The Case for a Network Protocol Isolation Layer

Jung Il Choi, Maria A. Kazandjieva, Mayank Jain, and Philip Levis
Computer Systems Laboratory
Stanford University
Stanford, CA USA
jungilchoi, mariakaz, mayjain@stanford.edu, pal@cs.stanford.edu

Abstract

Network protocols are typically designed and tested in-
dividually. In practice, however, applications use multiple
protocols concurrently. This discrepancy can lead to failures
from unanticipated interactions between protocols.

In this paper, we argue that sensor network communica-
tion stacks should have an isolation layer, whose purpose is
to make each protocol’s perception of the wireless channel
independent of what other protocols are running. We iden-
tify two key mechanisms the isolation layer must provide:
shared collision avoidance and fair channel allocation.

We present an example design of an isolation layer that
builds on the existing algorithms of grant-to-send and fair
queueing. However, the complexities of wireless make these
mechanisms insufficient by themselves. We therefore pro-
pose two new mechanisms that address these limitations:
channel decay and fair cancellation. Incorporating these
new mechanisms reduces the increase in end-to-end delivery
cost associated with concurrently operating two protocols by
more than 60%. The isolation layer improves median proto-
col fairness from 0.52 to 0.96 in Jain’s fairness index. To-
gether, these results show that using an isolation layer makes
protocols more efficient and robust.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Wireless communication;
C.4 [Performance of Systems]: Reliability, availability, and
serviceability

General Terms
Design, Performance, Reliability

Keywords

Protocol Isolation, Wireless Network Architecture, Fair-
ness, Isolation Layer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SenSys’09, November 4-6, 2009, Berkeley, CA, USA.

Copyright 2009 ACM 978-1-60558-748-6 ...$5.00

1 Introduction

Imagine a general-purpose operating system without pro-
cess isolation. As a single memory bug can corrupt any and
all programs, an administrator must heavily test every system
configuration before use. Debugging failures is exceedingly
difficult: one must explore the entire system.

Unfortunately, this is the situation in sensor network pro-
tocols today. Applications run multiple protocols which can
and do interact, often in negative ways. Protocols seem to
work well in the lab but perform poorly in deployment. Iden-
tifying the exact cause of a failure is extremely costly and dif-
ficult. A developer has to consider the entire cross-product of
possible interactions: in practice, deployments often cannot
definitively state the cause of observed failures [35]].

The experiences of researchers at Delft University are
one example of inter-protocol interactions causing a net-
work wide failure [24]. Bursty packet transmissions from
Deluge [[17] suddenly changed link qualities and caused the
MintRoute [39] routing topology to collapse, resulting in a
2% data delivery ratio at the gateway. This class of failures is
not unique to this example; it stems from a more fundamental
cause — the inter-protocol interference that current sensornet
systems cannot prevent. Even if one can find the exact cause
of abug, it is hard to fix it since it is not the fault of any single
protocol. For event-driven sensor networks which have long
periods of quiescence punctuated by bursts of high traffic,
such as seismic detection networks [37]], providing isolation
within these bursts of activity is critical.

Just as an operating system isolates processes, a network
architecture must isolate protocols. Isolation means that a
network protocol should minimally affect the behavior of
other protocols. The packet reception ratios a protocol ob-
serves should be independent of what other protocols are
running. If a network architecture provides isolation, then it
minimizes inter-protocol interactions, making it easier to de-
sign protocols and compose services into larger, more com-
plex applications.

Protocol isolation is not a sufficient requirement by itself.
For example, a network architecture could provide perfect
isolation by only allowing one protocol to transmit. While
such an architecture would have no inter-protocol collisions,
this perfect isolation comes at the cost of starvation. Just as
operating systems schedules the CPU between processes, a
network architecture must also schedule access to the wire-
less channel between protocols. This scheduling should pro-

vide protocol fairness, which gives each protocol a fair share
of the channel, such that no protocol starves. Simple MAC-
layer fairness, where each node gets an equal share of the
channel, is insufficient, as protocols receive a share of the
channel proportional to their number of transmitting nodes.
This fairness penalizes protocols with coordinated transmit-
ters, such as Deluge. A protocol fairness scheme should pro-
vide fair access to the wireless medium for every protocol,
while making sure that no protocol is starved at any node.
Section[4.1]discusses these aspects in detail.

This paper proposes introducing an isolation layer into the
networking stack. An isolation layer sits between the MAC
and network layers, coordinating medium access to provide
protocol isolation and fairness. The paper presents the details
of an example isolation layer implementation that achieves
isolation and fairness using two mechanisms, shared colli-
sion avoidance and fair queueing across protocols. Shared
collision avoidance allows multiple network protocols to
avoid collisions with one another. Fair queueing guarantees
that no protocol starves. Combining these two mechanisms
in a separate software layer provides an isolated channel en-
vironment without requiring significant modifications to ex-
isting MAC or network protocols.

To provide its shared collision avoidance, the isolation
layer uses grant-to-send (GTS), a recently proposed colli-
sion avoidance algorithm. We defer an overview of grant-to-
send to Section [3]and a more detailed description to a tech-
nical report [8]], but in summary it allows a protocol to tell
nearby nodes how long it expects a packet recipient to use
the channel. Many network protocols today incorporate local
collision avoidance mechanisms, such as packet suppression
and retransmission timers. For example, a unicast routing
protocol tells nearby nodes it expects the packet to be for-
warded, while a binary dissemination protocol like Deluge
tells nearby nodes that it expects to hear a flurry of pack-
ets. The key insight is that pushing this functionality into the
isolation layer sitting below these protocols allows them to
share information and avoid inter-protocol collisions.

To provide protocol fairness, the isolation layer extends
the classic fair queueing algorithm by Demers et al. [[10] and
fair scheduling by Vaidya et al. [34] with two novel mech-
anisms: fair cancellation and channel decay. These mech-
anisms are necessary in order to allocate a shared wireless
channel — rather than the private wired channel of traditional
fair queueing — among multiple nodes with different packet
loads for broadcast as well as unicast protocols.

Since multiple nodes can be the source of packets for a
particular protocol, each node needs to track the cumulative
channel occupation time over all senders. Lost packets lead
to inconsistent accounting between nodes, resulting in un-
even channel shares for different protocols. Channel decay
periodically adjusts local node state on how long protocols
have used the channel: this smoothes out inconsistencies
caused by the lossiness of the wireless channel. Fair cancel-
lation minimizes the adverse effect Vaidya’s delay algorithm
has on throughput. These protocol fairness mechanisms can
be trivially extended to provide per-protocol-instance fair-
ness, as Section [6.2] shows.

We evaluate the effectiveness of this isolation layer and
its mechanisms through a series of testbed experiments. We
use end-to-end delivery cost, defined as the total number of
transmissions per goodput, to quantify the effectiveness of
isolation. Concurrent operation of a collection and a dis-
semination protocol shows that end-to-end delivery cost can
increase by up to 72% compared to the case where each pro-
tocol runs in isolation. The isolation layer with GTS can re-
duce this increase in cost by more than 60%. In addition, our
protocol fairness techniques restore fairness in the testbed.
For example, the ratio of transmitted bytes between a collec-
tion and a dissemination protocol is improved from 1:21 to
1:3.7 in a single-hop scenario.

To the best of our knowledge, this paper is the first at-
tempt to explore a new domain of the fairness problem, pro-
tocol fairness in a wireless channel. As more multihop net-
work protocols that exploit the broadcast nature of the wire-
less medium emerge, such as MORE [7]] and MIXIT [21]],
fairly scheduling and queueing them is critical for extensible
systems that can leverage multiple protocol options.

Enforcing per-protocol fairness at the isolation layer does
not preclude fairness on other layers, such as per-flow, per-
node, or per-user fairness. In fact, these fairness principles
are meaningful only on top of per-protocol fairness. Per-
node fairness in collection protocol is of limited use when a
dissemination protocol starves the collection protocol.

Fairness and isolation are orthogonal concerns to energy
efficiency: they only affect system behavior when a network
is under contention. Many ultra-low power monitoring net-
works, for example, have such low utilization in their report
cycle that fairness and isolation algorithms do not alter their
behavior. However, these principles allow networks to better
handle periods of significant load, such as during reprogram-
ming events. Similarly, in event-driven networks that exhibit
long periods of dormancy punctuated by periods of intense
network-wide activity, fairness and isolation can prevent un-
foreseen interactions and failures during important events.
Correspondingly, fairness and isolation neither aid nor hin-
der energy efficiency, except for possibly preventing failures
that cost energy.

The rest of this paper is structured as follows. Section
introduces the abstraction of an isolation layer and the mech-
anisms we use to implement it. Section [3] presents GTS and
describes how it can be used as a shared collision avoidance
mechanism. Section [examines different kinds of fairness
and how to achieve protocol fairness within the isolation
layer. With experiments in various settings, Section [3] and
Section [f]explore how GTS and fairness schemes affect pro-
tocol behavior and isolation.

