
DOI: 10.1111/cgf.13809 COMPUTER GRAPHICS forum
Volume 39 (2020), number 1 pp. 375–388

Accelerating Distributed Graphical Fluid Simulations with
Micro-partitioning

Hang Qu , Omid Mashayekhi, Chinmayee Shah and Philip Levis

Department of Electrical Engineering and Department of Computer Science, Stanford University, Stanford, CA, USA
quhang@stanford.edu, omidmsu@gmail.com, chshah@stanford.edu, pal@cs.stanford.edu

Abstract
Graphical fluid simulations are CPU-bound. Parallelizing simulations on hundreds of cores in the computing cloud would
make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from
experts, which are time-consuming and error prone, or dynamic approaches that estimate and react to future load, which are
non-deterministic and hard to debug.
This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close
to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling’s key insight is to leverage
the high-latency, high-throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation
domain into many micro-partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned
micro-partitions balance load with high probability. The high-throughput network easily handles the increased data transfers
from micro-partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the
communications and computations of different micro-partitions masks latency.
Experiments with particle-level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up sim-
ulations by a factor of 2-3, and can out-perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of
state-of-the-art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot
scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations
from the programmer.

Keywords: distributed graphics, hardware, fluid modelling, animation

ACM CCS: • Computing methodologies → Distributed computing methodologies; Distributed simulation; Computer graphics

1. Introduction

Fluid simulations are a cornerstone in making cinematic special
effects. Simulating those spectacular scenes, such as stormy seas,
sudden floods or water falls, requires intensive computations. A few
seconds of screen time can take hours or days to simulate on a
single node.

Graphical fluid simulations are CPU-bound: parallelizing them
across more cores runs them faster. Owning and maintaining a 1000-
core cluster, however, is expensive, and the cluster may not keep high
utilization due to the long delays of having artists in the loop. On-
demand cloud platforms, in contrast, charge on a node per hour basis,
such that users only pay for the resources they use. Furthermore,
the fungibility of time and parallelism means that parallelizable

applications can run faster at the same price. Running a simulation
10 times faster on 10 times more nodes costs the same but completes
an order of magnitude faster. Recent work has shown that single-
threaded complex simulations can be automatically distributed to
run on over a thousand cores in the cloud, drastically speeding up
simulations and increasing their details [MSQ*18].

The decision of how to partition a simulation domain across nodes
and cores (also called domain decomposition) has a tremendous
effect on performance. Each simulation step is limited by the speed
of the slowest node. A poor partitioning can place all of the required
computation on a few nodes while the majority of the nodes sit idle.
In contrast, if the work were evenly partitioned, the slowest node
has only a small fraction of the work and the simulation runs faster.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

375

https://orcid.org/0000-0002-4195-1588
https://orcid.org/0000-0001-6470-8356

376 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

Partitioning is especially difficult in graphical fluid simula-
tions because the computation needed varies over both spatial and
temporal dimensions. In particle-level set simulations, for example,
the narrow band of cells containing the interface between fluid and
air requires the greatest computation due to a high density of parti-
cles. Fluid cells require significant but lesser computation because
the computation is purely Eulerian, while air cells require no com-
putation at all. Furthermore, because the fluid and interface move,
exactly which cells are interface, fluid or air changes over time.

One partitioning approach to evenly distribute work across nodes
is to dynamically change how the simulation domain is partitioned
and assigned to nodes, i.e. dynamic load balancing. When most
computation happens on a tiny portion (less than 10%) of the entire
domain, this approach gives an order of magnitude speedup over
static and uniform partitioning. For example, a speculative load bal-
ancing algorithm [SHQL18] runs a low-resolution fluid simulation
alongside the actual one in order to estimate load distribution, uses
the estimate to decide how to assign partitions and achieves 5–8
times speedup over static and uniform partitioning.

Two drawbacks of dynamic load balancing algorithms are in-
creased system complexity and non-deterministic runtime be-
haviour. Dynamic load balancing algorithms require code to mi-
grate partitions, maintain an index of current partition locations and
dynamically gather load data with which to make load balancing
decisions. As these decisions are based on runtime performance
and timing, two runs of the same simulation may distribute and exe-
cute differently: tracing execution to find bugs across the distributed
system is time-consuming.

This paper proposes a new scheduling approach for distributed
graphical fluid simulations, called Birdshot scheduling. Birdshot
scheduling performs almost as well as state-of-the-art dynamic
scheduling algorithms based on speculative execution [SHQL18],
but has no control overhead, does not need to dynamically migrate
data and generates a deterministic, repeatable schedule. Birdshot
scheduling works on simulations with an underlying Eulerian ge-
ometry, such as uniform grids and sparse data structures, like Open-
VDB [Mus13] or sparse paged grids [SABS14]. The key technique
in Birdshot scheduling is to micro-partition the simulation, i.e. split
the domain into many fine-grained partitions (usually 4–64 times
the total number of cores), and randomly assign micro-partitions
to cores. This has two principal benefits. First, random assignment
balances load with high probability as long as enough partitions
are used. The exact partition-to-core ratio depends on the workload
distribution and we derive analytic solutions for the recommended
ratio. Second, micro-partitioning helps each core to efficiently han-
dle the computation and communication of multiple partitions, al-
lowing them to overlap the computation of one partition with the
communication time of another. Barrier operations cannot perform
such overlapping and require different optimizations. The end re-
sult is a set of scheduling policies, called Birdshot scheduling, that
automatically balances load and masks communication for micro-
partitioned simulations.

Experiments show that Birdshot scheduling runs simulations 2–
3× faster than static and uniform partition assignments and scales
to run on over 1000 cores. In addition, Birdshot scheduling can
in some cases outperform dynamic load balancing algorithms. In

a FLIP simulation, Birdshot scheduling is only 21% slower than a
state-of-art dynamic load balancing algorithm [SHQL18], but it is
much simpler.

Birdshot scheduling is general enough to work on a wide range
of fluid simulation methods, including Eulerian, Lagrangian and
hybrid methods. Experimental results show that simulations using
Birdshot scheduling scale well to hundreds of cores. We find that
Birdshot scheduling’s scalability can be limited by barriers: they do
not allow overlapping computation with communication as every
micropartition must complete before any one can move forward.
Furthermore, certain simulation methods scale poorly to large num-
bers of partitions. For example, the performance of most Poisson
solver preconditioners can degrade significantly as the number of
partitions increases.

The key benefit of Birdshot scheduling is its simplicity. Although
its schedule is static and repeatable, it performs almost as fast as
dynamic load balancing algorithms. It can be used in any simulation
implementation that supports static distributed execution: it requires
neither migration nor load balancing logic, simplifying debugging
and development.

This paper makes four research contributions:

1. Introducing micro-partitioning as a technique to balance load
and mask communication time in distributed fluid simulations
running on the computing cloud.

2. Analysing how well randomized assignment of micro-partitions
balances load depending on the number of nodes, the number
of partitions and the work skew between partitions.

3. Presenting how to overlap communication and computation to
reduce execution time and proposes a novel user-level TCP
communication library designed to address the barrier operation
performance bottlenecks.

