number

of distant points in the network, a system can propagate
data much more quickly and more efficiently than when
only using a broadcast dissemination protocol. However,
nodes may not be able to easily determine the most dis-
tant points. Being able to take advantage of Firecracker
without requiring topology information increases its use-
fulness.

For example, instead of routing to a predefined set of
nodes, the Firecracker root could route to a random set
of nodes. In our experimental methodology, this means
picking a random node address, and using grid routing
to that point. One easily use logical or non-geographic
routing to accomplish the same thing. This methodol-

ogy assumes that the probability of picking a node as
the end point is uniform over all the nodes. In networks
with non-uniform density, this is advantageous: it’s more
likely to route to dense areas, increasing the number of
nodes that receive the data quickly.

Figure 3 shows mote programming time histograms
using Firecracker with random end point selection. As
end points are random, each histogram is the aggregate
result of twenty experiments. In the first three histograms
(Figure 3(a) to Figure 3(c)), the destination address was
one of the four hundred nodes in the network.

Figure 3(a) shows results for data originating from a
corner being routed to a single end point. Figure 3(b)
shows results for data originating from a corner being
routed to three end points. Although better than raw
Trickle (Figure 2(a)), and roughly similar to picking a
subset of corners (Figures 2(b), 2(c)), three random end
points is not nearly as efficient as picking all corners
(Figure 2(d)). Seeding from the center of the network,
instead of a corner (Figure 3(c)) does not improve per-
formance significantly.

The issue that arises is that these random points may be
close to the origin point, or only halfway across the net-
work. The results in Figure 2 come from picking known
distantpoints. For random point selection to work well,
the random points must be distant. Being able to select
such nodes without any knowledge of the actual network
topology removes the cost of computing or transmitting
that knowledge.

Given that nodes along the path receive the data, the
easiest way to pick a distant seed point – without knowl-
edge of the population of the coordinate space – is to pick



a point that is very, very far away, hopefully outside the
coordinate space. In order to try to reach this point, the
network will route the data to the edge, as far as it can
go. In a routing protocol such as GPSR [5], for exam-
ple, this would involve routing to a geographic location
well outside the area of the network, while in GEM [9] it
would involve routing to a very large depth value.

Figure 3(d) shows results for picking three random seed
points outside the bounds of the network. Instead of
constraining the destination address to the four hundred
nodes in the network, the destination address was in the
range[0, 2048]. These results are close to those obtained
by picking the three corners: the time to the last reception
is twenty-four seconds (instead of twenty-five), and ap-
proximately the same number of packets (sixty-five hun-
dred) are sent. The mean reception time is not quite as
close, it being eight seconds compared to the known cor-
ners’ five, but it represents almost a three fold speedup
over raw Trickle, with a third of the transmission cost.

5. RELATED WORK
Data propagation in wireless sensor networks is cur-

rently an area of significant research, motivated by bi-
nary code dissemination. The binary code dissemination
problem has two characteristics that distinguish it from
Firecracker’s. First, the amount of data being transferred
is very large: bandwidth, rather than per-hop latency,
dominates rate. Second, the data is much larger than
what can be stored in RAM. As access to non-volatile
storage is expensive in terms of energy, this often leads
to hierarchical [2] or windowing [12] approaches to min-
imize the amount of caching necessary on a receiver.

Overcast uses an underlying, single route network to
distribute multicast data in Internet-class networks [4].
Overcast deals with constructed efficient distribution trees
to selective end points, while Firecracker builds on top of
an existing routing protocol. The distinct domains (Inter-
net vs. sensor net) also lead to distinct issues in naming.

Many sensor network applications use basic collection
trees [8]. However, as deployments grow in complex-
ity, needing in-network storage [11] or novel address-
ing [3], more complex routing protocols will be needed.
Like these approaches, Firecracker depends on any-to-
any routing within the network. The prevailing approach
so far has been to define logical coordinate spaces over
a network topology [9]. For the purposes of Firecracker,
a key requirement for these coordinate spaces is names
indicating some notion of network distance.

6. CONCLUSION
By incorporating a routing phase into broadcast based

dissemination, Firecracker can speed propagation signif-
icantly at improved transmission efficiency. In our ex-
amples, we used a simple ray-based approach; one could

imagine larger networks using tree-based or fractal pat-
terns, with branches being timed to minimize contention.
Effective routing requires nodes to be able to easily ad-
dress distant points in a network. Given dissemination’s
importance as a basic networking primitive in sensor net-
works, this suggests an interesting requirement for any-
to-any routing protocols.

7. REFERENCES
[1] J. Hill and D. E. Culler. Mica: a wireless platform for deeply

embedded networks.IEEE Micro, 22(6):12–24, nov/dec 2002.
[2] J. W. Hui and D. Culler. The dynamic behavior of a data

dissemination protocol for network programming at scale. In
Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems, 2004.

[3] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. InProceedings of the International Conference
on Mobile Computing and Networking, Aug. 2000.

[4] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O’Toole, Jr. Overcast: Reliable multicasting with an
overlay network. InProceedings of the 4th Operating Systems
Design and Implementation (OSDI 2000), pages 197–212.

[5] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. InInternational Conference on
Mobile Computing and Networking (MobiCom 2000), pages
243–254, Boston, MA, USA, 2000.

[6] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor
networks. InProceedings of the ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS X), Oct. 2002.

[7] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code maintenance and propagation
in wireless sensor networks. InFirst USENIX/ACM Symposium
on Network Systems Design and Implementation (NSDI 2004).

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless Sensor Networks for Habitat Monitoring.
In Proceedings of the ACM International Workshop on Wireless
Sensor Networks and Applications, Sept. 2002.

[9] J. Newsome and D. Song. Gem: graph embedding for routing
and data-centric storage in sensor networks without geographic
information. InProceedings of the first international conference
on Embedded networked sensor systems, pages 76–88. ACM
Press, 2003.

[10] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast
storm problem in a mobile ad hoc network. InProceedings of the
fifth annual ACM/IEEE international conference on Mobile
computing and networking, pages 151–162. ACM Press, 1999.

[11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
and S. Shenker. GHT: a geographic hash table for data-centric
storage. InProceedings of the first ACM international workshop
on Wireless sensor networks and applications, pages 78–87.
ACM Press, 2002.

[12] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code
update mechanism for wireless sensor networks. Technical
Report CENS Technical Report 30, 2003.

[13] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Proceedings of the first international conference on Embedded
networked sensor systems, pages 14–27. ACM Press, 2003.


	Introduction
	Sensor Networks
	Firecracker
	Evaluation
	Known Distant Destinations
	Random Selection

	Related Work
	Conclusion
	REFERENCES -4pt 