2 Isolating Network Protocols

This section argues that protocol isolation is necessary. In
addition, it identifies two key principles that any proposed
isolation layer should employ — a shared collision avoidance
mechanism and fairness across protocols.

The ability to use multiple layer 3 protocols concurrently
is a common requirement in large wireless sensor systems.
Rather than use a single layer 3 protocol, such as IP, these
networks improve their energy efficiency by using a variety

CTP Deluge IFRC
Collision Avoidance Collision Avoidance Collision Avoidance
v g/
| Link Layer |

(a) Current network architecture with individual
collision/congestion avoidance mechanisms

CTP | | Deluge | | IFRC
4 v X

| Isolation Layer |

v
| Link Layer |

(b) Network architecture with isolation layer of

shared mechanisms
Figure 1. Individual collision avoidance mechanisms in
the current architecture do not work across protocols; a
new isolation layer can organize and share collision in-
formation.

of protocols, each one optimized for a different workload.
MintRoute [40]], CTP [2]], MultihopLQI [1], IFRC [29] and
other collection protocols build minimum-cost trees to data
sinks such as gateways. These collection protocols estab-
lish flows up a tree to pull data out of a network. Dissem-
ination protocols, such as Deluge [17] and MNP [36], use
leader elections and flurries of broadcasts to push data —e.g.
new programs — into a network. Applications often use ad-
ditional protocols beyond these two basic data flows, such as
time synchronization [27] for data time-stamping and geo-
graphic [20] or coordinate [6} [12} 26] routing protocols for
in-network storage [11,[30]].

Typically, however, each of these protocols is designed,
developed, and evaluated separately, hoping that it operates
as well when other protocols are present. Designing a sys-
tem with multiple protocols as building blocks can easily
run into unforeseen interactions and complications. This dis-
crepancy makes the design phase complicated, performance
unpredictable, and debugging difficult.

This paper argues that improving the isolation between
layer 3 protocols will greatly simplify the design and im-
plementation of efficient wireless sensor systems. Just as
an operating system simplifies building complex system on
a single node by isolating processes, a network that isolates
protocols would enable each one to be developed, tested, and
optimized independently.

Given multiple layer 3 sensornet protocols, there are two
ways to achieve protocol isolation. The first is to design all
layer 3 protocols such that they respect each other channel
requirements. This is similar to the way non-TCP protocols
in the Internet are required to be TCP-friendly [16]. The
second option is to implement a new mechanism that sits be-
tween layers 2 and 3 and ensures that no one protocol inter-

acts badly with the rest minimizing the modifications to the
layer 3 protocols. Changing all existing sensornet network
protocols would be infeasible. Thus, this paper uses the sec-
ond route and shows that it is an effective way to achieve
protocol isolation.

2.1 Shared Collision Avoidance Mechanism

Layer 3 protocols often have mechanisms to avoid inter-
ference as in Figure[I(a)] For example, CTP delays the next
transmission for a random period (16~31ms) to give time
to the previous packet to be forwarded out of interference
range by using a transmission timer that prevents back-to-
back transmissions. Deluge can suppress transmissions from
neighbors while a node is receiving data bursts [35]], since
data bursts can easily collide with these transmissions.

These mechanisms do not work across protocols: a node
can transmit non-CTP traffic during CTP’s backoff or a
neighbor can send non-Deluge traffic to a node that is re-
ceiving a binary update. MintRoute [39] has been reported
to break when Deluge coexists in a deployment [24]. That is,
the bursts of data packets cause excessive collisions with the
control packets of MintRoute, collapsing the network topol-
ogy. Section [5|also shows that concurrent operation of CTP
and Deluge decreases the efficiency of both protocols, in-
creasing the end-to-end delivery cost by 24% and 72% re-
spectively. Many other deployments have also reported low
data yields [3} 14,31} 132]. While the causes are mostly uncer-
tain, we believe many of them to be the interactions between
network protocols.

To deal with undesired interactions, some protocols sim-
ply assume inter-protocol collisions do not exist. Flush [22]]
assumes it has complete control of the channel and supports a
single flow. While such strict partitioning may be acceptable
for application-level workloads, it precludes concurrent ser-
vices such as management, time synchronization, code dis-
tribution, or localization.

Another approach is building vertical software stacks that
tweak and couple existing protocol implementations. During
a recent deployment [37], researchers had to rewrite signifi-
cant portions of the MultihopLQI protocol in order to make it
work with time synchronization and network event detection.
Some systems consider the problem so acute that they ex-
plicitly prohibit introducing new layer 3 protocols; the Tenet
system architecture explicitly constrains low power sensors
to only use data collection trees, citing the “fragility and un-
manageability” of introducing data fusion protocols [14].

We propose a shared underlying mechanism to isolate net-
work protocols as shown in Figure [[(b)] The isolation layer
organizes collision avoidance information of network proto-
cols so that a requirement to avoid collisions from one pro-
tocol can be respected by all other protocols. For example,
Deluge can notify the isolation layer of the collision vulner-
able period of data bursts, and the isolation layer can sup-
press MintRoute’s control packets accordingly, avoiding loss
of the control packets.

Thus, the goal of this mechanism is to:

Minimize the effect of concurrently running
protocols on the packet delivery ratio observed by
any given protocol.

In practice, we use the end-to-end cost of delivering a
packet to measure the degree of protocol isolation. We chose
this metric over packet delivery ratio on a single link since
layer 3 mechanism of choosing the next hop affects link
packet delivery ratio; layer 3 protocols can switch to a longer
path when a link becomes congested.

In operating systems, designers do not worry about the
case where some part of the memory is corrupted by other
processes. With an isolation mechanism in place, network
protocols can be designed and deployed without worrying
about unforeseen protocol interactions.

2.2 Fairness

Shared collision avoidance itself is not enough. The be-
havior of a system would be far from intended if a proto-
col becomes starved due to other protocols. For example, if
a time synchronization protocol starves due to heavy trans-
missions from a collection protocol, all delivered data could
be meaningless. As traditional systems put much caution in
fairly distributing CPU time among processes, network pro-
tocols must get a fair share of the bandwidth.

Fairness research has concentrated on IP-based, store-
and-forward networks with per-flow fairness [[10} 1319} 25|
28.,134]]. However, it is not immediately obvious how to apply
this kind of fairness schemes to per-protocol fairness. Since
each network protocol has a unique goal and an optimized
traffic pattern, there does not exist a unified end-to-end met-
ric that can work across protocols. For example, delivering
one packet in a collection protocol is not directly comparable
to delivering one packet in a dissemination protocol.

Therefore, the mechanisms in this paper strive to achieve
a single-hop fairness goal: distribute the channel around a
node equally for each protocol. Also, counting the number of
bits each protocol access the channel is not enough because
collision avoidance introduces wait times. When one pro-
tocol makes other protocols wait longer yet sends the same
number of bits, it must be penalized.

Thus, the second principle of an isolation layer is to:

Provide a fair share of channel time around
each node to each protocol, including wait times.

A major challenge is that all nodes can be data sources of
each protocol and this does not fit the traditional notion of
flow fairness. Since the channel around each node has a dif-
ferent set of sources for each protocol in multihop network,
the state inconsistency is inherent. In this case, it may not be
even possible to achieve a perfect fairness at all.

In the following two sections, we explore specific mech-
anisms for implementing an isolation layer in accordance to
the two principles above.

3 Shared Collision Avoidance

Grant-to-send (GTS) is a collision-avoidance mechanism
proposed by Choi et al. [8] that can be used to provide iso-
lation between multiple network protocols. Every link-layer
packet contains a grant duration field, which grants the chan-
nel around the transmitter to the receiver of the packet. That
is, upon overhearing or transmitting a packet, nodes can only
transmit after the grant duration has expired, and only the re-
ceiver of the packet can transmit immediately.

The local collision avoidance mechanisms of CTP can be
expressed using GTS. Section [2| introduced CTP’s transmis-
sion timer — a simple mechanism that delays the next packet
transmission to give time for the previous packet to be for-
warded out of interference range. This mechanism can be
replaced by GTS by including a grant of one packet time in
each sent packet. Since a grant silences its originator, the
recipient of the packet will have time to forward the data up
the collection tree.

The lack of a layer 3 collision avoidance mechanism in
Deluge has been shown to cause collision losses during a
bursty transmission. Therefore, an improved version, V-
Deluge [35], augments a request packet to silence neighbors
while the data exchange takes place. This approach is equiv-
alent to the grants that GTS supports; a network architec-
ture that employs GTS can use regular Deluge where request
packets carry a grant for the duration of the data burst.