4. Evaluating the proposed techniques on particle-level set,
smoothed-particle hydrodynamics (SPH), pure Eulerian and
FLIP simulations, finding that using Birdshot runs 2.0–3.3×
faster than static geometric partitioning, can out-perform re-
active scheduling and performs within 21% of state-of-the-art
speculative execution methods.

The source code of Birdshot scheduling algorithm and the system
to run the applications is open source and freely available for use at
https://sing.stanford.edu/nimbus/birdshot.zip.

2. Related Work

This section reviews related work in graphical fluid simulations and
discusses relevant system techniques.

2.1. Fluid simulations

Graphical fluid simulations use varied data structures and numeri-
cal methods. SPH [GM77, DC*96] models fluid as particles. Grid-
based methods typically use a MAC grid discretization [HW65],
the semi-Lagrangian advection scheme [Sta99] and a pressure Pois-
son solver for incompressibility [FSJ01]. More recent approaches
use a hybrid of particles and grids. For example, the particle-in-
cell method [Har62, JSS*15] uses particles for advection and grids

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://sing.stanford.edu/nimbus/birdshot.zip

H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning 377

for other physical values. The particle-level set method [EFFM02]
captures finer details near the fluid–air interface by adding marker
particles to the grid.

Capturing more visual details in fluid simulations requires more
particles or a finer grid resolution, causing more computations per
simulation frame. Adaptive data structures [Mus13, SABS14] and
chimera grids [EQYF13] mitigate the performance problem by only
refining the grid where visual details are important. This paper
explores an orthogonal approach that enables a fluid simulation to
compute faster.

In production, a large fluid simulation is often split into smaller in-
dependent simulations for parallel execution. For example, [Whi12,
RMW*16] independently run several coarse and finer fluid simula-
tions on multiple nodes, stitch them together and manually fix the
mismatches at simulation boundaries.

Fluid simulations can leverage distributed and hetero-
geneous platforms, by distributing sparse data structures
on clusters [BBAW15] and GPUs [WTYH18], distributing
solvers [LMAS16] on GPUs and distributing material point
methods on GPUs [GWW*18].

2.2. System techniques

Load balancing algorithms. There is a rich literature of load
balancing algorithms in scientific computing, which can be catego-
rized as static or dynamic. Static load balancing assigns application
data to nodes before an application executes and does not change
the assignment during runtime. It is commonly used in graph pro-
cessing, where the load distribution is static and predictable [KK96,
CBD*07, Kar03].

Dynamic load balancing migrates application data between nodes
to adjust the load distribution during runtime. Work stealing im-
mediately reacts to an idle core by fetching work from cores on
the same node [FLR98] or remote nodes [LKK14], but is prone
to repeatedly rebalancing load between nodes [LKK14]. Central-
ized dynamic load balancing algorithms [NH85] can bottleneck
at the central node [MK13]. Fully distributed load balancing al-
gorithms [XLD97, MK13] solve the scalability problem but con-
verge slowly. Hierarchical load balancing algorithms [ZBMK11,
JMM*13] adopt a multi-level scheduling architecture, where lowest
level schedulers balance loads within a group of nodes, and higher
level schedulers balance loads between lower level schedulers.

Charm++ [AGJ*14] is a flexible simulation framework that
provides mechanisms to implement load balancing algorithms.
Charm++ software distribution includes many algorithm imple-
mentations, including the classic reactive load balancing (called
GreedyLB in Charm++) we used in the evaluation. Birdshot
scheduling is orthogonal to Charm++; it is a new algorithm that
could be implemented in that framework.

Fine-grained computing. The idea of splitting an application
into fine-grained computation units is used in both cloud computing
and scientific computing. For example, [OPR*13, OWZS13] pro-
pose using finer computation units for faster failure recovery and
resource preemption in the computing cloud. [AGJ*14] proposes

(b)

(a)

(d)

(c)

Figure 1: The figures illustrate two frames in a 2D fluid simulation,
where the blue cells represent fluid and the white cells represent air.
Balancing the computation work on cores for faster execution is
hard due to spatial and temporal load variance.

running more processes than the number of cores to mask commu-
nication time in scientific computing applications. This paper intro-
duces the similar idea to distributed graphical fluid simulations and
analyses its relation with load balancing and communication per-
formance.

Runtime support for overlapping computation and commu-
nication. Most existing distributed computing frameworks pro-
vide the mechanism to overlap computation and communica-
tion. MPI [url17] provides asynchronous communication prim-
itives (e.g. MPI_Isend and MPI_Irecv) for a user to control
what computations to run during an ongoing communication. In
Charm++ [AGJ*14], computations are triggered by messages, and
a computation blocked by messages is not scheduled. Task-based
frameworks, such as Legion [BTSA12], HPX [KHAL*14] and Uin-
tah [HMB12], model computations as tasks that read or modify data
objects. The runtime figures out runnable tasks to overlap with
communication time. This paper proposes that micro-partitioning

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

378 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

helps make the overlapping mechanism effective in distributed fluid
simulations.

3. Problem Statement

Distributing a simulation improves performance by using more
cores. An implicit assumption in this improvement is that the com-
putational load is balanced across those cores. Using twice as many
cores can double simulation speed, but if half of the cores are idle,
then those performance gains will not be realized. For this reason,
partitioning, the decision of how to break a simulation into smaller
parts and assign them to cores, is critical to achieving speedups
from distribution.

Consider the example in Figure 1, which shows a simple depiction
of a dam break fluid simulation. The partitions on the left contain
more fluid initially. As the simulation evolves, the distribution of
fluid across the partitions changes and the fluid moves to the lower
partitions. If the simulation domain is split into four square partitions
(Figure 1a), the two right partitions contain no fluid and have no
computation work: the simulation is run on 4 cores, but only 2 of the
cores are used. In contrast, splitting the domain into four horizontal
bands evenly balances the load across all 4 cores (Figure 1b): a
horizontally partitioned simulation will run twice as fast as a square
partitioned one.

3.1. Spatial and temporal load variance

Fluid simulations are difficult to partition because their computa-
tional load varies over both space and time. Simulated fluids typi-
cally do not occupy the entire domain: waves, smoke and fire are all
visually interesting because of the surface where they meet the air,
called the interface. Furthermore, different regions of the simulation
have different computational requirements. In a standard particle-
level set simulation, for example, air cells require no computation,
fluid cells require solving Navier–Stokes and cells close to the inter-
face require additional computation to manage particles. As a result,
fluid cells near the boundary require the most computation, followed
by fluid cells far from the boundary, air cells close to the boundary
and finally air cells far from the boundary require no computation
at all.

If a simulation is spatially partitioned across cores, some cores
will have much more work than others, and the simulation will only
run as fast as the slowest core. For example, in Figure 1(c), the
core simulating the bottom left partition bottlenecks the simulation.
It is responsible for simulating 95 fluid cells, while the average
number of fluid cells per core is 37. If the computation work were
evenly distributed to cores, the simulation would run approximately
95/37=2.6× faster. The computational load of the simulation varies
over space, such that most simple partitioning strategies lead to poor
load balancing across cores.

