Tighten Rust’s Belt: Shrinking Embedded Rust Binaries

Hudson Ayers Evan Laufer Paul Mure
Stanford University, Google Stanford University Stanford University
USA USA
hayers@stanford.edu emlaufer@cs.stanford.edu paulmure@stanford.edu
Jaehyeon Park Eduardo Rodelo Thea Rossman
Stanford University Stanford University Stanford University
USA USA
jaehpark@stanford.edu ehiguera@stanford.edu tcr6@stanford.edu
Andrey Pronin Philip Levis Johnathan Van Why
Google Stanford University Google
USA USA

apronin@google.com

Abstract

Rustis a promising programming language for embedded soft-
ware, providing low-level primitives and performance similar
to C/C++ alongside type safety, memory safety, and modern
high-level language features. We find naive use of Rust leads
to binaries much larger than their C equivalents. For flash-
constrained embedded microcontrollers, this is prohibitive.
We find four major causes of this growth: monomorphization,
inefficient derivations, implicit data structures, and missing
compiler optimizations. We present a set of embedded Rust
programming principles which reduce Rust binary sizes. We
apply these principles to an industrial Rust firmware applica-
tion, reducing size by 76kB (19%), and an open source Rust OS
kernel binary, reducing size by 23kB (26%). We explore com-
piler optimizations that could further shrink embedded Rust.

CCS Concepts: - Computer systems organization — Em-
bedded software; - Software and its engineering — Gen-
eral programming languages.

Keywords: embedded systems, Rust, binary size

ACM Reference Format:

Hudson Ayers, Evan Laufer, Paul Mure, Jachyeon Park, Eduardo
Rodelo, Thea Rossman, Andrey Pronin, Philip Levis, and Johnathan
Van Why. 2022. Tighten Rust’s Belt: Shrinking Embedded Rust Bina-
ries. In Proceedings of the 23rd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES °22), June 14, 2022, San Diego, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1 145/3519941.3535075

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
LCTES °22, June 14, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9266-2/22/06.
https://doi.org/10.1145/3519941.3535075

pal@cs.stanford.edu

jrvanwhy@google.com

1 Introduction

Rust [18] has emerged as a compelling alternative to C/C++
in many systems. Rust has high-level language features, and
provides memory and type safety without performance over-
head. For traditional software, Rust has been shown to match
or exceed equivalent software written in C/C++ in perfor-
mance [27] and memory use [3]. Rust software can be easier
to maintain [13] and has fewer bugs [10].

This paper is about overcoming a challenge that arises in ap-
plying Rust’s benefits to embedded systems: binary size. Our
motivation for addressing this problem is based on personal
experience. While working on a Rust-based embedded appli-
cation for a next-generation security chip we discovered that
the Rust app was 79% larger than the C-based system it was re-
placing, even after efforts towards size optimization. These ef-
forts included ideal compiler configurations and optimization
settings from well-regarded resources on the subject, includ-
ing blog and forum posts detailing Rust size growth [24, 33]
and the guide on minimizing Rust size [17]. Digging into indi-
vidual instances where code produced larger-than-expected
assembly, we found many idiomatic Rust abstractions were
only “zero-cost” with regards to runtime performance, not
binary size.

§2 provides background on Rust and related work. §3 fo-
cuses on a case study of porting a high quality industry se-
curity chip application from C to Rust, including signs that
the use of Rust contributes to code size increase. §4 identifies
specific areas where code size increase arises in the Rust port,
including many non-obvious mistakes we expect others are
likely to encounter as well. The sources of this size increase
are grouped into general categories. In §5 we contribute five
idioms that reduce this code size increase:

1. Minimize length and instantiations of generic code,
2. Use trait objects sparingly,

3. Don’t panic,

4. Carefully use compiler generated support code,


https://doi.org/10.1145/3519941.3535075
https://doi.org/10.1145/3519941.3535075

LCTES *22, June 14,2022, San Diego, CA, USA

5. Don’t use static mut.

Applying these programming idioms reclaims 76 kB of
space from the 400kB Rust security chip firmware binary
(19%). We also apply these idioms to an open source Tock
kernel binary, reducing its 87kB size by 26%, and show much
of the savings comes from reductions in embedded data. In §6,
we discuss changes to the Rust compiler and language which
could help rectify the remaining size difference between Rust
and C, including one optimization we implemented and up-
streamed into the Rust compiler. In §7 we present several tools
for analysis of Rust binaries. Finally, in §8 we contextualize
these growth categories and idioms by looking at another
embedded Rust use case — Hubris OS [5] - and discuss the
implications of our findings.

2 Background

This paper focuses on small (<1 MB flash) devices. We consider
only the #[no_std] dialect of Rust, limited to libcore, a mini-
mal standard library, with no use of alloc for heap allocation.

2.1 Rust for Embedded Systems

Low cost software techniques to improve on the safety and
security of traditional, written-in-C embedded software are
highly valuable. Resource constraints of embedded devices
preclude the use of hardware and software security mecha-
nisms which are costly in terms of flash, RAM, or power [15].
For example, Java is memory safe, but without modification its
flash and memory footprint are unacceptable in many embed-
ded systems. Similarly, Address Space Layout Randomization
(ASLR) is unusable in systems without virtual memory:.

Rust is a promising approach to software security and
safety because of its strong memory safety, type safety, and
thread safety guarantees. To achieve these, Rust relies on an
affine type system and a compiler which automatically in-
serts checks into potentially dangerous code. For example,
all array accesses in Rust are checked and panic when out-of-
bounds. Rust is especially well suited to embedded systems
because it does not rely on a garbage collector, instead using
a borrow-checker and lifetimes to track allocations statically.

The unsafe keyword in Rust enables access to low-level
mechanisms (such as raw pointer reads/writes, or unchecked
array accesses) which the compiler cannot verify are safe.
With extensive use of unsafe, it is possible to write Rust
much like one would write C, but doing so removes many of
Rust’s benefits. We focus on idiomatic Rust, in which unsafe
is used only in rare situations where safe alternatives do not
exist (e.g. memory-mapped register accesses).

Rust provides a number of higher level language features.
Several of these features have significant impacts on code size.
We describe two of them here for readers unfamiliar with
Rust: polymorphism and closures.

Ayers, Laufer, Mure, Park, Rodelo, Rossman, Pronin, Levis, Van Why

Rust supports polymorphism with traits. A trait defines
an interface to a polymorphic type, similar to Java inter-
faces. A trait can be implemented by multiple concrete types.
Rust uses traits to enable polymorphism via two different
mechanisms: generics (analogous to C++ templates), and trait
objects (similar to C++ abstract classes). Generics generate
a method for each concrete type used to call a generic func-
tion. This is called monomorphization, and has performance
equivalent to normal function calls. Trait objects, in contrast,
enable dynamic dispatch using runtime lookups in a virtual ta-
ble. Trait objects are used when the concrete type that will be
passed to a function can vary, or is not known at compile time.

Idiomatic Rust uses closures heavily. Closures are anony-
mous functions, similar to C++ lambdas, but they capture
their environment. Closures are used widely in Rust APIs be-
cause they interact well with how the Rust compiler statically
manages memory. Closures also fit well with idiomatic Rust’s
functional programming style. Many functions accept clo-
sures as generic parameters, allowing callers to pass arbitrary
computation to be performed within the body of a function.

Rust relies heavily on compiler optimizations to make high-
level programming constructs perform on-par with low-level
implementations. Most Rust optimizations rely on its’ single
officially supported backend: LLVM [20].

