
Breakfast of Champions: Towards Zero-Copy
Serializationwith NIC Scatter-Gather

Deepti Raghavan
♠
, Philip Levis

♠
, Matei Zaharia

♠
, Irene Zhang

♦

♠
Stanford,

♦
Microsoft Research

Abstract
Microsecond I/O will make data serialization a major

bottleneck for datacenter applications. Serialization is

fundamentally about data movement: serialization libraries

coalesce and flatten in-memory data structures into a single

transmittable buffer. CPU-based serialization approaches will

hit a performance limit due to data movement overheads and

be unable to keep up with modern networks.

We observe that widely deployed NICs possess scatter-

gather capabilities that can be re-purposed to accelerate seri-

alization’s core task of coalescing and flattening in-memory

data structures. It is possible to build a completely zero-copy,
zero-allocation serialization library with commodity NICs.

Doing so introduces many research challenges, including

using the hardware capabilities efficiently for a wide variety

of non-uniform data structures, making application memory

available for zero-copy I/O, and ensuring memory safety.

CCS Concepts
• Networks→ Programming interfaces.

Keywords
data serialization, kernel bypass networking, datacenters

ACMReference Format:
Deepti Raghavan, Philip Levis, Matei Zaharia, Irene Zhang. 2021.

Breakfast of Champions: Towards Zero-Copy Serialization with

NIC Scatter-Gather. InWorkshop on Hot Topics in Operating Systems
(HotOS ’21), May 31–June 2, 2021, Ann Arbor, MI, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3458336.3465287

1 Introduction
The microsecond era is here [5]. As Figure 1 shows,

datacenter applications today can achieve microsecond

packet round-trip times, reaching single digit RTTs with

Permission tomakedigital or hard copies of part or all of thiswork for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components

of this work must be honored. For all other uses, contact the owner/author(s).

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.

https://doi.org/10.1145/3458336.3465287

(proto:43%)
(proto:24%) (proto:23%) (proto:19%)

(proto:5.1%)

2.3
4.1 4.4 5.2

19.7

0

5

10

15

20

eRPC
RTT

Redis
Get RTT

2−Sided
RDMA RTT

DPDK
RTT

Linux
RTT

La
te

nc
y

(µ
s)

Figure 1:ReportedRTTsofrecentmicrosecond-scale systems,
annotated with the percentage overhead that Protobuf serial-
ization and deserialization of a single 1024 byte string (1.0 µs)
would add (shown in the dashed line). Redis RTT comes from
Arrakis [27], eRPC from eRPC [17], while the RDMA, DPDK
and Linux RTTs aremeasured on the Demikernel. [42].

kernel-bypass. At these latencies, everyday systems services,

like data serialization, become unaffordable bottlenecks.

Data serialization [2, 3, 36–38] is important in datacenter

applications. Many distributed applications [1, 33, 41], RPC

libraries [13], and microservice deployments [10] rely on

serialization as a communication primitive, but serialization

already causes a big performance penalty. Google reported

that Protobuf [37] accounted for 5% of its datacenter cy-

cles [18] in 2015, and we expect the problem to worsen today.

Concretely, we find that Protobuf takes 1.0 µs to serialize

and deserialize a simple data structure with a single 1024 byte-

sized string. Figure 1 overlays this overhead. Protobuf serial-

ization for this data structure adds a staggering 43% overhead
to eRPC [17]. Each extra microsecond of serialization over-

head significantly affects the throughput a server can achieve

and the number of cores necessary to saturate the network.

The main problem is that general-purpose CPUs cannot

perform serialization’s core task efficiently enough. Seri-

alization must move data, because there is fundamental

tension between the application’s optimal in-memory

layout and the network’s optimal on-the-wire layout for a

data structure. Data structures often contain pointers (e.g.,

trees and graphs), so applications can easily modify data

structures without having to re-allocate all the memory

contiguously. Serialization coalesces these scattered pointers

into a contiguous buffer for transmission. Performing this

data movement in software will limit throughput in modern

199

https://doi.org/10.1145/3458336.3465287
https://doi.org/10.1145/3458336.3465287

networks, because it requires copying each field at least once

and providing a buffer to store the final result.