Furthermore, a simple partitioning that works well for a particular
timestamp may not work well for other times. As the simulation
evolves over time, the fluid shape changes, and so does the amount of
computation in each partition. For example, horizontal partitioning
evenly distributes computation work to cores for the starting frame
in Figure 1(b). As the simulation evolves to Figure 1(d), the same

partitioning has poor load balancing, so runs much slower than other
partitionings (e.g. vertical bands).

One approach to balance load is to dynamically change how parti-
tions are assigned to nodes. But one major obstacle is the complexity
of debugging. Debugging distributed applications is hard because
application states are distributed across multiple nodes [GMGK84,
CBM90]. Dynamic load balancing makes debugging even harder
because the user does not control which node stores which state.
For example, debugging the computation on a cell requires looking
at its neighbouring cells, but those neighbouring cells can be on a
remote node. The remote node is hard to identify because it changes
as partitions are migrated.

3.2. Inter-partition communication

Most computation on a cell requires the values from its neighbour-
ing cells. Distributed simulations involve data transfers between
neighbouring partitions. For example, a simulation performs such
data transfer before advecting velocity to ensure the advection com-
putation on every cell reads the most up-to-date velocity data.

Data transfers between partitions can greatly slow down exe-
cution. If a computation over a partition needs data from a pre-
vious computation over a neighbouring partition, it cannot start
till the transfer completes. Parallelizing a simulation across many
cores can exacerbate this bottleneck, as the ratio of communication
to computational time increases (parallelization across more cores
means more partition surface and more data transferred, but the total
amount of computation remains the same).

A careful design around cloud networking performance helps
mitigate this data transfer problem. Section 5.3 gives more detailed
analysis. In short, fluid simulations will benefit from the high, full-
bisection bandwidth of the cloud if they break geometric locality and
overlap data transfer with computation. First, geometric locality (i.e.
assigning communicating partitions to neighbouring nodes) matters
in supercomputers, where certain nodes communicate faster than
others [JMM*13, ARK10]. In contrast, the cloud network has uni-
form performance between different nodes. As long as two partitions
are not assigned to the same node, the communication performance
is similar no matter which nodes are used. Consequently partition
assignment is no more restricted by geometric locality. Second, in
order to mask communication time, a simulation needs to break
communication into small units to overlap with computation, caus-
ing slightly more data transfer. The cloud network handles this well
due to sufficient bandwidth.

4. Partitioning in Birdshot Scheduling

Birdshot’s partitioning approach has two key points. First, it mi-
cropartitions the domain into many (e.g. in the workloads we exam-
ine 4–32) partitions per core. Having enough partitions is essential
for Birdshot to balance load as explained in Section 5. Second, the
number of partitions assigned to a node is proportional to its number
of cores, but which partition is assigned to which node is generated
randomly. This naturally spreads computationally intensive parti-
tions across nodes.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning 379

Figure 2: How Birdshot scheduling partitions the simulation do-
main across nodes and cores. The example illustrates a 2D fluid
simulation, where blue cells are fluid and white cells are air.

Figure 2 shows an example of how Birdshot partitions a simula-
tion across 2 nodes and 4 cores. The simulation domain is split into
16 partitions (4× the total number of cores) with 25 cells each. The
nodes have the same number of cores, so they are assigned the same
number of partitions. The mapping between partitions and nodes
is generated randomly and does not change during execution. This
random assignment means the two nodes are expected to have a
similar amount of work. In the shown frame, the first node has 71
blue cells, while the second node has 79.

Randomized assignment of micro-partitions balances load across
nodes, but the runtime balances load across cores of the same node.
A static mapping between partitions and cores may overload a core,
because the core cannot offload its work to the other cores on the
same node even if they are idle. So, Birdshot’s runtime dynami-
cally maps partitions to cores: the computation work of partitions is
dispatched to the next available core on the node. The dynamic map-
ping does not cause substantial overhead because those cores share
the same memory. Figure 2 illustrates this execution model. The
computation of a partition depends on data transferred from other
partitions, so a node tracks the data dependency of each assigned
partition (i.e. what simulation steps on the partition have received
all data and thus ready to run), queues the ready computations and
the next idle core fetches computations from the queue to execute
them in a first-in-first-out manner.

5. Balancing Load with Micro-partitioning

This section mathematically analyses why having more randomly
assigned partitions balances load better across nodes and how many
partitions are needed, and then discusses corner cases and how to
choose the number of partitions.

5.1. Model specification

This subsection specifies the mathematical model used to analyse
how well Birdshot scheduling balances the computational load be-
tween nodes. The model assumes the amount of computation work
in each partition follows a binary distribution. Approximating all

s

s

Figure 3: The distribution of the load imbalance factor when using
32 or 128 partitions per node (n = 32, p = 0.6). Having more
partitions makes the load imbalance factor more close to zero.

partitions as one of the two extreme points makes the modelled
load distribution more skew than the real distribution, so the model
gives a worst-case bound of how well Birdshot scheduling balances
load.

Consider a simulation that runs on n nodes and is split into s · n

partitions, where s is the number of partitions per node. The model
analyses a short time period of the execution, e.g. one iteration of
the simulation, and assumes the load distribution is static in the
time period. To reflect the binary load distribution assumption, the
model assumes p percentage of partitions have the same amount of
computation work in the time period, while the other 1 − p percent-
age have no computation work. Note that Birdshot scheduling itself
does not know a priori whether partitions have computation work
or not and works under dynamic load distribution.

Ideally, load would be perfectly balanced if every node got p · s

busy partitions that have computation work and (1 − p) · s idle par-
titions with no computation work. However, due to the randomness,
a particular node may receive more than p · s busy partitions: the
more busy partitions the most overloaded node receives, the worse
the load imbalance. The load imbalance factor (LIF) is defined
as the ratio of how much more computation work is assigned to
the most overloaded node than the average. In this model, the load
imbalance factor can be written as:

LIF = # of busy partitions on most overloaded node

Average # of busy partitions per node
− 1. (1)

For example, if there are 10 busy partitions per node in average
and the most overloaded node is assigned 15 busy partitions, LIF

equals to 15/10 − 1 = 0.5. If every node gets the same amount of
computation work, LIF becomes zero.

In this model, the expectation of LIF can be approximated by
a function depending on the percentage of busy partitions (p), the
number of nodes (n) and the number of partitions per node (s):

E(LIF)|p,s,n ≈
√

2

(
1

p
− 1

)√
log n

s
. (2)

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

380 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

s

n

Figure 4: To keep the expectation of the load imbalance factor
fixed, the number of partitions per node depends on the number of
nodes (n) (p = 0.6, E(LIF) = 0.21). The curve is logarithmic.

We refer those who want to know how Equation (2) is derived to
the Appendix.

5.2. Implications

This subsection describes two implications from Equation (2).

First, a sufficient number of partitions balances the computation
work between nodes well. Imagine a simulation running on 4 nodes
with half busy partitions and half idle partitions. If 4 partitions are
created, two nodes will have no work to do. If 8 partitions are
created, the probability that both partitions on a node are idle will
be less than 25%. If 64 partitions are created, the computation work
of a node will be the average of 16 randomly chosen partitions and
more likely to be balanced.