GTS is a general mechanism that can be effectively ap-
plied to protocols that exhibit correlated packet transmis-
sions. Ideally, the grant included in one packet will prevent
collisions for the packet or packets that follow. We believe
that because of its generality, GTS can act as a common lan-
guage that different network protocols can use to communi-
cate collision avoidance information with each other.

However, the authors of GTS do not explore what hap-
pens when multiple protocols use GTS at the same time. The
key difference between using V-Deluge and GTS is that the
first affects only packets from Deluge but the latter affects
packets from every protocol since GTS is a MAC mecha-
nism. This property enables GTS to be used as a shared
mechanism for the isolation layer, enforcing the grants on
all protocols. For example, if Deluge requires silence while
anode receives a burst of data packets, all other protocols are
held in the isolation layer, providing silence as required.

When GTS is used by multiple network protocols concur-
rently, it is possible that a node is granted by one protocol but
sends on behalf of another. GTS specifies neither the desti-
nation of the granted packet, nor the protocol it should come
from. This is important since otherwise one protocol could
easily starve the rest or two nodes could take over the chan-
nel. At the same time, this underspecification still leaves
space for unfairness in the way channel time is shared be-
tween protocols and nodes. The following section discusses
this issue in more detail.

Ideally, GTS requires overhearing of all packets in the
vicinity of a node. In practice, nodes can have their radios
turned off during periods of low contention. In such periods,
a node may not overhear packets, and hence not update its
GTS timer. However, since a node in low-power state is not
contending for the channel, collision avoidance is not crucial
in this case.

4 Fairness

GTS introduces a significant fairness problem: a sin-
gle packet’s grant can vary by two orders of magnitude (1-
255ms). If the underlying transmission scheduler operates
on a packet basis, then protocols which issue large grants
can request a much larger share of the channel than those
which issue small grants.

Furthermore, sensornet protocols vary in their traffic pat-
terns: in routing protocols like CTP, every node may be try-
ing to send to their next hop, while in dissemination pro-
tocols like Deluge, a single node sends a burst of packets.
MAC-layer fairness says that each node should have an equal
chance of acquiring the channel, but this policy penalizes
protocols, such as Deluge, that centralize their transmissions.

The isolation layer provides protocol fairness with two
classic algorithms: fair queueing by Demers et al. [10], de-
cides which packet a node should send, and fair scheduling
by Vaidya et al. [34], extends this algorithm to the shared
medium of wireless by controlling when a node sends.

By themselves, these two algorithms are insufficient: the
lossy nature of a wireless channel and the realities of packet
radio behavior introduce problematic edge conditions and
scheduling challenges. The isolation layer introduces two
novel mechanisms, channel decay and fair cancellation, to
address these challenges. The rest of this section describes
these classic algorithms, their limitations, and the isolation
layer’s solutions in greater detail. First, however, we define
metrics for fairness in order to quantify the issues fairness
encounters in wireless networks.

4.1 Metrics

Traditionally, fairness and fair queueing are concerned
with whether the throughput on a wired channel is allocated
fairly. This model assumes that a single node transmits on
the channel. In wireless, however, many nodes share the
same channel. Furthermore, unlike fairness across unicast
flows, fairness across protocols means many neighbors may
have transmissions.

We define three fairness metrics, all measured by Jain’s
Fairness Index (JFI)! [18]: channel fairness, transmit fair-
ness, and protocol fairness. Let O, be how long protocol p
has occupied the channel at node N, and TA’,’ be the amount
of time node N has spent sending packets of protocol p. We
define the metrics as follows:

e Channel fairness refers to the time that a protocol’s
packets occupy in the wireless channel. Channel fair-
ness for a node N is Vx : JFI(O},), that is, the JFI over
channel occupancy by protocols at that node.

e Node fairness is the time different nodes spend send-
ing a particular protocol. Node fairness is the MAC no-
tion of fairness: a scheme is node fair if each node with
packets to send for a protocol receives an equal share of
the channel. Node fairness for a protocol p is therefore
VY : JFI (T)}7), that is, the JFI over node transmissions
for a protocol.

e Transmit fairness is the time a particular node spends
sending protocols. It is the traditional notion of fairness
in queueing: it represents what share of a node’s trans-
mit time each protocol occupies. Transmit fairness for
anode N is therefore Vx : JFI(TY).

A primary goal of the isolation layer is channel fairness:
each protocol should receive a fair share of the medium. One

32
VFI = Ez):zx;)?’ where n is the number of elements. The worst

fairness is 1/n, and the best is 1.

Case 1: nbytes n bytes n bytes

Case2: nbytes
Figure 2. A multihop example where it is impossible to
obtain channel fairness for all nodes. N1 and N3 wish to
transmit protocol P1, while N2 wishes to transmit proto-
col P2. Case 1 achieves channel fairness only for N1 and
N3, while Case 2 achieves fairness only for N2.

2n bytes n bytes

challenge that protocol fairness in wireless networks intro-
duces is that all nodes are potential sources. The simplest
way to achieve channel fairness is to have a single node trans-
mit, reducing a distributed problem to a centralized one. But
doing so has a node fairness of zero: all other nodes starve.

Furthermore, multihop networks can have workloads
where it is impossible to simultaneously provide fairness for
one or all of the metrics at all nodes. Figure [2| shows an ex-
ample case for channel fairness in a 2-hop 3-node network.
In case 1 in the figure, where all nodes transmits n bytes, N1
and N3 see a total of n bytes from both protocols, but N2 sees
2N bytes from P1 and n bytes from P2. N1 and N3 achieves
channel fairness but N2 does not. In case 2, where N2 trans-
mits 2N bytes, N2 sees 2N bytes from both protocols, but N1
and N3 see a total of n bytes from P1 and 2n from P2. In this
case, channel fairness is achieved only at N2.

While the isolation layer places channel fairness as its
most important goal, it does so while balancing its needs for
node and transmit fairness as well.

4.2 Basic Algorithm

The isolation layer uses the basic idea of simple fair
queueing [[10]]. A node N maintains a table of how long each
protocol p has occupied the channel (O%). On each transmis-
sion or reception, the node adds time to the associated table
entry. The isolation layer queues packets such that the next
packet is always from the protocol with the smallest OF..

Traditionally, the update is proportional to a packet’s
length. However, since GTS packets reserve the channel and
suppress other transmitters, the isolation layer includes grant
durations in its calculations. When the isolation layer up-
dates OF, it adds not only the packet airtime but also that
packet’s grant duration. This scheme is equivalent to virtual
tags from the fair queueing literature 10, 25| 34], with the
exception of using grant durations to update channel time.

Fair queueing is insufficient for channel fairness when
there are multiple transmitters. For example, if there are 4
nodes, and three wish to transmit protocol P; while only one
wishes to transmit protocol P», then three times out of four a
P node will win CSMA backoff and transmit. In addition to
fair queueing, fairness requires fair scheduling, which con-
trols when nodes transmit.

For fair scheduling, we borrow ideas from Vaidya et
al. [34] and Luo et al. [25] and introduce an additional wait
time before CSMA backoff. This wait the isolation layer to
skew the probability that a given node will win CSMA.

While good starting points to establish protocol fairness,

P1 | P2 P1 | P2
N | N2 @s (@ N | N
v @ @ v e
N+L | N-1 @ P1(" :
N+L1 | N @s P2 @ N+1 | N+2

Figure 3. An example case of the ping-pong effect with
two nodes sending two protocols. The two tables show
the state of each node over time. A state inconsistency,
which can be caused by packet losses, can result in a low
transmit fairness, with the left node sending only P2 and
the right node sending only P1.

N+1 | N+1

each of these algorithms has limitations when used in multi-
hop wireless networks: in practice they can exhibit poor fair-
ness. The next two subsections examine these limitations in
detail, and describe the mechanisms the isolation layer uses
to achieve good channel, transmit, and node fairness.

4.3 Fair Queueing

To explain a major challenge fair queueing encounters in
a wireless network, we start with a very simple case: two
nodes both send packets from two protocols P; and P, as fast
as possible. If there are no packet losses, this network will
achieve node, channel, and transmit fairness. Each node has
an equal chance of acquiring the channel, and on doing so
will transmit the protocol with a smaller channel time.

Packet losses, however, complicate this situation. If a
node fails to hear a transmission, then the channel occupancy
tables on the two nodes become inconsistent: the transmit-
ter has incremented channel occupancy but the receiver has
not. Because each node is queueing packets based on its
own local view of the channel, an inconsistency can lead to a
“ping-pong” effect, where the two nodes disagree on which
protocol has used the channel less. It can cause low transmit
fairness.