2.2 Related Work

Alarge body of existing work aims to provide developers with
tools for reducing the code size of embedded software. This
includes techniques to remove unused code (dead code elim-
ination) [19, 38], to replace code blocks with smaller, seman-
tically equivalent constructions [8], to remove the overhead
of function calls via inlining [21], and to evaluate code seg-
ments at compile time. It also includes techniques to merge
duplicate source-level code within or across functions, such
as identical code folding [35], function merging [32], function
outlining [39], and code factoring. Recent work has quanti-
fied the value of these optimizations to higher-level language
binaries in the context of Swift [7]. Other tools include en-
tire languages dedicated to reducing code size for particular
applications, such as NesC [11].

Embedded C++ has inspired research into understanding
and reducing size overhead from the use of high-level lan-
guage abstractions. C++ exceptions are size-expensive, since
throw requires dynamic allocation and catch requires run
time type information [34]. This has inspired research into
low-size-cost C++ exceptions [31]. Other research has cat-
egorized high-level C++ features into three bins — cheap,
maybe-cheap, and expensive — based on the suitability for
low-resouce embedded settings, similar to how this paper
identifies Rust features to use/avoid [29]. EC++ specified a sub-
set of C++ suitable for low-resource embedded development,
removing multiple inheritance, virtual base classes, runtime
type identification (RTTI), exceptions, and templates [28].



Tighten Rust’s Belt: Shrinking Embedded Rust Binaries

Table 1. Size of Cr50 (C) and Ti50 (Rust) peripheral drivers with
very similar structure and functionality. Rust implementations are
significantly larger than C ones.

Cr50 (kB) Ti50 (kB) % increase

i2c_peripheral 1.3 23 83%
i2¢_host 1.1 3.2 184%
spi_host 0.6 1.0 66%
gpio 42 6.0 43%

RustyGecko, a set of libraries for bare-metal Rust, found
bare-metal Rust programs to be 1.2x - 2.2x larger than equiva-
lent bare-metal C programs [14]. Similarly, a thesis on embed-
ded Rust programming found a Rust application for particle
filtering to be approximately twice aslarge as the equivalently
optimized C code it was translated from [6].

3 Motivation: C to Rust

This section compares two embedded applications, one writ-
ten in C and one in Rust. Directly comparable portions of the
Rust binary are larger than their C counterparts. Analyzing
the binaries hints at how this size increase manifests.

3.1 Cr50andTi50

Cr50 is an open-source C firmware implementation for the
ChromeOS H1 security chip, a CortexM microcontroller. Cr50
implements secure boot for ChromeOS devices as well as sys-
tem services like keyboard control and battery charging [4].

Ti50isaRust firmware implementation for the next-generation

RISC-V based ChromeOS security chip. Ti50 is based on an
extensible OS kernel, TockOS [22], and a Rust runtime for
Tock applications, libtock-rs [9]. Ti50 is under development
and currently closed source. Ti50 (OS + applications) needs
to fit in a single 512kB bank of flash, with space reserved for
early boot states, data, and future growth.

During Ti50 development, developers observed that Rust
code often generates larger binaries than what they expect
from similar C code, and that the mapping between Rust code
and the resulting binary size was more difficult to guess. De-
velopers also noticed small, minor changes to Rust code some-
times substantially changed the size of the binary, as a result
of Rust depending on fragile code size optimizations. These
issues inspired this work. While Cr50 and Ti50 serve very
similar purposes, their substantial hardware and software
architectural differences make direct comparisons between
them difficult. Nonetheless, by looking at the compiled size of
extremely similar components and their binaries themselves,
we gather some evidence about whether Rust binaries are
larger than similar C ones.

3.2 Measuring Code Size

To quantify the size differences between C and Rust, we exam-
ine Cr50 and Ti50. First, we measure the code size of hardware

LCTES 22, June 14, 2022, San Diego, CA, USA

Table 2. Size breakdown of i2c_peripheral code by section in
Cr50 (C) and Ti50 (Rust). While Rust code has somewhat more
instructions (.text), there is more growth in static initializers
(.data) and read-only data (. rodata).

Section Cr50 (Bytes) Ti50 (Bytes)
.text 1,148 1,661
.rodata 128 483
.data 0 180
total flash 1,276 2,336

Table 3. Section breakdowns of Cr50 (C) and Ti50 (Rust) binaries.
Ti50’s .data and . rodata sections are larger despite each system
defining similar amounts of data in its source code.

Section Cr50 (kB) Ti50 (kB)
.text 182.9 323.0
.rodata 39.1 69.2
.data 0.2 7.3
total flash 222.2 399.6

peripheral drivers that are functionally almost identical: they
have have very similar APIs in C and Rust and their Rust
implementations are direct ports from C. This comparison
allows us to see whether functionally equivalent Rust com-
piles to larger binaries than C. Next, we isolate one of these
peripheral drivers and examine how the size of that particu-
lar driver is broken up across sections in both systems. This
comparison allows us to see where size increases manifest.
Finally, we look at the whole system binaries and measure
how size is distributed across different sections.

We do not directly compare the total binary sizes of Cr50
and Ti50 because they are architecturally different, e.g., Ti50
has userspace processes and a system call layer, while Cr50
doesnot. Rust’saggressive whole program optimization makes
disentangling size from additional functionality and size from
the language/compiler impossible, as new functionality is
merged with pre-existing code in large blocks of assembly. Re-
moving these optimizations drastically increases the binary
size and thus does not reflect real Rust binaries.

3.3 Size Differences

Table 1 shows the size of four peripheral drivers in the two
systems. We chose these four because they are functionally
very similar. We gathered values using ablation: we replaced
each driver with an empty “dummy” implementation, and
calculated the size reduction. Ti50 drivers are 43-184% larger.

Table 2 shows how much the the i2c_peripheral driver con-
tributes size to each section of the binaries. In both systems,
the linker is configured to place static initializers in . data,
read-only embedded data in .rodata, and instructions in
.text. While the Rust driver has 40% more instructions, it



LCTES *22, June 14,2022, San Diego, CA, USA

Table 4. Preview of bloat in Ti50 by category

Category Bloat (Bytes)
Hidden Data 27,794
Compiler Generated Support Code 24,368
Monomorphization 8,932
Poor Default Size Optimizations 13,396

introduces static initializers that do not exist in the C code,
and contains almost 4 times as much read-only data.

Table 3 shows how the full Cr50 and Ti50 binaries break
down into sections. We expected . text to be larger because
of additional code from Ti50’s more isolated architecture. We
did not expect . data to substantially change, as Ti50 actually
has fewer global variables than Cr50. We also did not expect
.rodata to change, as most embedded data in Cr50 is strings
and large constants defined in the source code, and Ti50 de-
fines roughly the same strings and constants in its source.
We discovered that Ti50 actually has a much larger .data
section, indicating our Rust code introduced more non-zero
static initializers. It also has a much larger . rodata section
(in absolute terms), despite similar amounts of data defined
in its source. The growth in this section suggests that Rust is
generating lots of embedded data that C does not.

3.4 Making Rust Closer to C

The studies above indicate that Rust’s size increases are re-
ducible. In the drivers we measured, Rust implementations
were larger by a highly variable margin (43-183%); indicating it
is possible to write code that is somewhat (43%) larger or code
that is much (183%) larger. §4 identifies the sources of this dif-
ference, and §5 instructs how to write code that avoids them.