Without high performance serialization libraries, applica-

tions are forced to hand-roll their own serialization or inte-

grate customhardware accelerators. Redis [31] improves CPU-

based serialization by restricting its functionality, but cannot

avoid the overhead required to move memory. The most com-

plicated object Redis can serialize is a list. On the other hand,

deploying and integrating custom hardware accelerators that

do serialization [15, 28] can be difficult in today’s datacenters

as it requires extra coordination between network adminis-

trators, offload developers and application developers [22].

Our key observation is that while CPUs coalesce scattered

memory regions inefficiently, widely deployed NICs already

perform a similar function: scatter-gather. Scatter-gather

was designed for high-performance computing, where

applications frequently move large, statically-sized chunks

of memory between servers. Kernel bypass exposes this NIC

capability to the serialization library, but it is not obvious

how to directly use it for serialization. Thus, this paper asks:

How can we leverage NIC scatter-gather capabilities to build
serialization libraries that keep up with modern networks?
The remainder of the paper describes why existing soft-

ware serialization is inefficient (§2) and a simple use of NIC

scatter-gather for serialization (§3). We finally discuss open

research questions around building general-purpose serializa-

tion libraries with scatter-gather (§4) and related work (§5).

2 The Limits of Software Serialization

This section shows that CPU-based serialization cannot keep

up with the peak packet processing throughput of kernel

bypass I/O (§2.1), because CPU-based serialization cannot

avoid certain data movement overheads (§2.2).

2.1 Software SerializationHits a Performance Limit

To demonstrate the overhead of serialization, we benchmark

three software serialization libraries [36–38] on DPDK

and find that they only achieve up to 52% of DPDK’s peak

single core throughput. We only consider compilation-based

serialization [2, 3, 36, 37] because dynamic type inference

at runtime [20, 23] (e.g., Java serialization of arbitrary Java

classes) adds unaffordable overheads. We use a data structure

with a single 1024-byte string field. Although the data struc-

ture is so simple that serialization is theoretically unnecessary,

it captures the minimal overhead for serialization today.

The experiment runs on 11 20-core dual socket Xeon Silver

4114 2.2 GHz servers, connected by Mellanox ConnectX-5

100 Gbps NICs and an Arista 7060CX 100 Gbps switch, with

a minimum 450 ns of switching latency. We use concurrent,

closed-loop clients to send a serialized message to the server,

which deserializes, then re-serializes the same payload and

● ● ●
●

●
● ●

●
●
●

●

●

Figure 2: Measured achieved throughput and p99 latency for
sets of 1 to 20 concurrent clients (across up to 10 separate ma-
chines) pinging a single-core serialization echo server with
a message containing a single 1024-byte string. No software
serialization library can keep up with the peak zero copy
throughput without serialization, which is about 10.4Gbps.

returns it to the client. We use a minimal UDP networking

stack for DPDK based on LWIP [7].

We show the results in Figure 2. The “No Serialization” line

removes serialization and gives the raw networking stack per-

formance. Kernel bypass requires that packet memory lives

in pinned, non-swappable pages, so the networking stack still

copies application payloads into registered packet memory

on transmission and copies packets into general memory on

receive. The “DPDK Single Core” line removes these copies

and represents the peak, zero-copy processing throughput

possible with DPDK. We include another version of Protobuf,

“Protobytes”, where the payload is bytes, not a string, as Pro-

tobuf spends a significant amount of time in utf8-validation.

Experiment Results. FlatBuffers, the fastest serialization

baseline, achieves only 5.4 Gbps, about 52% of DPDK’s peak

throughput of 10.4 Gbps (highest throughput measured

under 15 µs of tail latency), due to two performance gaps.

Serialization itself contributes the first 3 Gbps gap between

FlatBuffers and No Serialization. Having the networking

stack and serialization manage memory separately con-

tributes the 2Gbps gap between No Serialization and DPDK

Single Core. Section 2.2 closely breaks down these gaps.

2.2 Why is Software Serialization So Expensive?
The overhead of moving data on CPUs limits the performance

of today’s software serialization libraries. In-memory data

structures often contain pointers, so serialization must flatten

the data into a contiguous representation. Additionally,

sometimes applications use serialization libraries to construct

and transmit data structures on-demand to respond to

application requests (e.g., returning the value of a range of

specified keys in a key-value store).