Figure 3] shows an example of the ping-pong effect in the
two node, two protocol case. For simplicity, a transmission
of each protocol increments the value of OF, by one. Sup-
pose that both protocols have accessed the channel N times
but, for some reason, N1 has missed two packets from P2.
When N1 accesses the channel again, it sends a packet from
P2 trying to equalize the protocols. Upon hearing this packet,
N2 increments the channel access history for P2 by one. If
N2 accesses the channel next, it will send P1, balancing out
its protocol table. However, this packet reverts the effort of
NI trying to achieve equality. Thus, at the next chance N1
will transmit P2 again, and this cycle goes on. Eventually,
N1 will be biased for P2, and N2 for P1. This communica-
tion schedule has perfect channel fairness but low transmit
fairness.

Unfortunately, the ping-pong effect is not an edge case
that rarely happens; inconsistency can occur from packet
losses, collisions, or even different boot times. Furthermore,
in multihop networks, each node typically has a different

view of the channel as it hears transmissions from a different
set of neighbors.

Prior work by Luo et al. [25]] showed how, in the case of
unicast flows, a transmitter can embed the flow’s channel oc-
cupancy in a data packet. Nodes overhearing a packet can
use the information to update their table and restores consis-
tency. But in the case of protocol fairness, virtual tags are
not easily synchronizable because there can be many trans-
mitters: doing so would require each node to maintain O(np)
space, where n is the number of neighbors and p is the num-
ber of protocols.

4.4 Channel Decay

The isolation layer solves the problems of the ping-pong
effect using the simple, local mechanism of channel decay,
where it periodically decays the times in the channel occu-
pancy table by half. Channel decay has a similar effect as an
exponentially weighted moving average (EWMA), bounding
the effect of past packet losses. At each decay interval, the
inconsistency between protocol tables is halved, while con-
sistent table entries remain consistent.

Channel decay provides a second benefit: it bounds the
time interval over which the isolation layer computes fair-
ness. If a protocol has a channel occupancy of ¢, then after
log(t) intervals channel decay will have reduced this occu-
pancy to zero.

4.5 Fair Scheduling

Prior sections examined how packet losses can lead to
poor fairness in even a simple two node, two protocol work-
load. A fair queueing mechanism can achieve fairness for
uniform loads because locally optimal decisions are glob-
ally optimal. This section examines how networks with non-
uniform loads introduce further complications.

For example, suppose there is one node sending Protocol
1 (P1), two nodes sending P2, and four nodes sending P3. All
protocols have identical grant durations and packet lengths.
Each node has a single protocol to send, so local fair queue-
ing always sends that protocol. As MAC-layer node fairness
means each node receives an equal share of the channel, the
differing number of senders causes the channel shares for
the protocols to be 1:2:4. Running such an experiment on
TelosB nodes showed a poor channel fairness of 0.7748.

Fair scheduling changes the channel access behavior by
penalizing protocols that have used the channel more. After
the isolation layer decides which protocol to send based on
fair queueing, it introduces a penalizing delay before CSMA
backoff called a protocol penalty. Protocols with a greater
channel use have a larger protocol penalty. Delaying packet
transmissions is an established technique for fairness in flow-
based networks [28, 34]. In these algorithms, whenever a
node receives a packet, it cancels its current transmission and
resubmits it to the CSMA layer.

Determining the length of the penalizing delay requires
two decisions: quantifying a protocol’s share of the channel
and deciding the actual value of the delay from the share.
For the first decision, the isolation layer uses the following
equation:

Name Definition Description

Null flx)=0 No penalty

Linear f(x)=x—1 Linear function

Log f(x) =10logiox Log function

Exp f(x) = 10exp(x —10) Exponential function

Prob f(x)=10-10 HZJ TX prob. of 1/x> with two nodes
Const 10ms delay for successive TX Penalty for successive TX

Table 1. Various examples of the penalty function for
802.15.4. For all cases, the minimum value is zero for
x =1 and the maximum value is 10ms.

- 10 =

2 Null -

5 .95 ‘gm0

3 Linear

= .90 mConst

'_

_02’ .85}

©

— .807

gc) PLob

'7.575 .éO .é5 .éO .éS 1‘.0
Fairness
Figure 4. Throughput-fairness tradeoff of various
penalty functions when three protocols have 1, 2, and 4
senders in single-hop topology.

Py

Sh = —
e min(P; : Pj 7 0)

J
where P; denotes the channel occupancy of protocol i in
the protocol table. When the load is uniform, P, is always
min(P; : P; # 0): it is the minimum value in the table.

J

The above equation can lead to unnecessarily large penal-
ties when some protocols fall idle. For example, if one pro-
tocol only sends packets at boot, its P; will always be a small
but non-zero value. Other protocols will have large shares,
and therefore large penalties, in the chance that this proto-
col may transmit again. Channel decay, however, solves this
problem: over time, inactive protocols will have their chan-
nel occupancy reach zero. Following the above equation,
the isolation layer does not consider these inactive protocols
when calculating shares.

The second decision the isolation must make is assigning
a protocol penalty based on a channel share. The isolation
layer uses the following equation:

Penalty(x) = f(Share(x))

Table [1] lists six possible functions for f(x). While the
functions are described in terms of the TinyOS 2.1 MAC
layer for 802.15.4, which has a 10ms maximum backoff, they
are easily generalizable to other CSMA schemes. Note that
since the local mechanisms of the isolation layer do not know
the number of nodes contending for the channel, deriving a
specific channel access probability from penalty functions is
not possible.

A strawman algorithm that will achieve fairness is to sort
protocols by channel occupancy and assign penalties based

on the maximum CSMA backoff. The protocol with the least
occupancy has no delay, the second least delays a maximum
backoff, the third delays twice the maximum backoff, and so
on. This provides fairness, but greatly harms throughput. In
the case of the TinyOS 2.1 CSMA layer, backoff is very large
(~10ms) with respect to the packet air time(~2ms).

Figure [shows throughput and fairness of the various
penalty functions. We can observe a tradeoff between
throughput and fairness, with various functions achieving
different points on the curve. The slope patterns of the
penalty functions decide which function gains in fairness or
in throughput. In this experiment, all protocols have unlim-
ited packets. This means that there always exists a node
which tries to send the protocol with the minimum channel
usage. Therefore, the initial slope of the penalty function is
the deciding factor for this case.

4.6 Fair Cancellation

The fair scheduling algorithm described above requires
resetting the backoff timer whenever nodes hear transmis-
sions. As TinyOS uses a long backoff interval compared
to packet airtimes, cancelling a transmission greatly harms
throughput: a packet must be reloaded into the radio, and go
through another backoff. This is in contrast to 802.11 net-
works, where packets can be loaded very quickly on high
speed buses and backoffs are very small. For example, Sec-
tion presents an example case where always cancelling
transmissions can reduce throughput by as much as 36%.

In order to achieve fair scheduling without harming
throughput, the isolation layer uses fair cancellation. On
hearing a transmission, nodes update the channel access ta-
ble normally. However, they do not cancel the packet in
CSMA layer if it belongs to the protocol has the minimum
channel occupancy after the update. Since this is the packet
that should be transmitted next, cancelling it limits the over-
all packet rate of the network. By not cancelling packets of
the minimum protocol, fair cancellation prevents the stan-
dard fair scheduling algorithm from harming throughput.

Because grants inherently suppress and cancel transmis-
sions, fair cancellation is only relevant in transmission sce-
narios where there are no outstanding grants, i.e. when pro-
tocols are using standard CSMA, and for the recipients of
GTS packets.

4.7 Summary of Fairness Schemes
In summary, the isolation layer uses four mechanisms to
provide fairness:

o Fair Queueing (FQ) : Mechanism for selecting the next
packet in the link layer queue internally. Selects the
protocol with the smallest channel occupancy.

e Channel Decay : Multiplicatively decrease all values
in the channel occupancy table periodically. Channel
decay smooths out table inconsistencies, preventing the
ping-pong effect. It also serves as a time-windowing
mechanism to determine active protocols.

e Fair scheduling and protocol penalty (PP): Before en-
tering CSMA backoff, the isolation layer delays packets
according to the channel occupancy of the protocols.

30 50
=m2CTP, CSMA
25/| a41CTP, CSMA o 40
B || ¥2CTP, GTS 2
8 ee1CTP, GTS = 30 ﬁ
& 15 g
3 10 B 201 mm2CTP, CSMA
s 8 AA1CTP, CSMA
5 101 %*x2CTP, GTS
o91CTP, GTS
0 10 21 41 83 165 330 0 10 21 41 83 165 330

Overall Generation Rate (pps)

(a) Median node ETX.

Overall Generation Rate (pps)

(b) Goodput

Figure 5. Median node ETX and goodput of one and two
instances of CTP, with and without GTS. Node ETX is
defined as the number of transmissions required per suc-
cessful packet. Collision avoidance in CTP is ineffective
for concurrent operation.

e Fair Cancellation (FC) : Instead of restarting CSMA
backoff for all packets, the isolation layer restarts the
backoff only for packets which are not from the min-
imum occupancy protocol. Fair cancellation prevents
transmissions from limiting the packet rate by forcing
the next packet to re-enter backoff. Fair cancellation ap-
plies to the packets already performing CSMA backoffs
when non-suppressing packets are received/overheard.