4 RustBinary Growth
We identify four major causes of binary growth:

e Deeply ingrained monomorphization,

e Suboptimal compiler generated support code,
e Hidden data structures and data,

e Fewer compiler optimizations.

We discuss the first three in this section, and discuss com-
piler optimizations in §6. We contextualize each by the amount
we saved in the Ti50 binary by addressing it. Table 4 contains
a preview of these totals. These size-reduction changes were
submitted over time alongside additional development, so
savings numbers are calculated by summing the size differ-
ence of individual changes. We defer an explanation of how
we addressed each growth cause to §5.

4.1 Deeply Ingrained Monomorphization

Idiomatic Rust uses generic types extensively: most collec-
tions have methods which are generic over the types they hold,
and many methods for interacting with objects are generic

Ayers, Laufer, Mure, Park, Rodelo, Rossman, Pronin, Levis, Van Why

pub struct Vec<T, A: Allocator> { ... }

impl<T, A: Allocator> Vec<T, A> {
pub fn retain<F: FnMut(&T) -> bool>(&mut self, mut f: F)
{ /* 56 lines of code */ }

let v1: Vec<u32> = Vec::new();
vl.retain(le| { e >=12 });
vi.retain(le| { e <7 });

Listing 1. Rust std library implementation of Vec and example use.
Vec is generic over T, the type it holds, and A, an allocator. retain
is also generic over F, any type implementing the FnMut trait (e.g.
a closure). Calling retain with two different closures leads to the
body of retain being duplicated in the binary.

over closure traits which can be used to interact with them.
Listing 1 shows an example of this.

Rust’s implementation of generics relies on monomorphiza-
tion: each unique type passed as a generic parameter to a
generic function will lead to an additional instance of that
function in the binary. This leads to monomorphization bloat:
many copies of the same assembly instructions in only slightly
different functions. These copies are expected for basic meth-
ods on data structures. However, methods that are generic
over closure types are particularly problematic for size: each
caller of such a function is almost guaranteed to be passing a
unique closure type, so every single call of such a function will
be monomorphized. For methods with simple bodies which
are always inlined this does not matter (e.g. Option: :map()
just checks an enum discriminant), but for more complex
methods the cost can be high. The occurence of monomor-
phization is invisible to a programmer without manually in-
specting the produced binary, making it easy to repeatedly
call a generic function without understanding the binary size
impact of doing so far exceeds the amount of added code.

In Tock, we discovered substantial monomoprhization bloat
in uses of the Grant type. The Grant type is parameterized
by the type of data that can be allocated within the grant (T).
Methods to interact with Grant data provide arbitrary access
by being generic over closure types (see Listing 2).

Every Grant method with a generic closure parameter, such
as the F parameterin Grant: :enter (), is duplicated once per
call to that method, rather than just once per type T used to con-
struct anew Grant. A single instance of the Grant: :enter ()
method takes up 150 bytes of flash space. In the Ti50 Tock
kernel however, we found 11 different types stored in Grants,
and those types were manipulated using Grant: :enter () on
average just over 5 times each. As such there were 59 copies
of the method in the final binary, adding up to almost 9kB of
code for this single method, most of which is near-duplicate.

This was not an isolated occurence: kernel : :process_-
map_or () was duplicated in the binary to a similar extent,
and also took a closure and return type as generic arguments.
Dynamic dispatch cannot be used as a direct replacement —
in order to support arbitrary return types from the closure,



Tighten Rust’s Belt: Shrinking Embedded Rust Binaries

impl<T: Default> Grant<T> {
pub fn enter<F,R>(&self, id: AppId, f: F) -> Result<R, Error>
where F: FnOnce(&mut GrantData<T>, &GrantUpcallTable) -> R {
// The call below is also generic, and inlined in practice
id.kernel.process_map_or(Err(Error::NoSuchApp), id, |p| {
let pg = ProcessGrant: :new(self, p)?;
Ok(pg.enter(f)) // access memory, run the closure
»
}
}
Listing 2. Tock’s Grant: :enter () method. Ti50 had 59 unique
calls to this method, such that copies of it contributed 9kB of code.

the concrete type being returned must be known at compile
time. The Ti50 GPIO and pinmux drivers also demonstrated
monomorphization bloat despite mostly small methods, as a
result of the number of pins being monomoprhized across.

Fixing monomorphization bloat using the techniques in
§5.1 reduced the size of Ti50 by 8932 bytes: 11.7% of the total
savings we achieved.

4.2 Compiler Generated Support Code

Idiomatic Rust relies on “compiler generated support code”
This is a catchall term we use to describe a variety of construc-
tions which shorten source code, such as core-library pro-
vided procedural macros, declarative macros, and language
constructions that generate code, e.g. Drop, async, await.

4.2.1 String formatting. Rust provides formatting ma-
chinery, including a set of macros in the core library, to al-
low for formatting Rust types as strings. These include the
format! () and write! () macros, which are used to build
println! () inthe standard library, and used by Tock to build
its equivalent, debug! (). These macros all use Rust’s for-
mat_args! () internally. To easily print Rust types, devel-
opers can autogenerate printable representations for their

custom typesby annotating those types with #[derive (Debug)].
Rust’s formatting code amounts to 10kB or more of flash [24].

Worse, the code generated by #[derive(Debug)] is large for
simple types. For example, in Ti50 we used a simple switch
statement to implement a manual to_str () method for a sim-
ple enum with 6 variants. Doing so produced code 112 bytes
smaller than that generated by #[ derive (Debug) ], despite
each having equivalent string representations. Size growth
from Rust string formatting has been identified elsewhere [2,
24], our findings validate the magnitude of this problem.

In the Ti50 binary, we saved 10,416 bytes by greatly reduc-
ing our use of #[derive(Debug)] and other core formatting
utilities. We also transitioned Ti50 applications to entirely use
pfmt [2], a third-party alternative to core: : fmt, which saved
an additional 7,200 bytes. In total, these savings represented
23.1% of the total size reduction we achieved.

4.2.2 Drop trait. The Drop trait in Rust implements de-
structors for types. If Drop is implemented for an object,
that custom destructor will be called. Additionally, rustc will

LCTES 22, June 14, 2022, San Diego, CA, USA

generate a destructor for any type that owns a type which
implements the Drop trait. As a result, the Drop trait can
lead to large amounts of compiler generated code. We ob-
served this phenomenon in two places in the Tock codebase:
AppPtr: :drop() and Owned: :drop(). Libraries which pro-
vide access to types with destructors can contribute surprising
code-size growth, since storing these types in other structs
can lead to cascading compiler generated implementations.

By removing Drop implementations as described in §5.4,
we reduced the size of the Ti50 kernel by 2112 bytes: 2.8% of
the total savings we achieved.

4.2.3 Futures. The idiomatic Rust approach to asynchro-
nous execution is Futures, via core: : future: : Future. The
Future type is very full featured, including an straightfor-
ward syntax (async/await) and simple chaining of futures
without allocation. Futures also support dynamic allocation
of futures, inline-able executor code, the ability to handle spu-
rious wakeups, and short-lived callbacks. In many embedded
contexts, some of these features are unneeded, but their costs
are unavoidable. In libtock-rs, we found that even lightweight
executor logic adds 100 bytes per future, as it was monomor-
phized across every future. The Rust future design requires
indirection through global state to deal with spurious wake-
ups, which adds 100-200 bytes of overhead per future, and 330
bytes per combinator used. In total, a futures-based libtock-rs
app was 80% larger than an equivalent non-futures based app,
with the majority of this overhead expected to scale with the
number of futures and future combinators in use.