200

Step Protobuf Cap’n Proto

Initialize Data Structure 34 ns 408 ns

Copy String Payload 167 ns* 80 ns*

Encode toWire Format 351 ns* 53 ns

Decode fromWire Format 491 ns* 78 ns

Total Overhead 1043ns 619ns

Table 1: Breakdown of steps to serialize and deserialize a
message with a single 1024-byte-sized string field. Cap’n
Proto’s encode and decode are zero-copy because the in-
memory buffer layout matches the eventual wire format,
while Protobuf requires an expensive transformation to the
wire format. Both libraries’ copy-based overheads, marked
by stars, scale withmessage size.

All current serialization libraries, no matter their final

wire-format, pay the cost of the copies and allocations

required for this data movement. Table 1 breaks down the

serialization latencies from Figure 2 with Protobuf and

Cap’n Proto (FlatBuffers behaves similarly to Cap’n Proto).

After copying the field in (“Copy String Payload”), Protobuf

performs an expensive transformation to the on-the-wire

format. This transformation causes an additional allocation,

copy and utf8-validation during “Encode”, and corresponding

costs during “Decode”. Cap’n Proto’s “Encode” and “Decode”

are cheaper because the in-memory format matches the

wire-format exactly, but even Cap’n Proto must allocate space

for the serialized buffer (“Initialize Data Structure”) and copy

the payload in (“Copy String Payload”) during transmission.

For data structures with large payloads, data movement domi-

nates serialization costs, while converting integers to network

ordering, which few wire formats require, adds minimal cost.

The second performance gap in Figure 2 comes from

the firm separation between the serialization library and

networking stack. Modern kernel bypass stacks require that

packets live in non-swappable, pinned memory, so they

typically use their own buffers for I/O. Serialization libraries

are unaware of the networking stack altogether, so there are

inherently copies between the two. Completely eliminating

the performance gap in Figure 2 would require tight

integration between the serialization library, application and

networking stack. This integration would involve agreeing

on an interface, making pinned memory available, and coordi-

nating ownership and memory safety of buffers. Fortunately,

with kernel bypass, the networking stack, serialization

library, and application are all in the same address space, so

coordinating memory management may be possible (§4.3).

3 Leveraging the NIC for Serialization
Speeding up serialization requires reducing CPU data

movement. Our key insight is that datacenter servers already

● ● ●
●

●

●

●

●

●

Figure 3: Achieved throughput for 16 clients pinging a
single-core echo server with different message sizes (trans-
mitted as a single chunk, without scatter-gather). The server
either copies the payload out to a transmit buffer or uses
zero-copy transmission. The difference between zero-copy
and copy-out becomes visible only at 512 bytes. Note the log
scale in the x-axis.

have a hardware accelerator for coalescing non-contiguous

I/O regions: the NIC itself. Modern NICs have scatter-gather

engines for high-performance computing, e.g., to opti-

mize MPI communication primitives [8, 32]. Networking

stacks [9, 34] have re-purposed scatter-gather to manage

sending packets that are larger than the maximum packet

buffer size. Serialization differs from these use cases because

it needs to move potentially many fields whose size and

placement dynamically depend on external data or user

requests. This section describes the design of a prototype

serialization library for the popular Mellanox CX-5 [25] NIC.

3.1 NIC Scatter-Gather Capabilities

Whether NIC scatter-gather can be used for high-

performance serialization depends on its performance

properties and restrictions. The section focuses on the

Mellanox CX-5; other modern scatter-gather NICs with PCIe

interconnects likely behave similarly (§4.1).

Given a list of I/O addresses, a CX-5 makes multiple PCIe

requests to coalesce the memory into a single packet. The NIC

supports up to 60 scattered memory chunks, but each chunk

requires a NIC-to-PCIe round trip. The number of these round

trips that can execute concurrently depends on hardware im-

plementation details of the PCIe endpoint at the NIC and the

CPU, which we currently do not have knowledge of. To un-

derstand this penalty, we ran an experiment where the DPDK

echo server described in Section 2.1 transmits a pre-initialized

payload of size 1024 bytes (no copies) equally divided into

different numbers of chunks to a single client. The RTT in-

creases from 6 µs to a 10.5 µs RTT when the message is sent

as a single buffer, versus 60 scatter-gather chunks. Sending

back the 1024-byte message as 16 chunks results in higher

latency than using FlatBuffers to deserialize, reserialize and

transmit the request (which requires copying the payload

201

struct ScatterGatherArray {
size_t num_entries;
void * ptrs[MAX_ENTRIES];
size_t length[MAX_ENTRIES];

};

Listing 1: The scatter-gather array, the core abstraction for
scatter-gather based serialization.

twice). These results suggest that, for a 1024-byte message,

the “maximum” number of chunks should be fewer than 16.