5 Isolation Evaluation

Section 2.1] discussed the need to minimize interactions
between protocols via an isolation layer; Section 3| proposed
GTS as a shared collision avoidance mechanism for this
layer. This section compares the performance of a network
in which no isolation exists with one that uses GTS.

5.1 Two instances of CTP

In the first experiment, two separate instances of CTP run
concurrently on the Motelab testbed [38]]. The experiment
uses 165 nodes that generate data at varying rates. In re-
ality, an application would use a single CTP with two dif-
ferent identifiers for data. However, having two CTPs is an
effective scenario to reveal if the mechanisms of CTP will
work when other protocols are concurrently operating. The
GTS grant duration value used is one packet time, 10ms and
CTP’s transmit timer is disabled when GTS is used because
GTS effectively replaces it.

Figure 5] shows the median node ETX for one and two in-
stances of CTP with and without GTS, with aggregate packet
generation rate on the x-axis. We use node ETX instead of
end-to-end delivery cost because as the network generates up
to 330 packets per second only nodes near the root can de-
liver packets to the root, and we take median to neutralize
the effect of isolated nodes.

The results for CSMA demonstrate that the collision
avoidance mechanism of CTP does not work across proto-
cols. When the traffic load is light, both standard CSMA and
GTS operate efficiently. With standard CSMA, as the traf-
fic load increases, the network with two instances of CTP
starts to break while the one with a single instance degrades
gracefully.

10

25(mCSMA mCSMA 8.8 o1
o OGTS o gl/DGTS
u @ RTS/CTS 19.8 0 @ RTS/CTS
o 20 o 6.6
© 16.0 © 6
215 ° 51 53
w w
210 8.4 92 oo S 4
> 7.4 hy
C e
0 Individual Concurrent Individual Concurrent

(a) Cost for CTP (b) Cost for Deluge

Figure 6. End-to-end delivery cost when each protocol
runs alone and concurrently. End-to-end delivery cost
for Deluge is the number of data packet transmissions
needed to disseminate a page to a node. GTS achieves
low costs for individual as well as concurrent operation.

GTS improves the link quality of a single instance of CTP.
Moreover, with two instances, GTS can achieve similar link
quality as if each protocol was alone. With 330 pps genera-
tion rate, CSMA experiences 273% increase in ETX when it
is divided into two instances, while GTS shows an ETX in-
crease of only 39%. In addition, while CSMA suffers a 174-
fold increase in ETX when the generation rate is increased
from 10 to 330 pps, GTS shows a 15-fold increase which is
only 8.8% of the standard CSMA case.

The price for managing the cost of CTP is loss of good-
put, as Figure |5(b)| shows. The large default CSMA backoff
forces collision avoidance mechanisms to be conservative as
well.

5.2 CTP and Deluge

The next network scenario examines a collection and a
dissemination protocol operating concurrently on the Mirage
testbed [9] with 64 nodes. The traffic pattern of CTP simu-
lates event detection that triggers a portion of the nodes to
transmit information regarding the event. The initial event is
aradio packet and 14 nodes that hear the trigger packet initi-
ate infinite data generation. Source nodes are fixed through-
out the experiments to eliminate the effect of variations.

To find out how well isolated each protocol is, we com-
pare two metrics: mean end-to-end delivery cost for CTP
and the total number of data packet transmissions per node
per page for Deluge. We consider each protocol operat-
ing in isolation and both operating concurrently. Although
Deluge cannot utilize link layer acknowledgements due to
broadcasts, if nodes miss data packets they must request the
missing packets again. Thus the number of total Deluge data
packet transmissions is an indication of link quality.

Figure [6] shows the end-to-end delivery cost of CTP and
Deluge. When CTP operates individually, GTS achieves
47% reduction in the cost without drop in goodput (not
shown). This suggests that GTS can successfully replace
the already-existing collision avoidance mechanism of CTP.
For Deluge, the difference in its efficiency is insignificant for
CSMA and GTS, within 4%. This is because the modified
version of Deluge [35]] used in this experiment has most of
the GTS functionality included in the Deluge protocol itself.

When the two protocols operate concurrently, with

= CSMA
0.8 OGTS
g @ RTS/CTS 0.72
@©
L 0.6 0.55
1)
£
= 0.4 0.39
S 0.24 0.25
0.2 H
0.0 CTP Deluge

Figure 7. End-to-end delivery cost increase when CTP
and Deluge run concurrently. GTS reduces the cost in-
crease compared to CSMA by over 62% and RTS/CTS
by over 53%.

200

30 28.3 27.5 g 167.2
] 1 S 161.7 T
825 € 150
220 2

. o
38 15 1t el 100 71.1
& T o T.
e 10 l E 50
O 5 8

0 CSMA GTS RTS/CTS 0 CSMA GTS RTS/CTS

(a) CTP Goodput (b) Number of disseminated

pages per node

Figure 8. Goodput for CTP and Deluge for concurrent
operation. Grant-to-send does not introduce goodput
drop.

CSMA only, CTP’s cost increases by 24% and Deluge’s cost
increases by 72%. GTS reduces the cost increases by 62%
and 65% for CTP and Deluge respectively, achieving a cost
increase of 9% for CTP and 25% for Deluge. At layer 2.5,
GTS reduces collisions across layer 3 protocols.

RTS/CTS can be another candidate for the collision
avoidance mechanism in the isolation layer, as will be dis-
cussed in more detail in Section[7] With RTS/CTS, although
individual operation of CTP gives a slightly lower cost than
GTS, concurrent operation gives a higher cost. For Deluge,
the cost for the concurrent case is even higher than CSMA’s.
This is because RTS/CTS does not support broadcast pack-
ets; the data packets from Deluge are not protected and RT-
S/CTS exchanges on top of CTP data packets induce even
more interference for Deluge packets. In contrast, GTS can
provide protection for broadcast packets, achieving the re-
duction in the cost increase by 53% and 76% for CTP and
Deluge respectively.

Figure[8|shows the goodput of CTP and Deluge when op-
erating concurrently, confirming that GTS does not sacrifice
performance. Deluge’s goodput refers to the number of total
disseminated pages per node across the network.

Overall, GTS achieves the best of both worlds. Collision
avoidance is as effective as RTS/CTS, with the addition of
protection for broadcast packets. At the same time, GTS pre-
serves the efficiency of CSMA in terms of goodput.

1

-

T 2

(]

s 0.8 £o08

% g P 5 06

T Ideal 20

< 04 !:Xs P2 f € 0.4 k,\
] H e
fo2 o o

0L T

0
0 100 200 300 400 500
Time (sec)

0 100 200 300 400 500
Time (sec)

(b) Fair queueing with channel
decay

(a) Plain fair queueing

Figure 9. Channel shares of three protocols transmitted
on a node in a 5-node single hop experiment with uni-
form loads. Simple fair queueing does not provide trans-
mit fairness due to ping-pong effect, but channel decay
restores fairness.

6 Fairness Evaluation

The previous section evaluated how well GTS isolates
concurrently operating protocols from one another. This sec-
tion evaluates the isolation layer’s fairness through the mech-
anisms presented in Section[d] paying particular attention to
channel decay and fair cancellation.

6.1 Channel Decay

This section quantifies the negative impact of the ping-
pong effect and evaluates how well channel decay can restore
transmit fairness. In this experiment, three abstract protocols
(denoted by P1, P2, and P3) run on five Telosb nodes (N1
through N5), all within communication range of each other.
All nodes send packets from each protocol as fast as possible,
such that they always have transmissions pending. All packet
grants are zero: the channel occupancy table is the duration
of packet airtimes. The protocols send packets of different
lengths, in a ratio of 1:2:4. If the network has perfect chan-
nel and transmit fairness, each node will send packets with a
ratio of 4:2:1 and the channel will observe transmissions in
the same ratio.

With basic fair queueing, the scenario above achieves a
perfect channel fairness of 0.9999. However, the transmit
fairness is very low. Figure[9(a)| shows the channel shares of
each protocol transmitted by N3. The channel share curves
are diverging from the ideal 1/3 line: transmit fairness is
0.52. The node transmits protocols unevenly — with a ratio of
1:3:13 instead of 1:1:1. This observation matches the previ-
ous description of the ping-pong effect, high channel fairness
but low transmit fairness, and inspecting the logs verifies this
is what is happening.

Figure 9(b)| shows that a channel decay interval of Is
restores channel fairness to 0.9947. As mentioned in Sec-
tion[4.4] the decay period determines the time window over
which the isolation layer is fair: a previous occupancy of
t is forgotten after log(¢) periods. The period also limits
how long a state inconsistency persists. We leave it to future
work to analytically determine the decaying period suitable
for both. In our implementation and in all experiments, the
decay interval is 1 second, which we have found to provide
a good tradeoff for different workloads.

