
Investigating a Physically-Based Signal Power Model for
Robust Low Power Wireless Link Simulation

Tal Rusak
Department of Computer Science

Cornell University
Ithaca, New York, USA 14853

tr76@cornell.edu

Philip Levis
Computer Systems Laboratory

Stanford University
Stanford, California, USA 94305

pal@cs.stanford.edu

ABSTRACT
We propose deriving wireless simulation models from experi-
mental traces of radio signal strength. Because experimental
traces have holes due to packet losses, we explore two algo-
rithms for filling the gaps in lossy experimental traces. Using
completed traces, we apply the closest-fit pattern matching
(CPM) algorithm, originally designed for modeling external
interference, to model signal strength.

We compare the observed link behavior using our models
with that of the experimental packet trace. Our approach
results in more accurate packet reception ratios than current
simulation methods, reducing the absolute error in PRR by
up to about 30%. We also find that using CPM for signal
strength improves simulation of packet burstiness, reducing
the Kantorovich-Wasserstein (KW) distance of conditional
packet delivery functions (CPDFs) by a factor of about 3
for intermediate links.

These improvements give TOSSIM, a standard sensor net-
work simulator, a better capability to capture real-world dy-
namics and edge conditions that protocol designers typically
must wait until deployment to detect.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development,
Model Validation and Analysis

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Wireless link simulation, wireless sensor networks

1. INTRODUCTION
Many wireless sensor network deployments have observed

significant differences between behavior in controlled envi-
ronments such as test labs or simulation and behavior in
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the field. These differences have in many cases caused ap-
plications to be unable to successfully collect the desired
data [11]. The reasons for these failures are very difficult
to determine due to the highly constrained nature of sensor
network hardware, including only a few bits of output in-
formation and little memory to save performance logs. The
remote nature of many sensor network deployments make
the study of the operation of the network and debugging
protocols and applications even more difficult.

Increasing simulation fidelity, so simulators can capture
edge cases and complexities encountered in real deployments,
will reduce the gulf between testing and practice. It will
also allow sensor network developers to use the resources of
a PC to debug and develop full scale applications. Creating
such models will facilitate theoretical studies regarding the
nature of such systems. Low-power wireless networks have
proven difficult to simulate because of a large number of
factors that impact their operation and a limited theoretical
understanding. In particular, the precise modeling of the
variation of noise and signal power when receiving a packet
in WSNs is an open problem. A special challenge in creating
these models is that WSNs share the RF environment, and
especially the 2.4 GHz frequency range, with 802.11 wireless
networks, microwaves, cordless telephones, and many other
interference sources.

Wireless simulators have traditionally relied on analytical
models for signal strength and noise. These models allow de-
velopers to explore a huge space of possible configurations
and network designs and also enable a good understand-
ing of packet dynamics. Such simulations have had success
in modeling highly-complex environments, such as the cell
phone network’s coverage of cities. For example, the WiSE
tool [6] developed in the mid-1990’s and several commercial
tools available today [1, 4] model the signal power of wire-
less networks in complex environments with relatively low
errors. Such systems use computer-based modeling tools to
express the geometry of the region being simulated.

We take a different approach to modeling sensor networks.
Rather than simulate an arbitrary configuration of nodes
based on analytical models, we examine how to simulate a
specific configuration based on experimental traces. This
experimental approach, which we call physically-based sim-
ulation, has an additional benefit—it allows us to validate
our models by comparing to real world phenomena. Un-
like purely analytical approaches, which are not grounded
in a real network and therefore cannot be validated, using
measurements from a deployment allows us to compare the
resulting simulated behavior with the observed behavior.



Using physical-layer measurements in the form of 4 Hz
RSSI traces and 1 kHz noise+interference traces, we explore
using probabilistic models to recreate behavior that is rep-
resentative of what is observed on the real network. Simply
replaying traces is insufficient, as it does not allow users to
simulate experiments longer than the traces, and can also
lead to overfitting time constants [7].