Futures bloat accounted for 4910 bytes in apps; removing
futures support represented 6.5% of the savings we realized.

4.3 Hidden Data and Language Agnosticism

The final category is hidden data: embedded data in the binary
added for language constructs. The size of this data is difficult
to determine, because of the language abstraction boundary.
We refer to this concept as language agnosticism: the language
does not define how or when this data will appear. Three
examples are panics, vtables, and static initializers.

4.3.1 Panics. Panics are how Rust handles unrecoverable
errors. Panics can be explicitly forced by calling macros such
aspanic! () orunreachable! (), but most panics are buried
in corelibrary code such as out-of-bounds array access checks,
or automatically inserted by the compiler. Panics are common
in libcore: unwrap(), expect (), and many string formatting
functions contain panics. Rust does not indicate if a given
function might panic.

Rust provides panic information via the PanicInfo struct.
This structure includes the panic message (the string passed
to the explicit call to panic), as well as the source location of
the panic in application code. In an ablation test, PanicInfo
represented 9.5% of the Ti50 binary. In the Ti50 kernel, we
found replacing panics with errors saved an average of 70
bytes per panic after removing about 50 panics.



LCTES *22, June 14,2022, San Diego, CA, USA

This overhead is not unavoidable, but is all or nothing:
discarding PanicInfo leaves developers with no informa-
tion about the source of panics, which makes debugging any
runtime panic very difficult. Using any subset of the panic
information embeds all of it in the binary, as Rust/LLVM’s
dead code elimination is unable to optimize on the basis of
only part of a struct being unused. In practice, most projects
are forced to pay the price of panic overhead, as not being
able to debug panics is impractical.

By addressing panic size as described in §5.3, we shrunk
the Ti50 binary by 18,924 bytes, 24.9% of our total savings.

4.3.2 Dynamic Dispatch. Rust dynamic dispatch uses a
vtable and fat pointers. The &dyn type in Rust takes two words
of memory: one word containing a pointer to the object itself,
and the other word pointing to a vtable for that trait (see fig-
ure 1). &dyn enables concise code compared to generics, but
increases binary size. On a 32-bit system, every vtable takes
up a fixed overhead of 12 bytes for destructor pointer / size
/ alignment, in addition to the 4 bytes per method implemen-
tation for pointers to the methods themselves. The destructor
pointer, size and alignment are only needed to support heap-
allocated trait objects. Without a heap it is impossible to store
an owned trait object (items stored on the stack must have
a known size), and thus it is impossible to drop a trait object
without knowing its concrete type. These bytes are wasteful
for systems without a heap, there exists one vtable per type
used as a trait object. This 12 byte overhead can add up. In
the Ti50 kernel, it adds up to 1476 bytes. Trait objects also
increase register pressure by using twice as many words as
normal pointers/references. For architectures like RISC-V, this
increases function call overhead by requiring more stack use.

Finally, trait objects prevent inlining and some dead code
elimination: the Rust compiler does not inline virtual function
calls, which means dead code elimination cannot occur within
methods called via vtables. These overheads are hard to pre-
dict when writing code: whether vtables willend up inabinary
depends on whether LLVM can perform devirtualization, and
the size impact of dead code elimination failing depends on
the contents of the function in question. One example of this
in Tock is the ProcessStandard implementation of the Pro-
cesstrait. Theprint_full_process() method, for example,
isonly needed for debugging, and takes up 3860 bytes on RISC-
V. Even if it is not called, it ends up in kernel binaries, because
ProcessStandard is passed as a trait object to the Kernel.

By addressing dynamic dispatch bloat using the techniques
in §5.2, we reduced the size of the Ti50 binary by 8,230 bytes
(10.8% of our savings).

4.3.3 Static Initializers. Global variables with an all-zero
representation can be stored in . bss, rather than in . data,
saving space. Unfortunately, Rust makes it difficult or impos-
sible for some types to be initialized with underlying 0-values,
forcing these initial values to consume valuable flash space.
This is partially a result of language agnosticism. In Rust, the

Ayers, Laufer, Mure, Park, Rodelo, Rossman, Pronin, Levis, Van Why

.stack .rodata

&dynTrait [ data* | vtable* |———] destructor *
size
align

method1 *

method2 *

Figure 1. Rust Vtable Depiction. All blocks are word size.

struct KeyGuardian {
task_pending: bool,
hmac: Option<HmacCtx>,
res_pending: Option<Result<usize, usize>>,
}
impl KeyGuardian {
pub const fn new() —> Self {
Self { task_pending: false, hmac: None, res_pending: None }
3
3

static mut KG: KeyGuardian = KeyGuardian: :new();

Listing 3. Example of a Rust structure and its static initialization
as a global variable. Surprisingly, this variable is placed in the . data
section, rather than the .bss section, as its initial representation
in memory has a single non-0 bit. For larger structures this is
problematic for size.

underlying bit representation of most types is hidden from
the programmer, unless special representations are specified.
This language agnosticism enables Rust optimizations which
rely on “niches” (e.g. Rust makes types like Option<&T> oc-
cupy the same amount of memory as &T by relying on the fact
that references can never point to null). One effect of this is
that the initial value of global variables can be surprising. For
example, in listing 3, the initial bit representation of KG is not
all zeroes, despite all fields being initialized to default values
which are represented as 0 on their own. In that example,
Option<Result<usize, usize>>is the guilty party — None
is represented as 0x2, while 0x0 corresponds to Some (0k (9)).
In some cases this problem can be fixed by hunting for a 0-
valued representation, but such a value does not always exist,
and if found may not be stable across compiler changes.

In Ti50, a global similar to listing 5 but with more fields
produced a 2.1kB static initializer. Changing the default to be
0-initialized saved 2kB, 2.6% of the savings we achieved.

4.4 Ti50Savings Summary

Table 5 details the code size reduction obtained in Ti50. Ad-
dressing all of these items involved modifying over 8500 lines
of code. In total, addressing these items plus applying the
improved optimizations discussed in section 6 saved 76.1 kB.

5 Best Practices for Small Rust

This section presents 5 best practices for embedded Rust code
to avoid the unnecessarily large constructions in §4, and an
evaluation of the practices on a snapshot.



Tighten Rust’s Belt: Shrinking Embedded Rust Binaries

Table 5. Savings from addressing each bloat category in Ti50.

Category Subcategory kB Saved % of Savings

Panic Data 18.9 24.9%

. Dyn Dispatch 8.2 10.8%

HiddenData g iic Init 20 2.6%

Total 29.2 38.3%

Formatting 17.6 23.1%

Drop 2.1 2.8%

cese Futures 49 6.5%

Total 24.6 32.4%

Monomorph. Total 8.9 11.7%

Default Opts  Total 13.4 17.6%
Total Savings 76.1

5.1 Minimize Length + Instantiations of Generic Code

Completely avoiding genericsisimpractical: they are idiomatic
and the Rust standard library depends on them. Carefully min-
imizing the length of generic code blocks and the number of
different types used can provide the benefits without the bloat.

Moving as much code as possible outside of templated
scopes minimizes the amount of duplicate code, as shown in
Figure 2. In figure 2a, the code to validate the process is all
within the templated function. In figure 2b, all code that does
not depend on the generic parameters F and R is moved into
anew function, get_process(), so it will not be duplicated.

For methods on generic structs, this sometimes requires
moving portions of those methods into standalone functions
(rather than methods) which will not be monomorphized. In
Tock, we applied this approach to several methods on the
Grant type and to the process_map_or () method, realizing
over 4kB of savings in the Ti50 binary.