1.0 09715 2228 @ 120F 1092
a 102.5
=09 £ 100 94.9
e 5
vy 2 80
ﬁ 08 07892 o
£ § 60
807 T 40
0.6 g
5 20
0.5 0

NoFair FQ/FC FQ/FC/PP NoFair FQ/FC FQ/FC/PP

(b) Packet rate

Figure 10. Fairness and packet rate of two CTP proto-
cols running in parallel, one with 22-byte packets and
the other with 86-byte packets. The fairness schemes im-
proves fairness at the cost of reduced throughput.

(a) Fairness

6.2 Single-hop Collection

We study fairness in a single-hop network scenario of
two collection protocols running in parallel. In these ex-
periments, all grant durations are zero because there are no
hidden terminals and no need for multihop collision avoid-
ance. Therefore, fairness only depends on the number of bits
each protocol sends. In such a setting, the fairness scheme
directly affects metrics such as the rate at which the network
sends packets.

In the first set of experiments, there are two separate
copies of CTP active in the network. One copy uses a
payload of 22 bytes and the other uses a payload of 86
bytes. Since the header length of CTP is 10 bytes, the net-
work is fair when the CTP with 22 byte packets delivers
three times more packets than the CTP with 86 byte pack-
ets (3-(22+10) = (86 + 10) = 96).

Figure [10| shows results for a six-node network: 2 nodes
send short CTP packets, 2 nodes send longer packets, and
2 nodes send both. ‘NoFair’ is the standard TinyOS stack,
‘FQ’ is an isolation layer with fair queueing, and ‘FC’ means
the isolation layer also includes fair cancellation. Finally,
‘PP’ indicates that the isolation layer uses protocol penalties
with the probability (“Prob”) penalty function. We use this
probability function to clearly present the effects of proto-
col penalty on fairness. Section summarized each of the
fairness schemes used in these experiments.

In the default TinyOS stack, the CSMA layer gives each
node an equal chance of transmission and nodes serve pro-
tocols in a round-robin fashion. Therefore, both CTPs have
the same number of transmit opportunities and their good-
puts are proportional to their packet lengths. This results in a
poor channel fairness of 0.7892, as Figure [[0(a)| shows. Fair
queueing with fair cancellation increase channel fairness to
0.9715, and protocol penalties improve it further, to 0.9998.

Figure[I0(b)| shows the overall network throughput to the
collection point. It shows the opposite trend as fairness,
demonstrating the tradeoff between the two. For example,
fair queueing with fair cancellation (FQ/FC) has a through-
put of 102.5, compared to a standard CSMA layer’s through-
put of 109.2 packets per second. As the isolation layer intro-
duces more delay mechanisms to improve fairness, it trades
off throughput. However, as Figure|10[shows, a combination
of fair queueing, fair cancellation, and protocol penalties al-

10 1.0000 0.9998 a 120
- e 94.9
L 5 90
0w 0.9 = 69.4
o S 60
£ ©
0.8 =
w ©
5 30
>
0.7 © 0
' NoFair Fair Fair NoFair Fair Fair

Sched. Cancel
(a) Fairness

Sched. Cancel
(b) Overall packet rate

Figure 11. Comparison of pure fair scheduling and fair
cancellation, on top of protocol penalty and fair queue-
ing. Fair cancellation achieves similar fairness as pure
fair scheduling while reducing the packet rate drop.

low the isolation layer to provide perfect channel fairness
while only sending 13% fewer packets.

Due to the large backoffs of the TinyOS CSMA layer, im-
proving fairness in this workload while maintaining the same
packet rate actually decreases the throughput of the network.
Increasing fairness causes there to be more short packets than
long ones. However, as the CSMA backoff is much larger
than a packet time, the sending rate is only slightly affected
by packet length. A short packet transmission, including
backoff, takes only slightly less time than a long one, even
though the actual packet occupies the channel for a much
shorter period.

Figure [TT] examines the effect of fair cancellation on fair-
ness and network goodput. ‘Fair Scheduling’ denotes pure
fair scheduling on top of fair queueing, where all packets
are cancelled and rescheduled with a protocol penalty. ‘Fair
Cancel’ has the same settings as ‘Fair Scheduling’, but re-
places cancelling all packets with our fair cancellation mech-
anism so the minimum protocol packet is not rescheduled.

As expected, pure fair scheduling achieves the highest
fairness: 1.0000. However, it comes with a 36% reduction
in throughput, from 109.2 to 69.4 packets per second. Fair
cancellation achieves a slightly lower fairness of 0.9998, but
it mitigates the throughput drop and induces only 13% re-
duction in the goodput.

6.3 Single-hop Collection and Deluge

Next, we examine a more complex scenario where CTP
and Deluge operate concurrently. CTP uses 86 byte pay-
loads, and Deluge disseminates a binary of 250 pages, where
each page is 125 packets of a 20-byte payload. We exam-
ine how changing the number of nodes sending CTP traffic
affects fairness. All nodes run Deluge, but only one node
has a new Deluge image, so there is only one Deluge data
transmitter.

In this experiment, we measure the performance of each
protocol using a protocol-specific metric. In the case of CTP,
we measure packets per second, as in the previous section.
For Deluge, we measure the number of pages it disseminates
per minute. These represent the received goodput of each
protocol, the performance that higher layers see. To quan-
tify fairness, we measure the ratio of transmitted bytes per
second between the two, as the isolation layer applies fair-

m NoFair

x FQ/FC/PP

of Diss. Page/min
N N
CTP Goodput (pps)

| | | | | 1 1 |

1 2 3 4 5 6 7 8
Number of CTP Sources
(a) Protocols’ performances

mENoFair
AAFQ/FC
[l >xFQ/FC/PP

CTP Bytes/Deluge Bytes
[0}
T

o

1 3 5 7
Number of CTP Sources

(b) Ratio of transmitted bytes

Figure 12. Application-level performances and transmis-
sion ratio between Deluge and CTP. The isolation layer
improves fairness both when there is a single CTP trans-
mitter and as the number of CTP transmitters increases.

ness based on channel occupancy, not application-level per-
formance.

Figure shows application-level performance. With-
out the isolation layer, increasing the number of CTP trans-
mitters causes CTP to get a much larger share of the channel
and begin to starve Deluge. Deluge’s application-level per-
formance drops from 23 pages/minute to 4 pages/minute, an
82% decrease. At the same time, CTP’s goodput goes from
17.9pps to 71.9pps, a 318% increase.

Using the isolation layer, performance still changes as
the number of CTP transmitters increases, but this change
is much smaller, as the fair schemes strive to give each pro-
tocol a fair share of the channel. Deluge’s performance drops
by 35% and CTP’s increases by 320%. This latter number is
a bit troubling: it suggests that transmission fairness for CTP
degrades just as quickly with the isolation layer as without.
However, a closer examination of Figure shows other-
wise. Without the isolation layer, CTP reaches 72pps with
only 5 transmitters, then flattens as it saturates the channel.
With the isolation layer, it takes 8 CTP transmitters to have
the same relative increase in channel use. As Deluge receives
a more fair share of the channel, it is starved less, and CTP
has more room to grow.

Figure shows more clearly how the isolation layer
improves fairness. With one transmitter, the isolation layer
has a CTP-to-Deluge ratio of 1.0 (fairness of 1). Standard
CSMA, in contrast, has a ratio of 1.76 (fairness of 0.92).
With 8 transmitters, the isolation layer has a ratio of 3.5,

With Isolation Layer

o
o))
T

Fairness Index (JFI)
o
~

0.5F

| | | |
0O 0.2 04 06 0.8 1.0
Fraction of Nodes

(a) CDF of the fairness between the channel occu-
pancy times

2o
© N

With Isolation Layer /

of Deluge Pages

o N P OO

L | L |
0 0.2 04 06 0.8 1.0
Fraction of Nodes

(b) CDF of the number of delivered Deluge pages.

Figure 13. CDF of channel fairness around each node as
well as Deluge dissemination speed when CTP is sending
as fast as possible. The isolation layer greatly improves
the fairness while providing more bandwidth to Deluge.

while CSMA has a ratio of 15.2: the isolation layer reduces
the transmit ratio by 76%.

6.4 Multihop Networks

This section extends the CTP-Deluge scenario into a mul-
tihop network of 138 nodes in the Motelab testbed [38]]. In
these experiments, CTP uses 90 byte payloads and Deluge
pages are 125 20-byte packets. CTP generates packets as fast
as possible. This is a harsh scenario for Deluge; CTP spams
the channel on all nodes. Thus, the focus of the scenario is
how Deluge survives in this environment. Each experimental
run is 40 minutes long, where the first 20 minutes are used
to allow CTP to stabilize; performance is measured for the
second 20 minutes.