Equation (2) indicates that keeping the number of nodes (n) and
the percentage of busy partitions (p) fixed, increasing the number
of partitions per node (s) can make the expectation of the load
imbalance factor arbitrarily small. Figure 3 shows that the load
imbalance factor moves towards zero with more partitions per node.

Second, balancing load on more nodes needs more partitions, and
quantitatively, the number of partitions per node should grow loga-
rithmically with the number of nodes. This indicates the scalability
of Birdshot scheduling is limited by the number of partitions a node
can hold.

The result is derived from Equation (2): to keep the same load im-
balance factor, the number of partitions per node (s) should increase
logarithmly as the number of nodes (n) increases, assuming the per-
centage of busy partitions (p) is fixed. When using more nodes, it is
more likely that one of the nodes gets too many busy partitions, so
the expectation of the load imbalance factor will increase. Adding
slightly more partitions per node offsets the increased imbalance as
shown in Figure 4.

5.3. Discussion

Why not migrate partitions between nodes? Birdshot schedul-
ing never migrates a partition between nodes during execution, be-
cause it balances load well enough such that migrating partitions

cannot substantially improve the balance, only adding communi-
cation overhead. First, Birdshot may balance load poorly due to
randomness, but the probability is low. As the load distribution
changes over time, the low probability case does not last long and
its performance impact is averaged out across the entire execution.

Second, we experimentally verify that migrating partitions pro-
vides only a small performance improvement by evaluating a dy-
namic variation of Birdshot. The algorithm builds on top of Bird-
shot’s random partition assignment, and decides when and what
partitions to migrate by monitoring the CPU cycles used by each
partition and the CPU utilization of each node. Both statistics are
smoothened by averaging with an exponential window function. If
the CPU utilization of a node is higher than a threshold (e.g. 10%)
over the average, Birdshot will swap the busiest partition of the
most overloaded node with the least busy partition on the most un-
derloaded node. Every two swaps are separated by a time interval
(e.g. 60 s) to avoid oscillations.

The evaluation runs on two simulations, PARSEC and Lassen
(see Section 7.1). The new algorithm speeds up PARSEC only by
9% but cannot speed up Lassen even if the algorithm parameters
(e.g. the CPU utilization threshold and the swapping interval) are
well tuned. This is because Lassen’s load distribution changes fast,
and partition migration must happen more often to balance load
well. But more migrations cause more data migration overhead that
offsets the performance benefit.

When does dynamic load balancing outperform Birdshot? As
further evaluated in Section 7.3, in some cases, Birdshot performs
slightly worse than dynamic load balancing algorithms because it
cannot make the optimal partition assignment decisions and a poor
random partition assignment causes worse performance. However,
Birdshot performs better than dynamic load balancing algorithms
when the data migration overhead to rebalance load is significant. In
such cases, Birdshot balances load without migrating data, achieving
better performance.

How does one choose the number of partitions? For the best
performance, the number of partitions should be chosen in a suit-
able range: a sufficient number of partitions to balance load well,
while not so many that the overhead to marshal the data transferred
between partitions outweighs the benefit. From our experience, us-
ing 4 partitions per core is a good rule of thumb point that balances
between enough partitions and small overhead unless the load distri-
bution is highly skewed. Many more partitions per core are needed
if the simulation is highly sparse, so that the region that has more
computation work can be split into enough partitions and distributed
to different nodes.

Equation (2) estimates how many partitions are needed based
on the percentage of partitions with computation. This value can
be experimentally measured. As this percentage changes during
simulation, the number of partitions needed changes as well. The
maximum of these estimates should be used to ensure good load
balancing throughout the entire simulation.

How does cloud performance motivate design decisions?
Cloud interconnects must support a wide variety of applications.
Furthermore, stragglers, or slow nodes that bottleneck application
performance, are common. Stragglers can be caused by workload

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning 381

(a) (b)

Figure 5: Compare running two simulation steps (a, b) on two single-core nodes with one partition per core or two. Micro-partitioning helps
mask communication time.

imbalance, network congestion or many other problems [AKG*10].
As a result, rather than optimize the network for a particular class of
applications, cloud networks use new network designs that provide
full bisection bandwidth between all nodes and good worst-case
communication performance. [SOA*15]

In modern cloud network architectures [AFLV08, GLL*09,
GHJ*09], a rack holds tens of nodes (typically 64). Nodes within
a rack and racks themselves are organized in a Clos topology that
provides full bisection bandwidth. [SOA*15]. The Clos topology
provides multiple paths between two nodes. It is unlikely that all
paths are congested, so the two nodes almost always have enough
communication capacity to achieve full bisection bandwidth. Ama-
zon claims [web17] that this architecture allows at least 128 C4
instances (1152 cores) with SR-IOV [LTW14] to have full bisection
bandwidth, and our measurements have verified that the outgo-
ing throughput of each node is 9.28–9.31 Gbps (averaged over 15
min), when 128 nodes send Iperf [ben17a] TCP test flows to one
another.

Second, this interconnect design, combined with the fact that
endpoint software dominates network latency, means that the net-
working performance topology is very flat. That is, the network
performance between two nodes on different racks is almost iden-
tical to the performance between two nodes on the same rack. It
is as if all of the nodes are fully connected. From a networking
perspective, each node is equivalent, so there is no need to map the
application data layout to the underlying network topology.

Full bisection bandwidth and a flat network performance topol-
ogy make static random placement an effective scheduling algo-
rithm. Many cloud systems randomly place data on nodes; because
their networks are designed to handle such a workload, Birdshot
scheduling can follow the same approach.

6. Optimizing Communication Performance

This section describes how Birdshot scheduling optimizes two com-
mon communication patterns in distributed fluid simulations. The
first pattern is nearest-neighbour communication, i.e. geometrically
neighbouring partitions transfer data between each other. The sec-

ond pattern is barrier operations, such as reduction (e.g. summing
integers sent by nodes) and broadcast (e.g. sending an integer to all
nodes), which are heavily used in implicit solvers.

6.1. Masking communication time

This subsection gives an example of how Birdshot overlaps com-
munication and computation in nearest-neighbour communication
and why micro-partitioning is needed. When each core is assigned
one partition, the core alternates between computing one step and
waiting for data to continue to the next step as shown in Figure 5(a).
Cores are idle at the end of each step.

Figure 5(b) shows how Birdshot masks communication time when
each partition in the former setting is split into two, i.e. each core
is assigned two partitions on average. In the example, there are four
data transfers between the tasks in step a and step b: from 1-a to
3-b, from 3-a to 1-b, from 2-a to 4-b and from 4-a to 2-b. First,
communication can happen in the middle of a step and overlap
with computation of the same step. For example, once task 1-a
completes, it sends data to task 3-b. Since tasks in the same step
can run in parallel, both task 3-a and task 4-a can overlap with
the communication time while task 3-b is waiting for data. Second,
communication can overlap with computation of different steps. For
example, task 2-a is executed at the end of step a. After the task
completes, it sends data to task 4-b. However, task 3-b is ready to
run while the data are being sent, so the task can overlap with the
communication time.