Sometimes, all of the logic in a large generic block is closely
tied to the generic parameters. In these cases, it is important
to instead minimize the number of instantiations. When possi-
ble, these generic functions should be modified to use dynamic
dispatch (trait objects), which do not cause monomorphiza-
tion. Trait objects can harm usability because they prevent the
use of generic return types, which provide more ergonomic
interfaces. In cases where using trait objects is not possible
(such as when a trait is not object safe), minimize unique calls
to generic functions. Listing 4 provides an example.

5.2 Use Trait Objects Sparingly

While trait objects can reduce monomorphization, they are
not a silver bullet. If only one implementation of a trait is used,
trait objects add overhead. An example where this is common
ishardware abstraction layers (HALs). HALs are used to repre-
sent the capabilities of different hardware interfaces in multi-
platform codebases. In embedded Rust these are usually im-
plemented using traits: this is true in Tock, HubrisOS [5], and
in libraries used by the embedded Rust working group [26]. In

LCTES 22, June 14, 2022, San Diego, CA, USA

pub fn process_map_or<F,R>(&self, d: R, id: AppId, f: F) -> R
where F: FnOnce(&dyn Process) -> R {
let process_opt = match self.processes.get(id.index) {
Some(Some(p)) => if p.id() == id { Some(*p) } else { None },
_ => None,
IH
match process_opt {
Some (process) => f(process),
None => d,
3
3

(a) Original: each copy of process_map_or adds 48 bytes

pub fn process_map_or<F,R>(&self, d: R, id: AppId, f: F) -> R
where F: FnOnce(&dyn Process) -> R {
match self.get_process(id) {
Some (process) => f(process),
None => d,
3
}

// ---- Key savings from below function not being generic ----
pub fn get_process(&self, id: AppId) -> Option<&dyn Process> {
match self.processes.get(id.index) {
Some (Some(proc)) => {
if proc.id() == id { Some(*proc) } else { None }
}

_ => None,

(b) New: each copy of process_map_or adds 16 bytes

Figure 2. Moving logic out of generic scopes reduces binary size
at the cost of readability. A single change similar to this reduced
the size of the Ti50 Tock kernel by over 1%.

a given binary, the polymorphic functions using these traits
will only be instantiated for a single concrete type.
Hardware traits sit at the lowest level of the abstraction
stack, so generics for hardware interfaces can bubble all the
way up to application code. As a result, definitions of higher

let res = match cmd_num {
1 => grant.enter(id, |app,_| self.send_new(id, app, len))
.map_err(ErrorCode: : from),
2 => grant.enter(id, |app,_| self.receive_new(id, app, len))
.map_err(ErrorCode: : from),
b
/] —==== Below is 112 bytes smaller than above -----
let res = grant.enter(id, |app, _| {
match cmd_num {
1 => self.send_new(id, app, len),
2 => self.recieve_new(id, app, len),
3

}) .map_err(ErrorCode: : from)

Listing 4. Example from Tock: minimizing instantiations of generic
functions to reduce monomorphization size growth.



LCTES *22, June 14,2022, San Diego, CA, USA

// Generics lead to optimal codegen, but ugly codebases
pub struct SystemManager<A, P, U, G, UAP, UEC>
where
A: AdcController,
P: PmuControl,
// ... (4 more ommitted)
{...2

// If we use a marker trait, we only need one generic
// parameter instead of 6, reducing verbosity
trait SysMgrDeps {
type A: AdcController;
type P: PmuControl;
// ...
3

pub struct SystemManager<S: SysMgrDeps> {
adc: S::A,
// ...

}

Listing 5. Generic hardware interfaces can lead to a proliferation
of generic parameters on higher layer methods. Developers often
prevent this by using trait objects. A preferable alternative is to use
amarker trait, with all dependent types stored as associated types.

level functions start to become very verbose. In Ti50, it be-
came common to see struct definitions like that in the first half
of listing 5. One approach to prevent this is to define a single
trait, with several associated type parameters representing
each of the dependencies. Doing so prevents many generic
parameters from proliferating throughout a codebase: instead
a single generic parameter containing all these dependencies
can be sufficient. This approach is demonstrated in listing 5.

Finally, when trait objects are used, developers should be
careful to avoid relying on inlining-dependent optimizations
within the implementations of trait methods.

5.3 Don’tPanic!

panic! () calls with location information attached cost on
average ~70 bytes per call, but panics without this informa-
tion are almost useless for debugging. We have found the best
solution is simply panicking as little as possible. This also
improves dependability. In general, panics should be replaced
with Result based error handling whenever possible.

We performed a panic removal pass on the Ti50 code-
base — both its Tock kernel capsules and its Rust applica-
tions. Here, we list the 3 most common panics we found,
and the fixes we applied. First, we replaced array/slice ac-
cesses using the Index operator (e.g. array[3]) with calls to
get()/get_mut (), which return errors rather than panick-
ing on out-of-bounds accesses. Second, we replaced calls to
unwrap()/expect () with error handling for cases where the
expected value is not present. Third, we addressed panicking
functions in the core library without non-panicking alterna-
tives. core: :slice: :copy_from_slice() is one such exam-
ple. In these cases, removing panics from the binary requires

Ayers, Laufer, Mure, Park, Rodelo, Rossman, Pronin, Levis, Van Why

providing additional information to the compiler, such that it
knows the panic cannot occur. For copy_from_slice(), we
inserted branches to return an error before the call in the case
that the slices being manipulated are not the same length.

Some panics are impossible to avoid. To minimize these, use
the remap_path_prefix compiler flag to shorten file paths to
just the path within the workspace being built, rather than the
entire absolute path. This is especially important when using
the -Z build-std=core to build a size optimized standard
library, since doing so embeds very long paths to the toolchain
source code. Further improvements require modifying the
compiler. §6 discusses an optimization we contributed to the
Rust compiler towards this end.

5.4 Carefully Use Compiler Generated Support Code

Avoid Rust’s built in string formatting. Code in core: : fmt
uses dynamic dispatch and contains panics, which bloat bi-
naries. Also avoid using the built in procedural macro for
formatting Rust types (i.e. #[derive (Debug)]). Handwrit-
ten to_string() implementations are more size efficient.
pfmt [2], a third-party alternative, is much smaller, and should
be preferred. However, ufmt does not include any advanced
formatting (hex, fixed-width, floating point) and lacks support
in the Rust ecosystem. For Ti50, we modified ufmt to include
the minimal formatting utilities required by our application
(hex and limited fixed-width support). These changes have
been upstreamed to a public fork of the library.

Further, avoid using Futures for asynchronous execution.
The improved ergonomics of Futures are not worth the cost
of an additional 200-300 bytes per future compared to sim-
pler callback schemes. Generic runtimes should not require
a futures-based API, and size-sensitive applications should
use lighter weight alternatives. For example, libtock-rs uses
a simple function-pointer based callback approach combined
with scope guards for cleanup of resources.

Finally, be very careful when using the Drop trait. Types
likely to be stored using trait object references should not
implement Drop, as these destructors cannot be inlined. Re-
quire manual cleanup instead. Libraries should avoid expos-
ing types that implement Drop, unless the exposed types are
explicitly for use as scope guards.