There is also a tradeoff between the cost of an additional

PCIe request and simply copying the memory. Figure 3

shows an experiment that measures the difference in

achieved throughput for 16 clients pinging the single-core

DPDK echo server with messages of varying size consisting

of a single buffer. The payload is either pre-initialized

(“Zero-Copy”) or copied into the packet (“Copy-Out”). The

only discernible difference between copy-out and zero-copy

starts at about 512 bytes. Additionally, entries much smaller

than 256 bytes could hurt performance. When the NIC reads

memory regions over PCIe, the PCIe controller sends back

256-byte-sized memory chunks (the chunk size is a hardware

setting). Each chunk contains a header, so the header could

dominate in the case of small payloads.

These results indicate that maximum performance on a CX-

5 requires passing in I/O lists with entries that are at least 512

bytes large. The “maximum” number of entries in the I/O list

depends on the size of each entry as well as howmany concur-

rent DMAs can run. These tradeoffs preclude simple solutions,

such as one scatter-gather operation per data structure field.

3.2 Integrating Networking and Serialization

Core Abstraction: Scatter-Gather Array. Our serializa-

tion library’s core abstraction is the scatter-gather array
abstraction, shown in Listing 1. Scatter-gather arrays point to

application data in their original memory location. When ap-

plications call serialize, the library produces a scatter-gather

array that can be passed to the networking stack instead of a

single contiguous buffer. Transmitting scatter-gather arrays

is conceptually similar to calling the writev system call [12]

in Linux with an iovec data structure, except the Linux kernel

still copies the iovec into a contiguous buffer before trans-

mission. Section 4.3 discusses research challenges around

ensuring application memory can be used for I/O directly.

Serialization API. Our prototype serialization library

requires a zero-copy application interface. The generated

setter functions store pointers to application memory

directly, rather than moving the memory. Listing 2 shows

the interface our library would produce for the simple data

structure benchmarked in Section 2.1 and how an echo server

could use the interface. However, the library only stores

message Object { optional string msg = 1; }

class ObjectGenerated {
std::pair<char *, size_t> get_msg();
void set_msg(const char *addr, size_t len);
ScatterGatherArray serialize(size_t num_entries);
void deserialize(const char *payload);

};

ObjectGenerated obj_recv, obj_send;
obj_recv.deserialize(connection.recv());
recved = obj_recv.get_msg();
obj_send.set_msg(recved.0, recved.1);
ScatterGatherArray sga_send = obj_send.serialize();
connection.send(sga_send);

Listing 2: Interface produced by our serialization library
in C++, for the listed object schema (in Protobuf syntax),
along with example code for an echo server. Unlike prior
serialization interfaces, this interface uses zero-copy writes
and reads. The serialization library avoids copying fields into
a pre-allocated buffer and passes a scatter-gather array to the
networking stack for transmission.

pointers for variable-sized values, such as strings, bytes or

nested objects. Maintaining pointers to integer fields would

not improve performance (storing the pointer to an integer

takes about the same space as storing the integer itself), so

the serialize function copies integers into the object header.

The header contains a bitmap to index which fields

are present, followed by metadata for each field that is

present. For the data structure in Listing 2, the corresponding

scatter-gather array points to the object header in the first

entry and to the string field in the second entry. The object

header contains a bitmap that indexes whether the single

field is present or not and an offset which points to the string

field if it is present. The resulting wireformat is similar to

Cap’n Proto’s wireformat.

Our library can support nested objects and lists, like Cap’n

Proto, FlatBuffers and Protobuf. To support a nested field,

the object header contains an offset to the nested object’s

header (if present). To support a list, the header stores the

length of the list and an offset to the actual list data. The

final scatter-gather array contains the object header in the

first entry (including any nested header data), and pointers

to string or bytes fields in further entries from the top-level

object as well as any nested objects or lists.

