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We observe that low-power wireless links have non-trivial time-scaling characteristics at
both the physical- and link-layers. Packet reception rate (PRR) analysis shows that links
are bursty rather than constant, i.e., their reception quality varies greatly from the overall
packet reception rate at different times. Furthermore, this variation is seen at many time-
scales. We provide a possible explanation for burstiness using wavelet analysis of RSSI
traces from a variety of wireless links. We show that these traces can be considered as
consistent with statistical self-similarity but not with long range dependence. Using the
variance in RSSI, we suggest a way to easily characterize when scaling occurs. Finally,
while current simulators do not capture scaling, we propose and validate a possible mod-
eling technique for network links that conforms to scaling phenomena.

I. Introduction

Low-power wireless networks are becoming increas-
ingly pervasive in a society that expects informa-
tion anytime, anywhere. These networks include
consumer- and research-grade wireless networks,
such as IEEE 802.15.4 sensor networks, Zigbee net-
works, Bluetooth, and IEEE 802.11 Wi-Fi networks.

Various studies have attempted to model, explain,
and build protocols optimized for the physical- or
link-layers of the wireless channel. These efforts fo-
cus on modeling low-level details of physical- and
link-layers, such as interference and scheduling [11]
or adaptive power control [10]. Some analytical
models [7] of wireless networks, especially the well-
studied cellular phone network, make simplifying as-
sumptions such as time independence of packet recep-
tion. While many studies are complementary [8, 10,
13, 14], some are also contradictory, coming to differ-
ent conclusions even while examining the same data
traces [2, 6]. The purpose of this paper is not to sup-
port or reject any individual conclusion of the afore-
mentioned work, but to suggest a fundamentally dif-
ferent way of understanding and modeling the wire-
less channel. We believe that a parsimonious model
may be possible for wireless links.

The main observation of this paper is that the signal
power time series of many wireless links is consistent
with statistical self-similarity. We consider the gen-
erality of this property and possible modeling tech-
niques that take into account the observed temporal
variations.

II. Background and Related Work
IILA. Burstiness in Wireless Networks

Previous studies have observed burstiness in wireless
links following the IEEE 802.11 and 802.15.4 stan-
dards. Aguayo et al. [2] observed bursty losses in
some links of an 802.11b mesh network deployed in
an urban environment and analyzed the Allan devia-
tion of burst lengths in order to discover characteristic
lengths. Likewise, Srinivasan et al. [14] studied var-
ious 802.15.4 and 802.11 links and defined a metric,
(3, which quantifies the burstiness at the level of in-
dividual packets—the shortest possible time-scale. In
focusing on one time-scale, or by attempting to dis-
cover a characteristic time-scale for bursts, such work
does not capture the full extent of burstiness in many
low-power wireless links. We show that in many such
links, there is no single time-scale for bursts of packet
receptions or losses. Previous work [13, 14] has
shown that bursts occur at shorter time-scales, possi-
bly due to external interference and noise sources. We
observe bursts at longer time-scales as well, charac-
terized by a coherent scaling property that we discuss
in this work.

II.B. Methodology and Datasets

In order to characterize the physical-layer of low-
power wireless networks, we begin with experimen-
tal data about the behavior of these links. The ex-
periments are conducted with TelosB [12] or MICAz
motes running TinyOS 2.0.2. Networks used for the
experiments have a mote that sends packets at a con-
stant rate of 100 Hz. From each experiment with n
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(a) The number of packets received over different
time-scales in a real 802.15.4 experimental link.
Periods of good and bad receptions are observed
over a wide range of time-scales, suggesting per-
vasive burstiness.
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(b) The number of packets received over dif-
ferent time-scales in a simulation using the
TOSSIM simulator 2.0.2 with the same overall
PRR. Even at short time-scales, packet reception
exhibits limited burstiness.

Figure 1: Each diagram is a zoomed-in version of the boxed, highlighted section of the preceding packet reception
trace. The overall packet reception rate of both the experiment and the simulated trace is about 84%.

successfully received and decoded packets, we derive
atime series R = rq,ro, - -, ry, Where r; is the RSSI
value in dBm for the i-th received packet (1 < ¢ < n).
We use R as a representation of the physical-layer of
the network, since signal power is being measured.
For each experiment with k transmitted packets, we
derive a time series P = p1,po,- - -, pr Where p; is 1
if the j-th packet (1 < j < k) transmitted is received
and correctly decoded and O otherwise. Since P mea-
sures the reception characteristics of packets, we use
it to characterize the link-layer of the network.