5.5 Don’tUse static mut

static mut is somewhat widely used in embedded Rust, as
the closest analog to global variables in C and the easiest way
to create objects with static lifetimes. However, static mut
can generate surprising amounts of embedded data, or make
it easy for seemingly benign changes (e.g. changing a Result
field to an Option) to do so. Beyond this, static mut causes
rustc to conservatively optimize accesses, as the compiler
must assume globals could have changed since initialization.
Lazily initialized, non-globally-visible statics, like those pro-
vided by lazy_static! () [25] or Tock’s static_init!(),



Tighten Rust’s Belt: Shrinking Embedded Rust Binaries

Table 6. Breakdown of savings from applying our principles to
the Tock nrf52dk kernel binary. Unlike table 5, the final column
shows the % of the original binary removed by each category, rather
than the % of the total savings. This is possible here because these
changes were not interspersed with others.

Category Subcategory kB Saved % of Original
Panic Data 3.5 4.0%

. Dyn Dispatch 10.1 11.6%
HiddenData g tic Init 0.5 0.5%
Total 14.1 16.3%

Formatting 1.2 1.4%

Drop 14 1.6%

cesC Futures 0 0%
Total 2.6 3.0%

Monomorph. Total 3.0 3.4%
Default Opts  Total 3.0 3.4%
Total Savings 22.6 26.4%

Table 7. Size of sections in the Tock nrf52dk kernel binary before
and after applying our best practices.

Section Before (kB) After (kB) % reduction
.text 62.7 48.7 22.4%
.rodata 22.8 15.1 33.5%
.data 1.3 0.0 99.7%
total flash 86.7 63.8 26.5%

are preferable for reducing code size and ensuring memory
safety.

5.6 Snapshot Evaluation

The Ti50 results in §4.4 measure a production system. How-
ever, the practices were applied alongside unrelated changes,
so we cannot directly compare the final and original binaries.

This section evaluates the size effects of applying the best
practices to a snapshot of a commonly used Tock kernel, the
nrf52dk!. This kernel targets Nordic’s nrf52 development
kit, and supports buttons, alarms, ipc, random numbers, blue-
tooth, sensors, and an interactive console. We applied changes
similar to those in §5, targeting each growth item except for
futures, which the Tock kernel does not use. In total, we
modified 2349 lines of code.

We shrank the nrf52dk kernel from 86.7kB of flash to
63.8kB of flash, a total reduction in size of 26.4%. Table 6 shows
abreakdown. The magnitude of savings is similar to Ti50, but
the breakdown is different: different platforms and applica-
tions may realize different savings from each best practice.
For example, nrf52dk realizes more savings from removing
trait objects, and less savings from optimizing string format-
ting. Unlike §4.4, this evaluation allows direct comparisons

lcommit 162efed from August 17, 2020.

LCTES 22, June 14, 2022, San Diego, CA, USA

of binaries before/after size optimizations. Table 7 shows the
breakdown of sections before and after these size optimiza-
tions. These results show that applying our principles reduce
the amount of embedded data and static initializers in the
binary by more than they reduce the amount of code in the
final binary, as expected based on our initial comparisons of
what makes Rust code larger than C.

6 Optimizing for Size

Even following the techniques in §5, embedded Rust code
could be smaller. This section analyzes some shortcomings
that remain, and presents ideas for resolving them through
improvements to the Rust compiler and language.

6.1 Better Defaults for Size Optimized Binaries

Size constrained Rust binaries are encouraged to pass opt-
level=s/z for size optimization. Rust does not ship a core
library that is built with size optimizations turned on, so even
these binaries include code from core which is not optimized
for size. Obtaining a size optimized core library requires
rebuilding it on host, which increases compile times and re-
quires a nightly compiler. Other defaults for size optimized
binaries are also suboptimal. We propose 3 toolchain changes:

1. Ship a version of core compiled at opt-level="s/z’,
and use it by default at this optimization level.

2. Apply codegen-units=1 by default for binaries com-
piled with opt-level="s/z’ and 1to="fat’.

3. Use a lower inline threshold for opt-level="z’. We
find that inline-threshold=7 produces substantially
smaller binaries in several embedded projects. We also
found in several projects that for a fixed inline threshold
opt-level=’s’ produced much smaller binaries than
opt-level=’z’, which seems like a bug.

In the Ti50 binary, the combination of these 3 optimiza-
tions saved an additional 13.3kB, 17.6% of our total savings.
Superior models for size-inlining heuristics in LLVM, such as
those presented in MLGO [36], could improve further.

6.2 Improved Control of Panic Location Data

Rust’s PanicInfo stores a message and the filename, line
number, and column number of the source location for each
panic as embedded data in the final binary. Each panic thus
has a different location argument. In a snippet like let b =
al@]+al1]+al2], three separate panics and associated data
will end up in the binary, instead of a single out-of-bounds
access panic. One optimization to reduce the binary growth
from using panics is to provide control of the amount of loca-
tion data stored for each panic, such that less embedded data
is stored, and so that more panics can be fused.

We implemented and profiled this optimization. We im-
plemented this as a rustc flag -Z location-detail, which
allows developers to choose any combination of filename



LCTES *22, June 14,2022, San Diego, CA, USA

Table 8. Ablation analysis of panic location element size, showing
the size of the Tock “Imix” binary after progressive removal of panic
location fields. Ti50 does not use this flag yet.

Element Removed Code Size (Bytes) Total Savings

None 175,304 0%
- column numbers 174,424 0.6%
- line numbers 163,752 6.6%
- filename 158,356 9.6%

/ line number / column number to be tracked in panic loca-
tions. We built a compiler with this flag, and measured the size
savings from excluding each portion of the location. Table 8
shows the results for the Tock “Imix” application. This flag
requires a newer Rust toolchain, so Ti50 does not use it yet.

We contributed this optimization to the upstream Rust com-
piler, where it was accepted (citation omitted for anonymity).

Additional optimizations could be made. The LLVM IR type
of panic locations is {{[@ x 18]*, 132}, i32, 132}, which
could be cut in half by using variants for line/column info.
Using the LLVM char6 encoding for filenames could further
decrease the size of panic locations.

6.3 Improved Dead Code Elimination

Use of third-party libraries depends on dead code elimina-
tion. LLVM’s dead code elimination is generally effective, but
breaks down when trait objects are used: passing a type as a
trait object incurs the size cost of all methods on that trait.

This problem is worse for Rust than C++, where the ability
todeclare only some functionsin a class as virtual significantly
mitigates the size impact of this problem. LLVM’s “dead vir-
tual function elimination” (DVFE) [23] further mitigates this
issue for C++. Unfortunately, rustc provides insufficient type
metadata to LLVM, such that DVFE is only possible in very
limited, simple cases. In the future, the compiler could walk
all calls to trait methods, determine the set of trait methods
which are never called, and optimize those away.

6.4 Improved Devirtualization

Even when only a single implementation of a trait exists in
a statically linked binary, rustc may not devirtualize calls on
trait objects for that trait. This optimization is called “whole
program devirtualization” (WPD). Rust’s lacking support for
LLVM WPD means these optimizations are not applied in
many cases where Clang could apply them for C++ code with
dynamic dispatch. Future implementation work could iden-
tify traits where only a single type is ever instantiated as
that trait, and replace all uses of that trait with direct calls to
functions on the concrete type.

6.5 Smarter Polymorphisation

Rust’s use of monomorphization for polymorphism increases
code size in exchange for more predictable performance [1].