Deserialization API. Deserialization requires turning the

received payload back into a pointer-based data structure.

This requires linearly scanning through all of the possible

fields in the object schema, checking if they are present in the

bitmap, and recasting each field offset into a pointer. While

linearly scanning through all the fields may add overhead for

a data structure with a large number of fields, deserialization

202

could be “lazily” evaluated if the library changed its wire

format slightly. If the object header stored information for

all fields, instead of only fields that are present, the compiler

would know the location of any field’s header information

ahead of time. Deserialization could then be a constant-time

operation and the library could lazily recover the pointer for

any given field when the programmer calls get_field.

Zero-copy deserialization (without copies) causes the appli-

cation to take ownership of data allocated in the networking

stack’s packet buffers, which the networking stack might

need to reclaim later. Additionally, unless the application uses

in-place updates when writing data from received packets

(e.g., a put request in Redis), the deserialized data might need

to be “re-scattered” into specific in-memory data structures,

which requires copies. A fully integrated serialization library

and networking stack would need to deal with memory

safety and reclamation on the deserialization path (§4.4).

3.3 Prototype Implementation

We implemented this approach for the echo server workload

for the data structure in Listing 2 in C++ on top of the same

UDP networking stack for DPDK used in Section 2.1. We

modified the DPDK datapath to produce a linked list of mbuf

packet data structures given the scatter-gather array. The first

mbuf contains the packet header with the serialization header

copied in. The further mbufs point to the payloads referenced

by the scatter-gather array using DPDK’s attach_extbuf API.

To comply with kernel bypass I/O memory requirements, the

server directly initializes the data structure payload from pre-

registered memory. However, Section 4.3 discusses strategies

to ensure application memory addresses can be used for I/O.

The prototype implementation achieves about 9.15Gbps

(highest throughput measured under 15 µs of tail latency).

The prototype’s performance improves on all the serialization

libraries and the 1-copy (”No Serialization”) baseline, but falls

about 1.2 Gbps short of the optimal DPDK throughput. We

speculate this gap comes from inefficient use of scatter-gather

entries (allocating an entire mbuf for just the packet header

and object header). Nonetheless, this prototype shows

that leveraging NIC scatter-gather is a promising way to

accelerate serialization.

4 Open Research Challenges
Many challenges remain in building general-purpose and

usable serialization libraries that leverage NIC scatter-gather.

This section covers four areas of future work.

4.1 NIC Support for Scatter-Gather

Building a scatter-gather based serialization library requires

modeling the performance trade-offs of scatter-gather, which

can vary across NICs as well as device drivers. Modeling

scatter-gather in current NICs gives insight into how future

NIC designs can better support scatter-gather based serializa-

tions. Section 3.1 shows that our PCIe-connected NIC adds

overhead for transferring small payloads, so scatter-gather

can only help for data structures with large enough payloads.

Eliminating the PCIe interconnect in the NIC [24] could

change these tradeoffs and make scatter-gather beneficial

for data structures with smaller payloads. Additionally,

understanding how to manage the number of concurrent

PCIe requests would help model the time required to transmit

any given scatter-gather array.

4.2 Using Scatter-Gather Efficiently

Translating application data structures into scatter-gather

arrays that work efficiently with a specific NIC requires op-

timizing the memory layout of the scatter-gather array. Data

structures could vary in size (many fields or few fields), shape

(differently-sized fields) and complexity (contain nested ob-

jects). Naively creating one scatter-gather entry per data struc-

ture field could add overhead, so the serialization library must

modify the memory layout of the scatter-gather array before

handing it to the NIC. This optimization encompasses coalesc-

ing some fields into larger buffers and keeping some fields as

separate entries, given a model of scatter-gather performance.

4.3 AccessingApplicationMemory for Zero-Copy I/O

A completely zero-copy serialization solution requires using

arbitrary application memory for I/O, which raises issues

related to programming effort and memory fragmentation.