Such datasets were collected over periods of six
hours to two weeks in IEEE 802.15.4 testbeds at Gates
Hall at Stanford University, at an apartment, and at In-
tel Research Berkeley (Mirage) [4].

II.C. Scaling and Self-Similarity in Time
Series

The presence of self-similarity or other coherent struc-
ture over many time-scales is called scaling, and can
be detected using the wavelet transform and a tool
called the logscale diagram [1]. The logscale diagram
plots octaves (base-2 scales, i.e., octave 1 is 2! pack-
ets, octave 2 is 22 packets, etc.) on the horizontal axis
and y; on the vertical axis. y; can be understood as
the logarithm of an estimator for the variance of the
discrete wavelet transform process dx (7, -) defined by
Abry et al. [1].

The slope of a linear portion of the logscale dia-
gram, «, can be used to check for various types of
scaling. If @ > 1, where the linear regime includes
the largest octaves available, then the underlying time
series can be considered as consistent with the self-
similarity hypothesis, but not with long range depen-
dence. The octave at which the linear regime starts is
known as the onset point of scaling.

A rich body of previous work suggests ways to gen-
erate self-similar time series analytically. We evaluate
the use of two such methods, fractional Brownian mo-
tion [5] and Infinitely Divisible Cascades [3], for their
effectiveness in modeling the physical-layer of low-
power wireless links.

III. Observation and Validation of
Scaling Phenomena

The observation of scaling comes from considering
Figure 1. Figure 1(a) plots the reception charac-
teristics of a real network link over non-overlapping
time windows of varying sizes, and the variations are
heuristically “similar” over different time-scales, sug-
gesting self-similarity and scaling. Figure 1(b) plots
the equivalent link characteristic for the state-of-the-
art TOSSIM simulator for low-power wireless sensor
networks. This figure is simply a way of representing
‘P for the Gates Hall experiment. Current simulation
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Figure 2: Logscale diagram for P for actual exper-
imental data for the Gates Hall link. The solid line
shows the actual value of y;, while the dotted line is a
linear fit over a region including the highest scales.
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Figure 3: Logscale diagram for R for experimental
data for the Gates Hall link. Same conventions as in
Figure 2.

models, which assume signal power to be constant, do
not capture burstiness and scaling correctly.

To quantify and make more rigorous the notion of
scaling in the trace studied in Figure 1(a), we plot its
logscale diagram for P (the link-layer reception trace)
in Figure 2. As expected for a time series consistent
with self-similarity, there is a long linear regime in
the asymptotic domain of this plot, i.e., including the
largest octaves. Here, we find o = 1.21 > 1, which is
consistent with the self-similarity hypothesis.

A natural question to ask is why the link-layer
trace P is consistent with self-similarity. We can pro-
vide insight by considering the scaling behavior of
the physical-layer trace R, which approximates sig-
nal power. It might be expected that scaling and
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Figure 4: Logscale diagram for P from a physically-
based simulation of the Gates Hall link using the real
RSSI trace for signal power (S) and the closest-fit pat-
tern matching algorithm for noise. Same conventions
as in Figure 2.
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Figure 5: Estimation of the point of the onset of scal-
ing in the logscale diagram in Figure 2. The solid
line shows regions of non-decreasing () and the dotted
line shows the () values following the non-decreasing
regime. The estimate of the onset scale is given by the
diamond in the figure.

self-similarity at the link-layer suggests similar be-
havior of the underlying physical-layer of the chan-
nel. The logscale diagram in Figure 3 shows that the
physical-layer is also consistent with self-similarity,
since « = 1.38 > 1, computed including the largest
time-scales available in the data.

In addition, we plot the logscale diagram of P for
a physically-based simulation [13] of the Gates Hall
link in Figure 4. For this simulation, we used the ac-
tual RSSI trace for a signal power time series, which
we denote by S, and modeled noise using the closest-
fit pattern matching algorithm [9] based on an exper-
imental trace. We see that « = 1.13 > 1, indicat-
ing that the data is consistent with self-similar scaling.
This observation provides validation to the simulator
used below to evaluate models for signal power that
take into account the scaling behavior.