Ayers, Laufer, Mure, Park, Rodelo, Rossman, Pronin, Levis, Van Why

For embedded Rust, it would be better to deduplicate when-
ever possible. The Rust compiler can skip unneeded monomor-
phization: a process called polymorphisation. Unfortunately,
Rust’s simple polymorphisation implementation [37] only
works for functions whose generic parameters are entirely un-
used. Ideally, polymorphisation would apply anytime two dif-
ferent generic function instances produce functionally iden-
tical LLVM-IR, similar to how C# can de-duplicate generic
instances with different types of identical size/alignment.

6.6 Virtual Table Implementation

§4.3.2 discusses the size overhead of dynamic dispatch in em-
bedded Rust, including the presence of 12 bytes of unused data
in every vtable for binaries which do not support dynamic
allocation. In the Ti50 binary, we found 123 vtables, adding up
to almost 1500 bytes of waste. A compiler option to remove
this unused data would provide significant savings.

7 Tools for Analyzing Rust Binaries

This work required attributing portions of an optimized bi-
nary to the source code responsible for its inclusion. One exist-
ing tool was particularly helpful: cargo-bloat [30]. Cargo-bloat
outputs an estimate of the size in . text of each function in an
ELF file. Unlike language-independent tools like bloaty [12],
cargo-bloat uses cargo metadata to improve accuracy. Cargo-
bloat is useful in identifying monomorphization bloat and
in understanding the effects of optimizations like inlining.
The inability to analyze sections other than . text limits its
usefulness, since other sections like . rodata can be quite
large. One tool which can analyze other sections is Tock’s
print_tock_memory_usage.py. However, its characterization
of padding/data is not rigorous and at times inaccurate.

We developed 2 new tools, each open-sourced. First, we
released embedded_data_analyzer, and submitted it to Tock.
This tool can attribute embedded data (i.e. data in the final
binary that is not instructions) to the source-level functions
responsible for their inclusion. This tool is currently capable
of attributing 66% of embedded data in an example Tock bi-
nary, and was useful in identifying the “hidden data” items
discussed in this paper in §4.3. We also developed find_pan-
ics.py, which is a tool for tracing source locations of panics
in a Rust ELF. This tool was submitted and accepted into the
Tock github repository. This tool uses DWARF debug infor-
mation in the ELF to backtrace panics. It is special in that it
identifies the user code responsible for a panic being included
in the binary, even if the actual panicking branch is contained
in core library code. It is useful for removing panics, a key
element in following our size reduction principles. Without
this tool, it can be difficult to identify what user code actually
generates panics in a final optimized binary.



Tighten Rust’s Belt: Shrinking Embedded Rust Binaries

8 Discussion

Idiomatic embedded Rust code compiles to larger binaries
than comparable programs written in C. This is due to two
design principles in the language. First, Rust relies heavily on
compiler optimizations to provide high-level constructions as
“zero-cost abstractions”. Designed originally for performance
critical applications such as the Firefox page rendering engine,
Rust’s abstractions are designed to be fast, not small. In Rust,
“zero-cost”, means zero-added-clock-cycles, not zero-added-
size. Core library methods that are generic over closures are
one example of this: monomorphization allows each invoca-
tion to be as fast as a normal function call.

Second, Rust’s higher-level language features blur the rela-
tionship between source code length and resulting binary size.
C was designed to function as a “high level assembler” [16],
and as such there is a generally linear relationship between
lines of C code and number of assembly instructions. In Rust,
however, small pieces of code can introduce large blocks of
instructions: §4.1 showed how invoking Grant: :enter with
a trivial closure added 150 bytes. Furthermore, size optimiza-
tions in the compiler are fragile, making predicting the size
impact of changes harder. Examples of this include trait ob-
jects breaking programmers mental model of dead code elim-
ination, or panics requiring less source code but more size
than handling and propagating errors.

This paper proposes a set of principles for reducing the size
of embedded Rust binaries, but examines only Tock kernels
and applications. To see if these principles are generalizable,
we look briefly at Hubris, a new, commercial embedded Rust
OS that targets security critical applications [5]. Hubris was
released after we applied the principles to Ti50: it is an inde-
pendent data point. Hubis currently only has very simple ex-
ample applications: we describe results from demo-stm32h7-
nucleo/app-h743 because it is one of the most complex.

Hubris has a very different architecture than Tock. Appli-
cations consist of many small, independently compiled tasks,
each of which is heavily inlined. As a result, there is very little
monomorphization bloat within tasks, but tasks replicate all
shared code. In some cases, Hubris follows the proposed prin-
ciples: it uses a single trait object, does not support Futures,
has only two implementations of the Drop trait, and has very
few static mut variables besides 0-initialized buffers.

In other cases, however, applying the principles had sig-
nificant savings. The core Hubris kernel task, for example,
has many panics: replacing 13 of these panics with errors
shrank the task by 608 bytes, a 3% size reduction by changing
13 lines of code. Applying our recommended optimization
profile? led to cutting 22.5kB from the 150kB application (15%).
The location-detail compiler flag we implemented is also
beneficial to Hubris: when applied on top of the optimization
profile, it could reduce the app size by up to 10.5 kB (8%).

20pt-1eve1=s, build-std=core,compiler_builtins, wuse of
remap-path-prefix to shorten paths to core, and inline-threshold=7

LCTES 22, June 14, 2022, San Diego, CA, USA

9 Conclusion

Rust’s memory safety and other guarantees are extremely
valuable for embedded software. However, idiomatic Rust
code has significantly larger binaries than C equivalents,
which is problematic for flash-constrained embeddded sys-
tems. This paper examined the causes of these size increases,
finding many are avoidable. It described a simple set of 5 pro-
gramming principles for embedded Rust, which, combined
with compiler options, reduced the size of a commercial bi-
nary by 19%. Furthermore, we outlined several directions for
the Rust compiler that could further reduce binary size.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1931750 “Secure Smart
Machining” This work was also supported in part by the
CONIX Research Center, one of six centers in JUMP, a Semi-
conductor Research Corporation (SRC) program sponsored
by DARPA, and by the National Science Foundation under
Grant No. CNS-1824277. The authors would also like to thank
the entire Ti50 team at Google for all of their help with this
work.

References

[1] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews,
Keegan McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering
the Servo Web Browser Engine Using Rust. In Proceedings of the 38th
International Conference on Software Engineering Companion (Austin,
Texas) (ICSE ’16). Association for Computing Machinery, New York,
NY, USA, 81-89. https://doi.org/10.1145/2889160.2889229

[2] Jorge Aparicio. Accessed: 2022-03-03. pfmt. https://github.com/japaric/
ufmt.

[3] AshwinKumar Balakrishnan and Gaurav Nattanmai Ganesh. 2022. Mod-
ern C++ and Rust in embedded memory-constrained systems. (2022).

[4] Vadim Bendebury. 2018. Google Security Chip H1: A member of the
Titan Family. (2018). Open Source Firmware Conerence 2018.

[5] CIliff L. Biffle. 2021. On Hubris and Humility: developing an OS for
robustness in Rust. (2021). Open Source Firmware Conerence 2021.

[6] Nico Borgsmiiller. 2021. The Rust Programming Language for Embedded

Software Development. Ph. D. Dissertation. Technische Hochschule.

Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with

Code-Size Optimization for Production IOS Mobile Applications. IEEE

Press, 363-366. https://doi.org/10.1109/CG051591.2021.9370306

Saumya K Debray, William Evans, Robert Muth, and Bjorn De Sutter.

2000. Compiler techniques for code compaction. ACM Transactions on

Programming languages and Systems (TOPLAS) 22, 2 (2000), 378-415.

Tock Project Developers. Accessed: 2022-03-03. libtock-rs.

https://github.com/tock/libtock-rs.