Kernel bypass requires that any memory used for I/O lives

in pinned and backed pages, because the virtual to physical

mappings of this memory must remain the same during the

program lifetime. As a result, pinning an entire application’s

memory for kernel bypass I/O could lead the OS to allocate

large amounts of memory that the application will never use.

For memory-intensive datacenter workloads, this could im-

pact the performance of other processes or even the ability for

other applications to share infrastructure. Thus, the network-

ing stack and serialization library must understand which

application memory will be used for I/O and must be pinned.

Pinning memory on demand in the networking stack

seems promising but would hinder performance on the

packet-processing fast path. On-demand pinning would tell

the networking stack which data needs to be pinned, but

would add the overhead of a system call to packet trans-

mission. Some NICs have additional penalties to consider.

Mellanox NICs require memory registration, so the device

can do address translation. However, the NIC can only hold a

fixed number of address mappings. Fetching a mapping, done

when the first address in a newly mapped region is trans-

mitted, adds a 1 µs latency penalty. If the networking stack

registers too many regions, some mappings might fall out

of the NIC memory, causing an effect similar to a cache miss.

203

A new class of kernel bypass-aware memory alloca-
tors [40, 42] could enable zero-copy dataflows, but raises

research challenges related to application integration and

memory fragmentation. They could pin large regions

of memory beforehand and allocate “dataplane” memory

directly into these regions, while allocating “control” memory

into a normal heap. To do this transparently, allocators

would need to understand which data needs to be registered

with minimal programming effort, perhaps with some sort

of compiler-based control flow analysis [4]. To enable multi-

tenancy and minimize interference with other processes, the

allocators need to to minimize memory fragmentation and

understand how to give up unused memory back to the OS.

4.4 Providing Zero-Copy I/OwithMemory Safety

A zero-copy serialization stack must provide memory safety,

in the form of write and free protection during transmission,

and a memory management scheme on the deserialization

path. As the Demikernel paper [42] suggests, the memory

allocator could provide free protection by adding a reference

count to any buffers that are transmitted.

However, providing transparent, efficient write protection

from concurrent memory accesses between the NIC and

CPU is an open problem. Relying on Linux write protection

would add the overhead of a page fault to kernel bypass

applications [11]. The networking stack could adopt

techniques from recent work [6] to use cache invalidation to

detect when addresses are being overwritten and accordingly

respond, but this requires custom hardware. Relying on a

memory-safe language such as Rust to build the serialization

library and networking stack would not protect against

read-write races between the NIC hardware and CPU.

On the deserialization path, the networking stack may

need to eventually reclaim application buffers (e.g., if an appli-

cation uses an in-place update to write a value from a received

packet). If the application does not free received buffers in

time, the networking stack could run out of memory.

5 RelatedWork

Serialization Acceleration. Many libraries attempt to

improve CPU-based serialization by optimizing their wire for-

mat [36, 38], employing SIMD parallelism for decoding [21],

or reducing the overhead of type inference in dynamic

serialization [20, 23]. These approaches do not remove the

fundamental cost required to move memory in software. As

a result, recent research proposes offloading serialization

to custom accelerators [15, 28, 39] or directly within SSDs

for storage [35]. Unlike these accelerators, the scatter-gather

functionality already exists in widely used NICs.

Kernel Bypass Systems. Our work is enabled by recent ker-
nel bypass I/O frameworks that expose NIC interfaces directly

to applications in userspace [14, 30, 34] to eliminate OS level

packet processing overheads. Many recent kernel bypass net-

working stacks [26, 27, 29, 42] build on top of these interfaces

to provide APIs to applications while offering low latency, op-

timized thread scheduling, or zero-copy I/O. eRPC [17] offers

general-purpose RPC for commodity networking hardware,

and zero-copy networking. None of these systems directly

offer general-purpose, zero-copy, data structure serialization

as a programming primitive, which requires scatter-gather.

Scatter-Gather Capabilities. High-performance comput-

ing applications have used scatter-gather to optimize MPI

all-to-all communication primitives [8], or provide zero-copy

communication over MPI derived datatypes [32]. Kesavan, et

al. [19] uses scatter-gather to measure when zero-copy helps

an in-memory database, but does not consider serialization

of arbitrary data structures. Derecho [16], a recent SMR

system, uses scatter-gather to provide zero-copy I/O for

scattered data structures, but relies on specific layouts of data

structures provided by their memory allocator. We propose

designing general-purpose serialization for application data

in arbitrary memory layouts.