We evaluate the effect of the isolation layer by comparing
two network setups — one implements all proposed mecha-
nisms, GTS and fairness schemes, and the other uses the de-
fault TinyOS MAC. In the case without the isolation layer,
CTP has its transmit timer; in the second case, the isola-
tion layer replaces it with GTS and allows Deluge to include
grants in its request packets.

Figure presents the cumulative distribution of the

1.0

=09
X
S o0.8"
c
@ 0.7
€ o6l GTS Only
‘T — GTS/FQ/FC
" 0.5 — GTS/FQ/FC/PP
L T T T
0O 02 04 06 08 1.0
Fraction of Nodes
(a) CDF of fairness index
v 12r
(]
® 10- /
o
Gé 8
2
o« 41 GTS Only
. 2t — GTS/FQ/FC
— GTS/FQ/FC/PP
0

| T T T
0 0.2 04 06 08 1.0
Fraction of Nodes

(b) CDF of the number of delivered pages

Figure 14. Evaluation of CTP and Deluge running con-
currently in a multihop network. The breakdown of iso-
lation layer mechanisms shows how much each one con-
tributes to the overall improvement.

fairness index for the two networks, with and without the
isolation layer. To calculate fairness, we use channel occu-
pancy time, including grant suppression durations. Actual
packet durations are not counted when the suppression for
the protocol is in effect, because the channel already belongs
to that protocol. When nodes hear CTP’s grants while they
are suppressed by Deluge’s grants, or vice versa, channel oc-
cupancy time is shared between the two protocols.

Without the isolation layer, 100% of the nodes have a JFI
of 0.6 or lower. Employing the isolation and fairness mech-
anisms raises the overall fairness; the 50" percentile is at
0.96. About 6% of the nodes have fairness lower than 0.8.

To quantify the isolation layer’s effect on protocol perfor-
mance we look at Deluge. Figure shows the number
of disseminated Deluge pages. Without the isolation layer,
nodes receive at most 9 pages, with almost half of the nodes
receiving only 2 pages. The non-stop CTP traffic obstructs
Deluge traffic from propagating the binary from the nodes
around the root to all nodes, inducing the large inconsistency
in the disseminated pages. The isolation layer cures the prob-
lem — 96% of the nodes receive 9 pages or more.

Figure [14] breaks down the gains from the isolation layer
and shows how much each mechanism contributes. The

‘GTS Only’ lines show the improvement resulting from the
introduction of the shared collision avoidance mechanism.
Fairness increases dramatically because CTP and Deluge are
respecting each others collision avoidance request. GTS sup-
presses nearby nodes for the duration of the Deluge’s data
burst, using GTS itself can prevent starvation since Deluge
has much longer grant duration than CTP.

The fairness schemes further improve fairness and perfor-
mance. Fair queueing and cancellation (‘GTS/FQ/FC’) shift
up the curve in Figure 50% of the nodes have a JFI of
0.94 or higher, versus 0.89 or higher for the GTS-only case.
Implementing protocol penalties introduces further improve-
ment and achieves a fairness index of 0.9602 or above for
50% or the nodes. As a result, 65% of all nodes in the GT-
S/FQ/FC/PP scheme see fairness of at least 0.95, compared
to 35% in GTS only and 0% if no isolation layer exists.

Finally, Figure tracks the effectiveness of Deluge
dissemination as we add isolation and fairness mechanisms.
As a result of GTS, at least 50% of the nodes receive 6 or
more Deluge pages, compared to 3 or more without isola-
tion. Fair queueing and fair cancellation bump that to 8 or
more pages, and protocol penalty raises it to 10 or more.
The fairness mechanisms also improves the consistency of
the disseminated Deluge pages.

The performance of CTP with Deluge, even without the
isolation layer, is better than what has been reported for
MintRoute with Deluge [24]. We believe the intelligent link
estimation mechanisms and wait timers in CTP, and environ-
mental differences caused these differences.

7 Related Work

The idea that a network should support concurrent oper-
ation for multiple protocols is not new in the Internet. TCP
slows down its data generation when it encounters a packet
loss. This property is one of the keys to Internet scalability.
However, a protocol can disrupt TCP by not slowing down
in response to losses: as TCP sources slow down this TCP-
unfriendly protocol will saturate the network. To prevent
this, non-TCP protocols are expected equip a TCP-friendly
feature [16}23]); the data generation rate must depend on the
packet loss rate as TCP does. This property aims to provide
a network where multiple protocols can coexist.

This congestion control feature exists at layer 4 because
the narrow waist of the Internet is layer 3. That is, there
exist multiple layer-4 protocols such as TCP and UDP but
most of them use a single layer 3 protocol, IP. Meanwhile, in
sensornets, there exist multiple layer 3 protocols while most
systems use CSMA for the MAC protocol. Therefore, the
isolation layer provides a shared mechanism above layer 2
that layer 3 protocols can share. Unlike congestion control,
which operates along an end-to-end path and manages queue
occupancy along flows, an isolation layer operates on single-
hop wireless communication and manages medium access.

RTS/CTS is another widely studied mechanism that can
be used for collision avoidance at the isolation layer. In sen-
sornets, S-MAC [42]] utilizes RTS/CTS exchanges for uni-
cast transmissions. These RTS/CTS mechanisms could pro-
vide better collision avoidance performance than GTS since
they prevent collisions at the current receiver, while GTS

prevents collisions at the previous transmitter. In practice,
however, RTS/CTS is rarely used. When the interference
and communication ranges differ, RTC/CTS is no longer an
effective collision avoidance mechanism [41]. In addition,
in sensor networks, the control overhead associated with RT-
S/CTS becomes significant due to small datagram sizes.

More importantly, RTS/CTS cannot easily provide a
collision-free environment for the broadcast packets that
many wireless protocols depend on. For example, Del-
uge [17] uses broadcasts for data packets rather than unicasts
since one burst of data packets can update all the neighbors
of a node. In fact, many smart sensornet protocols exploit
this broadcasting nature of the channel. CTP avoids conges-
tion by making nodes overhear their parent’s data packets
where information on queue depth is piggybacked. Typi-
cally, these broadcast packets are sent without control pack-
ets to avoid CTS explosions as in S-MAC.

Recently, ZigZag Decoding [15] has shown that packet
can be recovered from collisions using signal samples. Ide-
ally, this can settle the issue of inter-protocol collision, be-
cause perceived collisions will become scarce. However, the
need for high processing power and large memory require-
ments makes it hard to be applied to sensornets.

Discussing the whole subject of fairness is beyond the
scope of this paper. Rather, we focus on the unique proper-
ties of protocol fairness. Demers et al. [10] showed that bit-
by-bit round-robin fair queueing can be approximated by a
packet-by-packet mechanism in wired network. In wired, be-
cause there exist only one transmitter per link, the fair queue-
ing mechanism directly chooses which packet to be transmit-
ted. Meanwhile, in wireless LAN, a distributed mechanism
is needed. MACAW [3] proposed a fair allocation scheme
that controls the channel access using a modified CSMA
backoff algorithm. Vaidya et al. [34] extended this approach
by implementing fair scheduling on multiple flows with dif-
ferent priorities. Protocol fairness requires a combination of
intra-node fair queueing and inter-node fair scheduling.

The per-flow fairness is further extended to multihop
wireless network. Typically in this case, a flow is de-
fined to be a unique source, destination pair in the link
layer [25 128} 133]]. However, clearly this does not fit for pro-
tocol fairness. That is, it is hard to divide traffic of proto-
cols to flows of every source, destination pair, because flows
are correlated with one another. Alternatively, an end-to-end
source-destination pair as the definition of a flow is also con-
sidered [13} [19]. However, this is also not a feasible solu-
tion for protocol fairness because all network protocols have
unique performance metrics. Therefore, we define the “flow”
for protocol fairness as a single-hop term, allowing multiple
sources to be the source nodes for each protocol. As dis-
cussed earlier, this caused the inconsistency of the state to
be more persistent, requiring an explicit mechanism that can
cure the inconsistency.

Our fair queueing scheme differs from common tag-based
approaches because it does not update the start-tag when
packets are not queued back-to-back. Normally, updating the
start-tag serves as a time-window in which the fairness be-
tween flows is achieved. However, TinyOS prevents this be-
cause the link-layer packet queues are single-depth for each

protocol. Thus, although it is possible to enforce immedi-
ate re-queueing, this cannot be applied for general protocols.
For example, when CTP packets are delayed by the trans-
mit timer, the link layer has no knowledge whether CTP has
more packets. Therefore, we adjust the time window using
the decay period: frequent decay results in a short-term fair-
ness, and longer decay period improves long-term fairness.

8 Conclusions

Without isolation, interactions between protocols com-
plicate large system design and cause unpredictable perfor-
mance in deployments.