Physically-based simulation has been applied successfully
in our previous work to modeling noise and interference [10]
for the purpose of simulation. In our prior work, we pro-
posed the Closest-fit Pattern Matching (CPM) algo-
rithm for modeling noise and interference based on traces
from deployed networks. In this paper, we propose extend-
ing this approach to modeling signal strength variations.
CPM uses conditional probability distributions to model
trends in the data trace. Based on the past k values for the
variable (noise, signal strength, etc.), CPM samples from
the probability distribution of what the next value will be.
We present the algorithm in greater depth in Section 2.4.

There are two research challenges, however, in applying
this technique to signal strength. The first challenge is
biased sampling. Unlike noise+interference, which can be
sampled at any time, signal strength can only be sampled
on successfully received packets. This means that the sig-
nal strength trace is only partially observable. Only using
received packet signal strengths skews the distribution and
may lead to different packet reception ratios than those ob-
served in reality. Therefore, an algorithm needs to generate
estimates of missed signal strength measurements.

We propose two solutions to address biased sampling. One
algorithm, called Average Value (AV), simply assumes all
missed packets have the average observed signal power. The
other, called Expected Value PMF (EVP), fills in a prob-
ability mass function of expected signal strengths based on
the reception probabilities of the signal strengths of observed
packets. We find that EVP leads to a lower maximum packet
reception ratio (PRR) error bound as compared to AV. EVP
bounds the absolute error in PRR to 22% as compared to ex-
periment depending on the link, while AV bounds the same
error measure by 30%.

The second challenge is phase and sampling precision. For
some physical layers, such as the one we study (802.15.4),
there is a very sharp 1.5dB transition between low and high
packet reception ratios. The radio hardware, however, can
only produce readings at the precision of a single dB. When
the radio reports the signal strength of a received packet,
this is the sum of the noise+interference and the actual sig-
nal strength. The sharpness of the SNR-PRR curve and
similarity between the two values means that the relative
phase of interference and signal is important.

To address the problem of phase and sampling precision,
we explore whether assumptions of in-phase, out-of-phase,
or neutral phase additive models lead to more accurate sim-
ulation. We find that for each experiment we need to indi-
vidually evaluate which phase assumption to use, and that
choosing the correct assumption can lead to reductions of
error in absolute packet reception rate by up to 30%.

Another advantage of this model is that it allows sen-
sor network designers to choose a particular algorithm and
phase assumption that best fits their deployment location.
We provide an overview and several examples of fitting mod-
els to experimental traces of both noise+interference and
signal power in Section 5.1.

Figure 1: This figure shows experimental variations
in RSSI ((a) and (c)) and Noise+Interference val-
ues ((b) and (d)) from two representative sensor
network deployments. We see that both of these
parameters are non-constant and do not vary con-
sistently across different environments.



Finally, we compare fixed-PRR links of the various sim-
ulation methods to the Kantorovich-Wasserstein (KW) dis-
tance on conditional packet delivery functions (CPDFs).
CPDFs describe packet delivery probability given n consec-
utive successes or failures. As each x value is equally impor-
tant in a KW distance measure, CPDFs lend more weight to
the rare than the common case, and so better represent the
complexities of real-world networks than simple measures
such as µ of a Gilbert-Elliot channel.

The rest of this paper is organized as follows. In Section 2,
we review related work about TOSSIM, a standard simulator
for wireless sensor networks, about modeling signal strength,
and about physically-based simulation. In Section 3, we
present algorithms for the modeling of signal power in sensor
network systems. In Section 4, we present our experimental
work and provide an overview of the traces used to validate
the proposed methods. In Section 5, we compare simulation
results to experimental traces by using absolute PRR differ-
ences and the Kantorovich-Wasserstein (KW) distance [8]
using the concept of CPDFs [10]. Finally, in Section 6 we
provide concluding observations.

2. BACKGROUND AND RELATED WORK

2.1 The TOSSIM Simulator
TOSSIM simulates TinyOS-based sensor network applica-

tions [12, 13, 14]. TOSSIM replaces several low-level hard-
ware components with software equivalents. Application
code runs unmodified in the simulator, enabling developers
to test implementations in addition to algorithms. TOSSIM
has advanced network simulation features: it simulates packet
capture, implements acknowledgments (including false pos-
itive acknowledgments), and has a robust noise model [10].