6 Conclusion
As link speeds have increased, servers have less cycles to

process packets. Object serialization is a core component

of datacenter systems, but it cannot keep up with modern

networks. We identify that CPU-based software serialization

is inherently inefficient, as it relies the CPU to perform data

movement. We propose using a hardware capability already

present in widely deployed NICs to accelerate serialization:

NIC scatter-gather functionality. Our prototype shows that by

leveraging NIC scatter-gather to offload data movement from

the CPU to the NIC, it is possible to build a zero-copy and

zero-allocation serialization library. We identify several areas

of future work: better hardware support for scatter-gather, us-

ing scatter-gather efficiently, providing transparent memory

registration, and ensuring memory safety with zero-copy.

7 Acknowledgements
We thank the anonymous HotOS reviewers, Akshay Narayan, Amy

Ousterhout, Anirudh Sivaraman, Anuj Kalia, Jacob Nelson, Kostis

Kaffes, Qian Li, Shoumik Palkar, and the members of the Stanford

Future Data and SING Research groups for their invaluable feedback.

This research was supported in part by affiliate members and other

supporters of the Stanford DAWN project—Ant Financial, Facebook,

Google, Infosys, NEC, and VMware—as well as Toyota Research

Institute, Northrop Grumman, Cisco, SAP, and the NSF under

CAREER grant CNS-1651570 and Graduate Research Fellowship

grant DGE-1656518. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foun-

dation. Toyota Research Institute ("TRI") provided funds to assist the

authors with their research but this article solely reflects the opinions

and conclusions of its authors and not TRI or any other Toyota entity.

204

References

[1] Apache Software Foundation. Hadoop. https://hadoop.apache.org.

[2] Apache Software Foundation. Apache avro. https://avro.apache.org/,

2012.

[3] Apache Sofware Foundation. Apache thrift. https://thrift.apache.org/

download, 2017.

[4] K. Ashcraft and D. Engler. Using programmer-written compiler

extensions to catch security holes. In IEEE Symposium on Security and
Privacy, 2002.

[5] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. Attack of the

killer microseconds. Communicatons of the ACM, 2017.

[6] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi, O. Mutlu, and

P. Subrahmanyam. Project pberry: Fpga acceleration for remotememory.

InHotOS, 2019.
[7] lwIP -A Lightweight TCP/IP stack - Summary. https://savannah.nongnu.

org/projects/lwip/.

[8] A. Gainaru, R. L. Graham, A. Polyakov, and G. Shainer. Using infiniband

hardware gather-scatter capabilities to optimize mpi all-to-all. In

EuroMPI 2016, 2016.
[9] A. Gallatin, J. Chase, and K. Yocum. Trapeze/ip: Tcp/ip at near-gigabit

speeds. InATC, 1999.
[10] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,

J. Hu, B. Ritchken, B. Jackson, et al. An open-source benchmark suite

for microservices and their hardware-software implications for cloud

& edge systems. InASPLOS, 2019.
[11] mprotect(2) - linux manual page. https://man7.org/linux/man-

pages/man2/mprotect.2.html.

[12] writev(2) - linux man page. https://linux.die.net/man/2/writev.

[13] gRPC Authors. grpc: A high-performance, open source universal rpc

framework. https://grpc.io/.

[14] Storage performance development kit. https://spdk.io/.

[15] J. Jang, S. J. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee. A

specialized architecture for object serialization with applications to big

data analytics. In ISCA, 2020.
[16] S. Jha, J. Behrens, T.Gkountouvas,M.Milano,W. Song, E. Tremel, R.V. Re-

nesse, S. Zink, and K. P. Birman. Derecho: Fast state machine replication

for cloud services.ACM Transactions on Computer Systems, 2019.
[17] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter rpcs can be general

and fast. In NSDI, 2019.
[18] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y.

Wei, and D. Brooks. Profiling a warehouse-scale computer. In ISCA, 2015.
[19] A. Kesavan, R. Ricci, and R. Stuntsman. To copy or not to

copy: Making in-memory databases fast on modern nics.

https://rstutsman.github.io/papers/copy-not-to-copy.pdf.