6.2. Optimizing barrier operations

Existing barrier operation implementations trade off between having
more hops or having a central message processing bottleneck. This
subsection describes a communication library that breaks the trade-
off.

Take broadcast as an example. MPI chooses a binomial tree as the
broadcast topology for a small message. The topology avoids having
any node process too many messages, but the cost is that a message
traverses multiple nodes before reaching a leaf node [TRG05]. In

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

382 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

Figure 6: The iteration times for reduction operations depending
on the number of nodes. MPI/tree uses a binomial tree and is the
slowest due to too many communication hops. MPI/linear uses
a linear topology, where a single node exchanges integers with all
other nodes, reducing the number of hops but incurring centralized
message bottleneck. Birdshot uses a linear topology on top of
a user-level TCP stack for higher message throughput and is the
fastest.

the cloud, it is faster to use a linear topology in which a single node
directly exchanges messages with all other nodes. Figure 6 shows
how long it takes to reduce the sum of integers and then broadcast
the sum back to nodes with different configurations in the cloud.
MPI is 2.3–3.3 times faster when using the linear topology instead
of the tree topology.

The problem with the linear topology is that a single node sends
and receives a large number of network packets, so Birdshot’s com-
munication library improves packet throughput using a user-level
TCP stack, mTCP [JWJ*14]. mTCP enables a user thread to ac-
cess the hardware queues of the network interface controller, and
avoids context switching between the user space and the kernel
space.

Birdshot’s communication library enhances mTCP in two as-
pects. On one hand, Birdshot adds a delayed acknowledgement
mechanism to mTCP in order to reduce the number of packets to
send. Birdshot delays sending an acknowledgement packet for a
fixed time period (e.g. 3× the round trip time). During the time pe-
riod, if another packet is to be sent, the acknowledgement packet can
be piggybacked, so two separate packets can be merged into one.
On the other hand, Birdshot batches packet processing to reduce
synchronization overhead. First, mTCP delivers received packets to
Birdshot’s thread in batches. Second, Birdshot enhances mTCP to
support queuing packets on different TCP channels within a single
context switch.

As shown in Figure 6, Birdshot’s communication library runs the
barrier operations 30% faster than MPI, even though MPI’s bar-
rier operation implementation is highly optimized. Note that the
proposed implementation cannot scale infinitely, because the cen-
tral node in the linear topology, even if well optimized for packet

throughput, will eventually become a performance bottleneck be-
yond thousands of cores.

7. Evaluation

We evaluate four things: (1) how much micro-partitioning and
randomized partition assignment improve the end-to-end perfor-
mance of simulations, (2) how the number of partitions affects
performance, (3) how Birdshot performs when using different num-
bers of nodes and (4) how well Birdshot performs compared with
other load balancing algorithms. Birdshot scheduling uses a task-
based runtime implemented in C++ [QMSL18]. MPI implemen-
tations (Open MPI 1.6.5 [url17]) are used as a reference point
without micro-partitioning or randomized assignment. All exper-
iments use Amazon EC2 C4.8xlarge nodes in the us-west-1 re-
gion unless specified otherwise (OpenVDB simulations use Google
Cloud). A node has two Intel Xeon E5-2666 2.6GHz proces-
sors and 60GB memory. The processor has 9 physical cores.
Nodes are connected by 10Gbps Ethernet and are allocated in
the same ‘placement group’ that enforces full bisection band-
width between nodes. The round trip time between nodes is about
100μs.

We report the execution time averaged over iterations (for nested
loops, the outer iteration is reported) and cores, and further split the
time into CPU busy time when a core is running computation codes,
and CPU idle time when a core is waiting for data from other nodes.

7.1. Benchmarks

Four simulations are used in the evaluation. Each simulation is
configured to be as large as possible that will fit in the memory of 8
nodes. These simulations use a variety of data structures, including
uniform grids, particles, meshes and sparse grids.

PhysBAM (uniform grids). We use a water simulation from
an open-source simulation library, PhysBAM [DHF*]. The simu-
lation uses the particle-level set method with marker particles at
both sides of the water interface, and solves incompressibility with
a conjugate gradient Poisson solver using an incomplete Cholesky
preconditioner. Developing highly scalable Poisson solvers is an
active research area [CZY17] and beyond the scope of this paper.
The simulation takes a simple approach to distribute every Poisson
solver iteration, with multiple inter-node data transfer and synchro-
nization steps per iteration. The preconditioner is split into blocks
such that the preconditioning step can run on partitions in parallel.
The simulation simulates two sources that pour water into a cubic
container split into 4323 cells. The initial water volume is 20% of
the whole domain, and the simulation runs for 600 iterations when
the water volume reaches 30%.

PARSEC (particles). The fluidanimate benchmark from the
PARSEC benchmark suite [Bie11] simulates an incompressible fluid
using smoothed-SPH. The simulation stores particles in a Cartesian
grid and uses a cut-off distance equal to the length of a cell, such
that calculation in one cell only interacts with neighbouring cells.
The benchmark simulates 1100×380×1100 cells and 100 iterations.
About 25% of cells have particles. There are 600 million particles
in total.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning 383

Figure 7: Two-way dam break simulation.

(a) (b)

Figure 8: Sphere drop simulation.

Lassen (meshes). The Lassen benchmark [ben17b] is a mesh-
based simulation modelling how waves propagate from point
sources by tracking the wave front using an Eulerian approach.
Almost all computation is performed on the cells within a narrow
band near the wave front. In each iteration, the simulation calcu-
lates how the wave front moves based on the states of the cells
in the narrow band, and then updates the position of the narrow
band. The mesh is set up as a Cartesian mesh of 5 billion cells, but
the application only assumes an unstructured mesh. The benchmark
runs 1000 iterations and places multiple point sources on a diagonal
plane.

FLIP (sparse grids on OpenVDB). We implement a FLIP
simulation application with the same setup used to evaluate the
Speculative algorithm [SHQL18]. The simulation workflow is re-
vised for better visual quality. The FLIP simulation uses Open-
VDB [Mus13]’s implementation of sparse grids. The FLIP simula-
tion runs over a 10243 grid and the simulation domain is split into
16 × 8 × 16 partitions. Eight Google Cloud n1-highmem-8 nodes
are used with eight cores each. Two simulation scenarios are used
as shown in Figures 7 and 8.

7.2. Results

End-to-end performance. Figure 9 shows the improvement from
micro-partitioning (micro) and randomized partition assignment

(random). Combining both, Birdshot achieves 2.0–3.4× speedup
over MPI in the three simulations.

The experiment is run under three settings for each simulation:
(1) reference, running on MPI, (2) micro+no random, running
on Birdshot’s runtime with 4–16 partitions per core but without
randomized assignment, i.e. each node is assigned partitions that
are neighbours in the simulation domain and (3) micro+random,
running on Birdshot’s runtime with both micro-partitioning and
randomized assignment.