IV. Onset Point and Implications for
Protocols

We noted above that in each of the logscale diagrams,
scaling starts at some onset point. The onset point is
estimated using an algorithm of Veitch et al. [15]. Fig-
ure 5 shows how the onset point is estimated for the
logscale diagram in Figure 2; the onset octave shows a
large increase in (), a goodness of fit metric defined by
Veitch et al. [15]. Experimental work [14] has shown
that waiting 500 ms before retransmitting lost pack-
ets greatly increases link reliability in terms of packet
reception rate. The onset scale observed in this exper-
iment, j; = 6, corresponds to 10 ms x 26 = 640 ms,
a relatively close value to the previous experimental
observation [14]. The onset point may correspond to
the octave at which random variations stop impacting
the wireless link and the self-similar scaling starts to
dominate the variations of the link. Protocols that un-
derstand this parameter can use it to optimize times to
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Figure 6: Logscale diagram for P for simulation with
constant signal power (i.e., S = ¢). This logscale di-
agram shows no apparent scaling. Same conventions
as in Figure 2.
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Figure 7: Logscale diagram for P for simulation with
S = Bp—0.192(t) (fractional Brownian motion). De-
spite the self-similarity of S, self-similarity is not ob-
served at the link-layer of the simulation. Same con-
ventions as in Figure 2.

transmit packets so that the likelihood of packet loss
is lessened.

V. Modeling Self-Similar Links

State-of-the-art simulators of wireless networks as-
sume signal power to be constant for a given link.
To evaluate the effectiveness of this technique, we
consider scaling at the link-layer of the simulation; a
logscale diagram is given in Figure 6. We see that
the link-layer simulated by the constant signal power
assumption does not conform to self-similarity, since
a < 1; thus, the commonly applied model does not
correctly capture link behavior.

Next, we use two self-similar time series synthesis
techniques, fractional Brownian motion and Infinitely
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Figure 8: Logscale diagram for P for simulation with
S = Vi—0.192(t) (Infinitely Divisible Cascading ran-
dom walk). Same conventions as in Figure 2.

Divisible Cascading random walks, to generate self-
similar traces of signal power synthetically. We set
only one parameter, H = O‘Tfl, in each of these mod-
els (computed from « of the logscale diagram of the
physical-layer trace R), and modify the range and
minimum and maximum points to correspond to the
experimental range and extrema. We confirmed that
each simulated signal power trace S is self-similar.

Figure 7 shows the result of modeling S with frac-
tional Brownian motion Bp—g.192(t). We conclude
from this figure that despite its self-similarity, frac-
tional Brownian motion is not an appropriate model
for the signal power variations of the wireless links
being studied, since scaling is not observed at the link-
layer. Figure 8, in contrast, shows that modeling S
with an Infinitely Divisible Cascading random walk
Vir—0.192(t) leads to a packet reception trace P for
which o = 1.28 > 1 using a fit including the largest
time-scales. Because it captures scaling at the link-
layer, we have found that among the models that we
have investigated, Infinitely Divisible Cascading ran-
dom walks are the best model for synthesizing signal
power traces for the Gates Hall wireless link.

We are interested in pursuing future work account-
ing for the variations of y; at each time-scale, instead
of relying only on the statistical fit used to calculate
«. It is especially important to understand whether the
drop in y; at the largest time-scale is due to the limited
data at this scale or some more fundamental variation
in the model. This can be done by generating longer
Infinitely Divisible Cascading random walks and sim-
ulating the corresponding link.

VI. Generality of the Scaling Phe-
nomenon

Although many links are consistent with self-
similarity, we observe that not all links exhibit this
property. Figure 9 plots the probability, over groups
of ten links, that a L, the lower 95% confidence bound
for , is greater than 1 versus the logarithm of the vari-
ance in the RSSI traces R of these links. We observe a
phase transition in the consistency of these links with
self-similarity. Stable, low-variance links are never
self-similar, while high-variance links are almost al-
ways self-similar at the physical-layer. Any realistic
model of wireless networks has to take this critical
point into account, and high-variance links should be
simulated with a self-similar model.

VII. Conclusions

By considering the physical-layer structure of wire-
less links, we identified the self-similar nature at both
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Figure 9: This plot considers groups of 10 Mirage
links each, sorted by order of increasing variance, and
plots the probability that al. > 1 versus the base-10
logarithm of the average variance.

the link- and physical-layers of such networks in many
experiments. This concise explanation for the struc-
ture of IEEE 802.15.4 networks provides a possible
reason for the difficulty in discovering common pat-
terns in studies that have delved deeply into the details
of particular networks. The simplicity of this explana-
tion, as evidenced by the fact that we need to set only
one parameter and the extrema in the model traces, is
a strength of the observations of this paper.

We reviewed the phenomenon of self-similarity and
showed how it applies to the physical- and link-layers
of many IEEE 802.15.4 links. We suggested an ap-
proach to modeling links that exhibit this property,
and we showed a phase transition in the presence of
self-similarity at the physical-layer as compared to the
elementary variance of the link’s RSSI trace. We be-
lieve that this general, parsimonious property that ap-
plied to many links in our experiments offers a new
perspective from which to study wireless networks
and to design effective, reliable protocols.
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