[20] Kyro. https://github.com/EsotericSoftware/kryo, Accessed January 23,

2021.

[21] G. Langdale and D. Lemire. Parsing gigabytes of json per second. The
VLDB Journal, 2019.

[22] A. Narayan, A. Panda, M. Alizadeh, H. Balakrishnan, A. Krishnamurthy,

and S. Shenker. Bertha: Tunneling through the network api. InHotNets,
2020.

[23] K.Nguyen,L. Fang,C.Navasca,G.Xu,B.Demsky, andS.Lu. Skyway:Con-

necting managed heaps in distributed big data systems. InASPLOS, 2018.
[24] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-out

numa. InASPLOS, 2014.
[25] Nvidia. Connectx-5. advanced offload capabilities for the

most demanding applications. https://www.nvidia.com/en-

us/networking/ethernet/connectx-5/.

[26] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan.

Shenango: Achieving high CPU efficiency for latency-sensitive

datacenter workloads. In NSDI, 2019.

[27] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating system is the control

plane. InOSDI, 2014.
[28] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P.

Drumond, B. Falsafi, and C. Koch. Optimus prime: Accelerating data

transformation in servers. InASPLOS, 2020.
[29] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving low tail latency

for microsecond-scale networked tasks. In SOSP, 2017.
[30] A rdma protocol specification. http://rdmaconsortium.org/, 2009.

[31] redis labs. Redis. https://redis.io/.

[32] G. Santhanaraman, J. Wu,W. Huang, and D. K. Panda. Designing zero-

copy message passing interface derived datatype communication over

infiniband: Alternative approaches and performance evaluation. The
International Journal of High Performance Computing Applications, 2005.

[33] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,

K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell,

B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis. Cockroachdb: The resilient

geo-distributed sql database. In SIGMOD, 2020.
[34] Dpdk: Data plane development kit. https://www.dpdk.org/.

[35] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson. Morpheus:

Creating application objects efficiently for heterogeneous computing.

In ISCA, 2016.
[36] W. Van Oortmerssen. Flatbuffers: a memory efficient serialization li-

brary. https://opensource.googleblog.com/2014/06/flatbuffers-memory-

efficient.html, 2014.

[37] K. Varda. Protocol buffers: Google’s data interchange form.

https://opensource.googleblog.com/2008/07/protocol-buffers-

googles-data.html, 2008.

[38] K. Varda. Cap’n proto. https://capnproto.org/, 2020 (Accessed October

22, 2020).

[39] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soulé.

Zerializer: Towards zero-copy serialization. InHotOS, 2021.
[40] B. Yi, J. Xia, L. Chen, and K. Chen. Towards zero copy dataflows using

rdma. In SIGCOMM Posters and Demos, 2017.
[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In NSDI, 2012.
[42] I. Zhang, J. Liu, A. Austin, M. L. Roberts, and A. Badam. I’m not dead yet!

the role of the operating system in a kernel-bypass era. InHotOS, 2019.

205

https://hadoop.apache.org
https://avro.apache.org/
https://thrift.apache.org/download
https://thrift.apache.org/download
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://linux.die.net/man/2/writev
https://grpc.io/
https://spdk.io/
https://rstutsman.github.io/papers/copy-not-to-copy.pdf
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
http://rdmaconsortium.org/
https://redis.io/
https://www.dpdk.org/
https://opensource.googleblog.com/2014/06/flatbuffers-memory-efficient.html
https://opensource.googleblog.com/2014/06/flatbuffers-memory-efficient.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://capnproto.org/

	Abstract
	1 Introduction
	2 The Limits of Software Serialization
	2.1 Software Serialization Hits a Performance Limit
	2.2 Why is Software Serialization So Expensive?

	3 Leveraging the NIC for Serialization
	3.1 NIC Scatter-Gather Capabilities
	3.2 Integrating Networking and Serialization
	3.3 Prototype Implementation

	4 Open Research Challenges
	4.1 NIC Support for Scatter-Gather
	4.2 Using Scatter-Gather Efficiently
	4.3 Accessing Application Memory for Zero-Copy I/O
	4.4 Providing Zero-Copy I/O with Memory Safety

	5 Related Work
	6 Conclusion
	7 Acknowledgements