Micro-partitioning in Birdshot scheduling gives 1.3×, 1.5× and
2.0× speedup (from reference to micro+no random), since
micro-partitioning enables masking communication time and bal-
ancing load between cores of the same node. Birdshot further
achieves 1.5×, 1.5× and 1.7× speedup through randomized assign-
ment that balances load between nodes (from micro+no random

to micro+random).

We also evaluate the execution time of Birdshot’s runtime when
both micro-partitioning and randomized assignment are disabled
(the results are not shown in Figure 9). In that case, Birdshot’s
runtime is within 10% of MPI. The slowdown is due to the overhead
of dynamically scheduling tasks between cores.

Using different number of partitions. Figure 10 shows how the
number of partitions affects performance under randomized par-
tition assignment. Using more partitions first improves and then
degrades performance. The figure shows the average number of
partitions per core, but Birdshot does not bind partitions to cores.

All simulations get the most significant speedup (1.5×, 1.8×
and 2.5×) when increasing the number of partitions per core from
1 to 2, because having a 1-to-1 mapping between partitions and
cores prevents the runtime from masking communication time or
balancing load between cores.

Having too many partitions slows down execution. Firstly, more
partitions mean more communication traffic. Secondly, with more
partitions, the communication traffic increases, and more computa-
tion time is spent marshaling the transferred data.

Simulations achieve the best performance with a medium number
of partitions per core. PhysBAM needs between 2 and 4 partitions
per core, PARSEC needs between 4 and 8, while Lassen needs
between 16 and 32. Lassen needs more partitions to achieve the best
performance because its load distribution is more skew.

Scalability. We test how Birdshot scheduling scales up to 64
nodes and 1152 cores. Figure 11 shows Birdshot’s performance
when running PhysBAM on 8–64 nodes while keeping the number
of cells per node similar. Birdshot is 1.8–2.1× faster than MPI across
different scales. Ideally, the execution time should remain the same
as more nodes are used, since both the computation work and the
number of nodes increase. However, running a larger simulation gets
slower because the computation work of the Poisson solver increases
superlinearly with the number of cells. For a larger simulation, the
Poisson solver takes more computation iterations to converge, and
the computation work of every iteration is linear to the number of
cells. Multiplying both, the overall computation work of an outer
iteration in Figure 11 increases superlinearly.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

384 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

(a) (b) (c)

Figure 9: Birdshot reduces the iteration times of three simulations by 2.0–3.3× on 32 nodes and 576 cores. The speedup is due to two aspects:
using more micro-partitions (micro) enables masking communication time; assigning them randomly (random) helps balance load. Note
that micro-partitioning slightly increases the computation time due to marshaling transferred data.

(a) (b) (c)

Figure 10: Iteration times depending on the number of partitions on 32 nodes and 576 cores. Too few partitions cannot balance load well.
Too many partitions cause execution overhead that outweighs the benefit.

Figure 11: PhysBAM iteration times when using an increasing
number of nodes while keeping the number of cells per node the
same. The largest grid size is 5283 running on 64 nodes and 1152
cores. Birdshot is 1.8–2.1× faster than MPI across different scales.
The iteration time increases with more nodes because every shown
iteration runs an iterative Poisson solver that converges slower with
more nodes.

7.3. Comparison with other load balancing algorithms

We compare the performance of Birdshot scheduling with two dy-
namic load balancing algorithms: Reactive, a classic dynamic load
balancing algorithm, which periodically migrates partitions between
nodes to balance load and Speculative, an improved version spe-
cialized for fluid simulation [SHQL18] that speculates future load
distribution changes to make better migration decisions, which can
be seen as a performance upper bound. Both algorithms migrate
partitions every 30 simulation time steps.

We ran the exactly same FLIP simulation as in the evaluation
of the Speculative algorithm [SHQL18]. The simulation uses sparse
grids implemented on OpenVDB. Figure 12 shows the results in two
simulation scenarios: a two-way dam break simulation (Figure 7)
and a sphere drop simulation (Figure 8). Birdshot scheduling is 1.5×
and 2.2× faster than the baseline of static and continuous partition
assignment (Geometric) because of better load balance.

Birdshot scheduling and Reactive have similar performance: Re-
active is 10% faster in the dam break simulation and Birdshot

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning 385

(b)(a)

Figure 12: Performance of Birdshot scheduling and three other
load balancing algorithms on 8 nodes with 8 cores each. Geometric
is a baseline that assigns continuous geometric regions to nodes.
Reactive periodically migrates partitions from overloaded nodes to
underloaded nodes. Speculative improves upon Reactive by estimat-
ing how load distribution changes. Birdshot scheduling is 1.5× and
2.2× faster than the baseline in the two scenarios, achieves com-
parable performance as Reactive while sometimes outperforming it
and is at most 21% slower than Speculative.

Figure 13: Distribution of Birdshot scheduling iteration times (for
the 100th iteration) in two-way dam break FLIP simulation across
1000 random partition assignments. Reactive takes 165 s in this iter-
ation, but Birdshot takes between 160 and 210 s. So, a poor random
assignment may cause Birdshot to perform worse than Reactive.

scheduling is 12% faster in the sphere drop simulation. Note that
the goal of Birdshot is to achieve comparable performance as Re-
active instead of beating it. Last, Birdshot scheduling performance
is within 21% of Speculative, which can be seen as a performance
upper bound.

We further analyse the root cause of the performance difference
between Birdshot and Reactive. In the dam break simulation, Bird-
shot is slower than Reactive because of poor random partition as-
signments. Figure 13 shows the iteration times of Birdshot for one
specific iteration under 1000 random partition assignments. Bird-
shot is faster than Reactive with 20% chance but slower with 80%
chance. Therefore, a poor random partition assignment makes Bird-
shot slower.

Figure 14: Comparison of Birdshot and Reactive iteration times.
Reactive migrates data to balance load every 30 iterations. Reactive
is faster than Birdshot immediately after each migration, but it
gradually becomes slower because load distribution changes break
balance. So, Birdshot is faster overall.

In the sphere drop simulation, Birdshot is faster than Reactive
because it balances load regardless of how dynamic the load is. The
sphere drop causes highly dynamic load distribution. Therefore,
adjusting partition assignment allows Reactive to balance load for
one iteration, but later iterations run slower as shown in Figure 14.
Birdshot relies on random partition assignment to balance load,
running consistently fast regardless of load changes.

8. Conclusion

Over the past 10 years, the computing cloud has grown and evolved
to be a platform that powers a wide range of distributed computing
applications, but it has been mostly untapped by graphical fluid
simulations due to the complexity and the performance problems of
distributed computing.

This paper proposes Birdshot scheduling, a simple yet effective
solution to accelerate distributed fluid simulations. The key idea is
micro-partitioning, which exposes the massive parallelism in fluid
simulations to greatly improve the load balance and communication
performance. The result demonstrates that the cloud is a promis-
ing platform for running graphical fluid simulations, but doing so
requires developing new scheduling techniques based on the differ-
ent workload characteristics and drawing solutions from both cloud
computing and scientific computing.