We introduced a new isolation layer in which collision
avoidance information from network protocols is shared
through grant-to-send. The isolation layer requires addi-
tional functionality: protocol fairness. Since standard fair
queueing techniques are not suitable for protocol fairness by
themselves, we augment them with two novel mechanisms,
channel decay and fair cancellation.

Through a series of testbed experiments, we show that the
isolation layer can reduce protocol interactions. Concurrent
operation in a multihop network increases the end-to-end de-
livery cost of CTP and Deluge by 24% and 72%. The isola-
tion layer reduces these cost increases by more than 60%.
Furthermore, the isolation layer improves median fairness
between CTP and Deluge in a multihop scenario from 0.52
to 0.96.

9 Acknowledgments

This work was supported by generous gifts from Intel Re-
search, DoCoMo Capital, Foundation Capital, the National
Science Foundation under grants #0615308 and #0846014,
the King Abdullah University of Science and Technology
(KAUST), Microsoft Research, scholarships from the Sam-
sung Scholarship Foundation and a Stanford Terman Fellow-
ship. We would like to thank those who maintain Mirage and
MoteLab for providing valuable community testbeds. Fi-
nally, we would like to thank the reviewers for their com-
ments and our shepherd, John Heidemann, for his help in
improving our paper.

10 References

[1] MultihopLQI.
http://www.tinyos.net/tinyos-2.x/tos/lib/net/1qi/.

[2] TEP 123: Collection Tree Protocol.
http://www.tinyos.net/tinyos-2.x/doc/.

[3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Her-
man, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita. A line in the sand: A wireless sensor network for target
detection. Computer Networks (Elsevier), 46, 2004.

[4] R. Beckwith, D. Teibel, and P. Bowen. Unwired wine: Sensor net-
works in vineyards. In Proceedings of IEEE Sensors, 2004.

[5] V.Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: Me-
dia access protocol for wireless lans. In Proceedings of the inter-
national conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM), 1994.

[6] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by dhts. In Proceedings
of the international conference on Applications, technologies, archi-
tectures, and protocols for computer communications (SIGCOMM),
2006.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure
for randomness in wireless opportunistic routing. In Proceedings of
the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM), 2007.

J. I. Choi, M. Jain, M. A. Kazandjieva, and P. Levis. Inverting
wireless collision avoidance. Technical Report SING-09-00, 2009.
http://sing.stanford.edu/pubs/sing-09-00.pdf.

B. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes, J. Shneid-
man, A. Snoeren, and A. Vahdat. Mirage: A microeconomic resource
allocation system for sensornet testbeds. In Proceedings of the 2nd
IEEE Workshop on Embedded Networked Sensors (EmNets), 2005.
A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of
a fair queueing algorithm. In SIGCOMM ’89: Symposium proceed-
ings on Communications architectures & protocols, pages 1-12, New
York, NY, USA, 1989. ACM Press.

P. Desnoyers, D. Ganesan, and P. Shenoy. Tsar: a two tier sensor
storage architecture using interval skip graphs. In Proceedings of the
Third ACM Conference on Embedded networked sensor systems (Sen-
Sys), 2005.

R. Fonesca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker,
and I. Stoica. Beacon vector routing: Scalable point-to-point routing
in wireless sensornets. In Proceedings of the Second USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI),
2005.

V. Gambiroza, B. Sadeghi, and E. W. Knightly. End-to-end perfor-
mance and fairness in multihop wireless backhaul networks. In Pro-
ceedings of the 10th annual international conference on Mobile com-
puting and networking (MobiCom), 2004.

O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Pack, M. Vieira,
D. Estrin, R. Govindan, and E. Kohler. The TENET architecture for
tiered sensor networks. In Proceedings of the Fourth ACM Conference
on Embedded networked sensor systems (SenSys), 2006.

S. Gollakota and D. Katabi. ZigZag decoding: combating hidden ter-
minals in wireless networks. In Proceedings of the 2008 conference on
Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), 2008.

M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP friendly rate
control (TFRC): Protocol specification (RFC3448), 2003.

J. W. Hui and D. Culler. The dynamic behavior of a data dissemina-
tion protocol for network programming at scale. In Proceedings of
the Second ACM Conference on Embedded networked sensor systems
(SenSys), 2004.

R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
Technical Report TR-301, DEC Research, 1984.

V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly. Dis-
tributed multi-hop scheduling and medium access with delay and
throughput constraints. In Proceedings of the 7th annual international
conference on Mobile computing and networking (MobiCom), 2001.
B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing
for wireless networks. In Proceedings of International Conference on
Mobile Computing and Networking (MobiCom), 2000.

S. Katti and D. Katabi. Mixit: The network meets the wireless
channel. In Proceedings of ACM Hot Topics in Networks Workshop
(Hotnets-VI), 2007.

S. Kim, R. Fonesca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica. Flush: A reliable bulk transport protocol for
multihop wireless networks. In Proceedings of the Fifth ACM Confer-
ence on Embedded networked sensor systems (SenSys), 2007.

E. Kohler, M. Handley, and S. Floyd. Designing DCCP: congestion
control without reliability. Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), 2006.

K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: Ex-
periences from a pilot sensor network deployme nt in precision agri-

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

culture. In Proceedings of the Fourteenth Int. Workshop on Parallel
and Distributed Real-Time Systems (WPDRTS), 2006.

H. Luo, J. Cheng, and S. Lu. Self-coordinating localized fair queueing
in wireless ad hoc networks. Mobile Computing, IEEE Transactions
on, 3(1):86-98, Jan-Feb 2004.

Y. Mao, F. Wang, L. Qiu, , S. Lam, and J. Smith. S4: Small state and

small stretch routing protocol for large wireless sensor networks. In
Proceedings of the Fourth USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2007.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time syn-
chronization protocol. In Proceedings of the 2nd international confer-
ence on Embedded networked sensor systems (SenSys), 2004.

T. Nandagopal, T.-E. Kim, X. Gao, and V. Bharghavan. Achieving
mac layer fairness in wireless packet networks. In Proceedings of the
6th annual international conference on Mobile computing and net-
working (MobiCom), 2000.

S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor networks. In
Proceedings of the international conference on Applications, tech-
nologies, architectures, and protocols for computer communications
(SIGCOMM), 2006.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: a geographic hash table for data-centric storage.
In Proceedings of the first ACM international workshop on Wireless
sensor networks and applications (WSNA), pages 78-87. ACM Press,
2002.

R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. An analy-
sis of a large scale habitat monitoring application. In Proceedings of
the Second ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2004.

V. Turau, C. Renner, M. Venzke, S. Waschik, C. Weyer, and M. Witt.
The heathland experiment: Results and experiences. In Proceedings of
the Workshop on Real-World Wireless Sensor Networks (REALWSN),
2005.

N. Vaidya and P. Bahl. Fair scheduling in broadcast environments.
Technical Report MSR-TR-99-61, 1999.

N. H. Vaidya, P. Bahl, and S. Gupta. Distributed fair scheduling in a
wireless lan. In Proceedings of the 6th annual international confer-
ence on Mobile computing and networking (MobiCom), 2000.

M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and
P. Levis. Visibility: A new metric for protocol design. In Proceedings
of the Fifth ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2007.

L. Wang. MNP: multihop network reprogramming service for sensor
networks. In Proceedings of the Second ACM Conference on Embed-
ded networked sensor systems (SenSys), 2004.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fi-
delity and yield in a volcano monitoring sensor network. In Proceed-
ings of the 7th symposium on Operating systems design and imple-
mentation (OSDI), 2006.

G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless
sensor network testbed. In Proceedings of the 4th international sym-
posium on Information processing in sensor networks (IPSN), 2005.
A. Woo and T. Tong. Tinyos mintroute collection protocol. tinyos-
1.x/lib/MintRoute.

A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
multihop routing in sensor networks. In Proceedings of the First ACM
Conference on Embedded networked sensor systems (SenSys), 2003.
K. Xu, M. Gerla, and S. Bae. How effective is the ieee 802.11 rts/cts
handshake in ad hoc networks? In Proceedings of IEEE GLOBE-
COM’02, volume 1, pages 17-21, Nov. 2002.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol
for wireless sensor networks. In Proceedings of the 21st International
Annual Joint Conference of the IEEE Computer and Communications
Societies INFOCOM), New York, NY, June 2002.

	Introduction
	Isolating Network Protocols
	Shared Collision Avoidance Mechanism
	Fairness

	Shared Collision Avoidance
	Fairness
	Metrics
	Basic Algorithm
	Fair Queueing
	Channel Decay
	Fair Scheduling
	Fair Cancellation
	Summary of Fairness Schemes

	Isolation Evaluation
	Two instances of CTP
	CTP and Deluge

	Fairness Evaluation
	Channel Decay
	Single-hop Collection
	Single-hop Collection and Deluge
	Multihop Networks

	Related Work
	Conclusions
	Acknowledgments
	References