[10] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esau Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian Di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, et al. 2019. The Case for
Writing Network Drivers in High-Level Programming Languages.
In 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 1-13.

[11] David Gay, Philip Levis, Robert Von Behren, Matt Welsh, Eric Brewer,
and David Culler. 2003. The nesC language: A holistic approach to
networked embedded systems. Acm Sigplan Notices 38, 5 (2003), 1-11.

[12] Google. Accessed: 2022-03-03. bloaty. https://github.com/google/
bloaty.

7

—

[8

[}

[9

—


https://doi.org/10.1145/2889160.2889229
https://github.com/japaric/ufmt
https://github.com/japaric/ufmt
https://doi.org/10.1109/CGO51591.2021.9370306
https://github.com/tock/libtock-rs
https://github.com/google/bloaty
https://github.com/google/bloaty

LCTES *22, June 14,2022, San Diego, CA, USA

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20

[t

[21]

[22]

(23]

[24]

[25]

Hugo Heyman and Love Brandefelt. 2020. A Comparison of Perfor-
mance & Implementation Complexity of Multithreaded Applications
in Rust, Java and C++.

Havard Wormdal Heiby and Sondre Lefsaker. 2015. RustyGecko-
Developing Rust on Bare-Metal-An experimental embedded software
platform. Master’s thesis. NTNU.

M. M. Hossain, M. Fotouhi, and R. Hasan. 2015. Towards an Analysis
of Security Issues, Challenges, and Open Problems in the Internet of
Things. In 2015 IEEE World Congress on Services. 21-28.

ISO. 2007. International Standard ISO IEC 9899:1999: Technical
Corrigendum 3. pub-ISO. 10 pages.  http://www.iso.org/iso/en/
CatalogueDetailPage.CatalogueDetail?CSNUMBER=43485;http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
johnthagen. Accessed: 2022-03-03. Minimizing Rust Binary Size.
https://github.com/johnthagen/min-sized-rust.

Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language.
No Starch Press.

Jens Knoop, Oliver Riithing, and Bernhard Steffen. 1994. Partial dead
code elimination. ACM SIGPLAN Notices 29, 6 (1994), 147-158.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework
for lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004.1IEEE, 75-86.
Rainer Leupers and Peter Marwedel. 1999. Function inlining under
code size constraints for embedded processors. In 1999 IEEE/ACM
International Conference on Computer-Aided Design. Digest of Technical
Papers (Cat. No. 99CH37051). IEEE, 253-256.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a
64kB Computer Safely and Efficiently. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 234-251.
Linaro. Accessed: 2022-03-03. LLVM Dead Virtual Function
Elimination. https://llvm.org/devmtg/2019-10/slides/Stannard-
DeadVirtualFunctionElimintation.pdf.

James Munns. Accessed: 2022-03-03. Formatting is Unreasonably
Expensive for Embedded Rust.
unreasonably-expensive/

Rust Language Nursery. Accessed: 2022-03-03.
https://github.com/rust-lang-nursery/lazy-static.rs.

https://jamesmunns.com/blog/fmt-

lazy-static.rs.

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Ayers, Laufer, Mure, Park, Rodelo, Rossman, Pronin, Levis, Van Why

Embedded Rust Working Group. Accessed: 2022-03-03. embedded-hal.
https://github.com/rust-embedded/embedded-hal.

Anthony Perez. 2017. Rust and C++ performance on the Algorithmic
Lovasz Local Lemma. Project Report. Stanford: Stanford University, Dec
(2017).

Philip J Plauger. 1997. Embedded C++: An Overview. Embedded
Systems Programming 10 (1997), 40-53.

César A Quiroz. 1998. Using C++ efficiently in embedded applications.
In Proceedings of the Embedded Systems Conference.

Yevhenii Reizner. Accessed: 2022-03-03.  cargo-bloat.  https:
//github.com/RazrFalcon/cargo-bloat.
James Renwick, Tom Spink, and Bjorn Franke. 2019. Low-cost

deterministic C++ exceptions for embedded systems. In Proceedings
of the 28th International Conference on Compiler Construction. 76-86.
Rodrigo CORocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim
Hazelwood, and Hugh Leather. 2021. HyFM: function merging for free.
In 22nd ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems: Co-located with PLDI 2021.
Kang Seonghoon. Accessed: 2022-03-03. Why is a Rust executable
large? https://lifthrasiir.github.io/rustlog/why-is-a-rust-executable-
large.html

Herb Sutter. 2019. P0709: Zero-overhead deterministic exceptions:
Throwing values. Standard Proposal. C++ Standards Committee.
Sriraman Tallam, Cary Coutant, Ian Lance Taylor, Xinliang David Li,
and Chris Demetriou. 2010. Safe ICF: Pointer Safe and Unwinding
Aware Identical Code Folding in Gold. In GCC Developers Summit.
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&
target=tallam.pdf

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choro-
manski, and David Li. 2021. Mlgo: a machine learning guided compiler
optimizations framework. arXiv preprint arXiv:2101.04808 (2021).
David Wood. 2020. Polymorphisation: Improving Rust compilation
times through intelligent monomorphisation. (2020).

Hongwei Xi. 1999. Dead code elimination through dependent types. In
International Symposium on Practical Aspects of Declarative Languages.
Springer, 228-242.

Peng Zhao and Jose Nelson Amaral. 2005. Function outlining and partial
inlining. In 17th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD’05). IEEE, 101-108.


http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=43485; http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=43485; http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=43485; http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://github.com/johnthagen/min-sized-rust
https://llvm.org/devmtg/2019-10/slides/Stannard-DeadVirtualFunctionElimintation.pdf
https://llvm.org/devmtg/2019-10/slides/Stannard-DeadVirtualFunctionElimintation.pdf
https://jamesmunns.com/blog/fmt-unreasonably-expensive/
https://jamesmunns.com/blog/fmt-unreasonably-expensive/
https://github.com/rust-lang-nursery/lazy-static.rs
https://github.com/rust-embedded/embedded-hal
https://github.com/RazrFalcon/cargo-bloat
https://github.com/RazrFalcon/cargo-bloat
https://lifthrasiir.github.io/rustlog/why-is-a-rust-executable-large.html
https://lifthrasiir.github.io/rustlog/why-is-a-rust-executable-large.html
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=tallam.pdf
http://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=view&target=tallam.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Rust for Embedded Systems
	2.2 Related Work

	3 Motivation: C to Rust
	3.1 Cr50 and Ti50
	3.2 Measuring Code Size
	3.3 Size Differences
	3.4 Making Rust Closer to C

	4 Rust Binary Growth
	4.1 Deeply Ingrained Monomorphization
	4.2 Compiler Generated Support Code
	4.3 Hidden Data and Language Agnosticism
	4.4 Ti50 Savings Summary

	5 Best Practices for Small Rust
	5.1 Minimize Length + Instantiations of Generic Code
	5.2 Use Trait Objects Sparingly
	5.3 Don't Panic!
	5.4 Carefully Use Compiler Generated Support Code
	5.5 Don't Use static mut
	5.6 Snapshot Evaluation

	6 Optimizing for Size
	6.1 Better Defaults for Size Optimized Binaries
	6.2 Improved Control of Panic Location Data
	6.3 Improved Dead Code Elimination
	6.4 Improved Devirtualization
	6.5 Smarter Polymorphisation
	6.6 Virtual Table Implementation

	7 Tools for Analyzing Rust Binaries
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