Appendix

This Appendix describes how to compute the expectation of the load
imbalance factor in the model proposed by Section 5. In the model,
there are n nodes, s partitions per node and p percentage of busy
partitions. The number of busy partitions assigned to a node can
be seen as the sum of s independent Bernoulli distribution random
variables with a parameter of p, which is mathematically equal to a
binomial distribution B(s, p). Therefore, the maximum number of
busy partitions assigned to a node, denoted as M , is the maximum
of n random variables draw from a binomial distribution B(s, p).
According to asymptotic theory [NM02], when n is large enough,

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

386 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

the accumulative distribution of M is close to:

Pr
(
M ≤

√
p(1 − p)sYnx + ps +

√
p(1 − p)sZn

)
→ exp{−exp(−x)} = f (x), (A.1)

where

Yn = 1√
2 log n

; Zn =
√

2 log n − log log n + log 4π

2
√

2 log n
.

The probability density function of M can be computed by taking
derivatives on both sides of Equation (A.1) on variable x. Then, the
expectation of M can be computed through integrating M weighted
by its probability density function. The computation is straightfor-
ward and the result is:

E(M) →
√

p(1 − p)sYnK + ps +
√

p(1 − p)sZn, (A.2)

where K = ∫ + inf
− inf xf ′(x)dx. Throwing away high-order terms, we

can get:

E(M) ≈ p · s + p · s

√
2

(
1

p
− 1

)√
log n

s
. (A.3)

LIF = M/(ps) − 1, so E(LIF) = E(M)/(ps) − 1, which gives
the Equation in Section 5:

E(LIF)|p,s,n ≈
√

2

(
1

p
− 1

)√
log n

s
. (A.4)

References

[AFLV08] AL-FARES M., LOUKISSAS A., VAHDAT A.: A scalable, com-
modity data center network architecture. In Proceedings of the
ACM SIGCOMM Conference on Data Communication (2008),
ACM, pp. 63–74.

[AGJ*14] ACUN B., GUPTA A., JAIN N., LANGER A., MENON H., MIKIDA

E., NI X., ROBSON M., SUN Y., TOTONI E., WESOLOWSKI L., KALE

L.: Parallel programming with migratable objects: Charm++
in practice. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(2014), IEEE Press, pp. 647–658.

[AKG*10] ANANTHANARAYANAN G., KANDULA S., GREENBERG A.,
STOICA I., LU Y., SAHA B., HARRIS E.: Reining in the outliers
in map-reduce clusters using Mantri. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2010), OSDI’10, USENIX As-
sociation, pp. 265–278.

[ARK10] ALVERSON R., ROWETH D., KAPLAN L.: The Gemini system
interconnect. In IEEE 18th Annual Symposium on High Perfor-
mance Interconnects (Aug 2010), pp. 83–87.

[BBAW15] BAILEY D., BIDDLE H., AVRAMOUSSIS N., WARNER M.:
Distributing liquids using openvdb. In ACM SIGGRAPH 2015
Talks (2015), ACM, p. 44.

[ben17a] Iperf: The network bandwidth measurement tool.
https://iperf.fr/. Accessed September 2019.

[ben17b] Lassen benchmark by Lawrence Livermore National Lab.
https://codesign.llnl.gov/lassen.php. Accessed September 2019.

[Bie11] BIENIA C.: Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[BTSA12] BAUER M., TREICHLER S., SLAUGHTER E., AIKEN A.: Le-
gion: Expressing locality and independence with logical regions.
In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (2012),
IEEE Computer Society Press, pp. 66:1–66:11.

[CBD*07] CATALYUREK U. V., BOMAN E. G., DEVINE K. D., BOZDAG

D., HEAPHY R., RIESEN L. A.: Hypergraph-based dynamic load
balancing for adaptive scientific computations. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (March
2007), pp. 1–11.

[CBM90] CHEUNG W. H., BLACK J. P., MANNING E.: A framework
for distributed debugging. IEEE Software 7, 1 (1990), 106–115.

[CZY17] CHU J., ZAFAR N. B., YANG X.: A Schur complement
preconditioner for scalable parallel fluid simulation. ACM Trans-
actions on Graphics 36, 5 (July 2017), 163:1–163:11.

[DC*96] DESBRUN M., CANI M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In Proceed-
ings of the Eurographics Workshop on Computer Animation and
Simulation (1996), vol. 96, Springer, pp. 61–76 .

[DHF*] DUBEY P., HANRAHAN P., FEDKIW R., LENTINE M., SCHROEDER

C.: PhysBAM: Physically based simulation. In ACM SIGGRAPH
2011 Courses, ACM, pp. 10:1–10:22.

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J., MITCHELL I.: A
hybrid particle level set method for improved interface cap-
turing. Journal of Computational Physics 183, 1 (2002), 83–
116.

[EQYF13] ENGLISH R. E., QIU L., YU Y., FEDKIW R.: Chimera
grids for water simulation. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2013), ACM, pp. 85–94.

[FLR98] FRIGO M., LEISERSON C. E., RANDALL K. H.: The im-
plementation of the Cilk-5 multithreaded language. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (1998), ACM, pp. 212–
223.

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation of
smoke. In Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques (2001), ACM, pp.
15–22.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://iperf.fr/
https://codesign.llnl.gov/lassen.php

H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning 387

[GHJ*09] GREENBERG A., HAMILTON J. R., JAIN N., KANDULA S.,
KIM C., LAHIRI P., MALTZ D. A., PATEL P., SENGUPTA S.: VL2:
A scalable and flexible data center network. In Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication
(2009), SIGCOMM ’09, ACM, pp. 51–62.

[GLL*09] GUO C., LU G., LI D., WU H., ZHANG X., SHI Y., TIAN

C., ZHANG Y., LU S.: BCube: A high performance, server-centric
network architecture for modular data centers. In Proceedings
of the ACM SIGCOMM Conference on Data Communication
(2009), ACM, pp. 63–74.

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle hydro-
dynamics: Theory and application to non-spherical stars. Monthly
Notices of the Royal Astronomical Society 181, 3 (1977), 375–
389.

[GMGK84] GARCIA-MOLINA H., GERMANO F., KOHLER W. H.: De-
bugging a distributed computing system. IEEE Transactions on
Software Engineering, 2 (1984), 210–219.

[GWW*18] GAO M., WANG X., WU K., PRADHANA A., SIFAKIS E.,
YUKSEL C., JIANG C.: GPU optimization of material point meth-
ods. In SIGGRAPH Asia 2018 Technical Papers (2018), ACM,
p. 254.

[Har62] HARLOW F. H.: The Particle-In-Cell Method for Numerical
Solution of Problems in Fluid Dynamics. Tech. rep., Los Alamos
Scientific Laboratory, New Mexico, 1962.

[HMB12] HUMPHREY A., MENG Q., BERZINS M.: The Uintah frame-
work: A unified heterogeneous task scheduling and runtime sys-
tem. In SC Companion: High Performance Computing, Network-
ing Storage and Analysis (2012), IEEE, pp. 2441–2448.

[HW65] HARLOW F. H., WELCH J. E.: Numerical calculation of time-
dependent viscous incompressible flow of fluid with free surface.
Physics of Fluids 8, 12 (1965), 2182–2189.

[JMM*13] JEANNOT E., MENESES E., MERCIER G., TESSIER F.,
ZHENG G.: Communication and topology-aware load balancing
in Charm++ with TreeMatch. In IEEE International Conference
on Cluster Computing (Sept 2013), pp. 1–8.

[JSS*15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOMAKHIN A.:
The affine particle-in-cell method. ACM Transactions on Graph-
ics 34, 4 (2015), 51.

[JWJ*14] JEONG E. Y., WOO S., JAMSHED M., JEONG H., IHM S., HAN

D., PARK K.: mTCP: A highly scalable user-level TCP stack for
multicore systems. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation (2014),
USENIX Association, pp. 489–502.

[Kar03] KARYPIS G.: Multi-constraint mesh partitioning for con-
tact/impact computations. In Proceedings of the ACM/IEEE Con-
ference on Supercomputing (2003), ACM, p. 56.

[KHAL*14] KAISER H., HELLER T., ADELSTEIN-LELBACH B., SERIO

A., FEY D.: HPX: A task based programming model in a global
address space. In Proceedings of the 8th International Confer-

ence on Partitioned Global Address Space Programming Models
(2014), ACM, pp. 6:1–6:11.

[KK96] KARYPIS G., KUMAR V.: Parallel multilevel k-way partition-
ing scheme for irregular graphs. In Proceedings of the ACM/IEEE
Conference on Supercomputing (1996).

[LKK14] LIFFLANDER J., KRISHNAMOORTHY S., KALE L. V.: Opti-
mizing data locality for fork/join programs using constrained
work stealing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(2014), IEEE Press, pp. 857–868.

[LMAS16] LIU H., MITCHELL N., AANJANEYA M., SIFAKIS E.: A scal-
able Schur-complement fluids solver for heterogeneous compute
platforms. ACM Transactions on Graphics (TOG) 35, 6 (2016),
201.

[LTW14] LOCKWOOD G. K., TATINENI M., WAGNER R.: SR-IOV: Per-
formance benefits for virtualized interconnects. In Proceedings
of the 2014 Annual Conference on Extreme Science and Engi-
neering Discovery Environment (2014), XSEDE ’14, ACM, pp.
47:1–47:7.

[MK13] MENON H., KALÉ L.: A distributed dynamic load balancer
for iterative applications. In Proceedings of the International
Conference on High Performance Computing, Networking, Stor-
age and Analysis (2013), ACM, pp. 15:1–15:11.

[MSQ*18] MASHAYEKHI O., SHAH C., QU H., LIM A., LEVIS P.:
Automatically distributing Eulerian and hybrid fluid simulations
in the cloud. ACM Transactions on Graphics 37, 2 (April 2018),
Article 24.

[Mus13] MUSETH K.: Vdb: High-resolution sparse volumes with
dynamic topology. ACM Transactions on Graphics 32, 3 (July
2013), 27:1–27:22.

[NH85] NI L. M., HWANG K.: Optimal load balancing in a multiple
processor system with many job classes. IEEE Transactions on
Software Engineering 11, 5 (May 1985), 491–496.

[NM02] NADARAJAH S., MITOV K.: Asymptotics of maxima of dis-
crete random variables. Extremes 5, 3 (2002), 287–294.

[OPR*13] OUSTERHOUT K., PANDA A., ROSEN J., VENKATARAMAN S.,
XIN R., RATNASAMY S., SHENKER S., STOICA I.: The case for tiny
tasks in compute clusters. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems (2013), USENIX
Association, pp. 14–14.

[OWZS13] OUSTERHOUT K., WENDELL P., ZAHARIA M., STOICA I.:
Sparrow: Distributed, low latency scheduling. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(2013), SOSP ’13, ACM, pp. 69–84.

[QMSL18] QU H., MASHAYEKHI O., SHAH C., LEVIS P.: Decou-
pling the control plane from program control flow for flexi-
bility and performance in cloud computing. In Proceedings of
the 13th European Conference on Computer Systems (April
2018).

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

388 H. Qu et al. / Accelerating Distributed Graphical Fluid Simulations with Micro-partitioning

[RMW*16] REISCH J., MARSHALL S., WRENNINGE M., GÖKTEKIN T.,
HALL M., O’BRIEN M., JOHNSTON J., REMPEL J., LIN A.: Simulating
rivers in the good dinosaur. In ACM SIGGRAPH 2016 Talks
(2016), ACM, p. 40.

[SABS14] SETALURI R., AANJANEYA M., BAUER S., SIFAKIS E.: Sp-
grid: A sparse paged grid structure applied to adaptive smoke
simulation. ACM Transactions on Graphics 33, 6 (Nov. 2014),
205:1–205:12.

[SHQL18] SHAH C., HYDE D., QU H., LEVIS P.: Distributing
and load balancing sparse fluid simulations. In Proceedings
of the 17th Annual Symposium on Computer Animation (July
2018).

[SOA*15] SINGH A., ONG J., AGARWAL A., ANDERSON G., ARMISTEAD

A., BANNON R., BOVING S., DESAI G., FELDERMAN B., GERMANO

P., KANAGALA A., PROVOST J., SIMMONS J., TANDA E., WANDERER

J., HÖLZLE U., STUART S., VAHDAT A.: Jupiter Rising: A decade
of Clos topologies and centralized control in Google’s datacen-
ter network. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication (2015), ACM, pp. 183–
197.

[Sta99] STAM J.: Stable fluids. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Tchniques
(1999), ACM Press/Addison-Wesley Publishing Co., pp. 121–
128.

[TRG05] THAKUR R., RABENSEIFNER R., GROPP W.: Optimization of
collective communication operations in MPICH. International
Journal of High Performance Computing Applications 19, 1 (Feb.
2005), 49–66.

[url17] Open MPI. https://www.open-mpi.org. Accessed September
2019.

[web17] High performance computing on Amazon web services.
https://aws.amazon.com/hpc/. Accessed September 2019.

[Whi12] WHITE W. W.: River Running Through It. https://www.cs.
siue.edu/�wwhite/SIGGRAPH/SIGGRAPH2012Itinerary.pdf.
Accessed September 2019.

[WTYH18] WU K., TRUONG N., YUKSEL C., HOETZLEIN R.: Fast fluid
simulations with sparse volumes on the GPU. In Computer
Graphics Forum (2018), vol. 37, Wiley Online Library, pp. 157–
167.

[XLD97] XU C., LAU F. C., DIEKMANN R.: Decentralized remap-
ping of data parallel applications in distributed memory multi-
processors. Concurrency - Practice and Experience 9, 12 (1997),
1351–1376.

[ZBMK11] ZHENG G., BHATELÉ A., MENESES E., KALÉ L. V.: Peri-
odic hierarchical load balancing for large supercomputers. Inter-
national Journal of High Performance Computing Applications
25, 4 (Nov. 2011), 371–385.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://www.open-mpi.org
https://aws.amazon.com/hpc/
https://www.cs.siue.edu/~wwhite/SIGGRAPH/SIGGRAPH2012Itinerary.pdf
https://www.cs.siue.edu/~wwhite/SIGGRAPH/SIGGRAPH2012Itinerary.pdf