2.2 Signal Power Models for Sensor Networks
Sensor network simulators have taken varying approaches

to modeling signal power. Released versions of TOSSIM, for
example, assume signal power |S| to be constant, and allow
the user to input a gain (attenuation) value for each link
in the simulation. Currently, gain is either manually input
for each link or modeled using a tool [19] which simulates
overall network structures, but not the temporal variations
between individual links in the network. Figure 1 illustrates
the noise+interference and RSSI variations over typical, rep-
resentative experiments. There is a longer term variation in
the signal power of received packets, which is approximated
in this figure by RSSI = |S + N|, where |N| is the noise+
interference value. Since |S| � |N| for received packets,
however, it is unlikely that the variations illustrated in this
figure, taken from experimental traces, are a result of noise
variations alone. We see that TOSSIM’s assumption that
signal power is constant is a simplification to reality.

Other models of sensor networks have attempted to ap-
ply the aforementioned analytical models to sensor network
links. One such analytical model that has been investigated
in the context of sensor networks is the log normal shadow-
ing power model. In this technique [9], power is predicted
using the path loss and shadowing analytical models. On
the dBm scale, the signal power S is given by

S = Pt +K − 10λ log10

d

d0
+ Ψ(µ, σ) (1)

where S is the desired signal power, Pt is the transmit power,

Figure 2: TI/Chipcon CC2420 SNR/PRR Curve
[10].

λ is the path loss exponent, d
d0

is a physical parameter pro-
portional to distance, and Ψ is a Gaussian random variable,
where µ is the mean and σ is the standard deviation. Bae
and Kim [5] conducted an investigation attempting to apply
this model for use with the TI/Chipcon CC2420, a radio
commonly used in sensor network deployments (including
the experiments we performed), and gave a set of parame-
ters that apply to this radio and to the 2.4 GHz frequency
range. When we apply this model, we use the parameters
given in Table I of that study [5].

2.3 Physically-Based Simulation
This paper extends the physically-based radio link simu-

lation algorithm introduced in our previous work [10]. The
equation that underlies this model is

SNR =
|S|
|N| (2)

where |S| is the magnitude of the signal power of a received
packet, |N| is the resultant magnitude of any environmental
noise or disruption not caused by the network being imple-
mented, and SNR is the signal-to-noise ratio [10]. Note that
in a logarithmic scale, (2) may be expressed as

SNRdB = |S|dBm − |N|dBm . (3)

This expression for SNR can be mapped to a packet recep-
tion rate using the function given in Figure 2. The TOSSIM
simulator implements this model as follows: it models |N|
using the CPM algorithm [10], reviewed in the next section.
We see from Figure 1 that modeling noise is desirable since
there are substantial short term variations in noise values.
As mentioned above, TOSSIM currently assumes |S| to be
constant.

2.4 The Closest-Fit Pattern Matching (CPM)
Algorithm

The CPM algorithm uses an experimental trace to create
a conditional model of observed values [10]. First, an exper-
imental trace is collected using mote hardware in the envi-
ronment to be simulated at frequency x. In its model gen-
eration phase, CPM scans the trace and computes a prob-
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Figure 3: An example of the Expected Value PMF algorithm on an input, assuming an average noise of −90
dBm. This trace shows 6 of 11 packets were received, with RSSI values of −82 dBm, −87 dBm, −85 dBm,
−86 dBm, −82 dBm, and −81 dBm. The RSSI values of the five missed packets are not known, and this
is indicated by “??”s in the figure. Extrapolating from expected PRRs of the RSSI values of the received
packets, there should be 14.5, not 5 lost packets: for example, only 1 of 10 packets at −87 dBm should be
received. Note that for simplicity, we use PRR values that are approximates to those given in Figure 2.

ability distribution of the expected value v given k prior
values. To run CPM, a simulation replays the first k val-
ues from the trace; then the algorithm uses the probability
distribution constructed during model generation to sample
the next value. If the prior k values do not match a pattern
observed in the real network, then CPM samples from the
most common pattern.

If k is the length of the trace, then CPM will simply replay
the trace. If k = 0, then CPM takes independent samples.
Lee et al. [10] found that k = 20 leads to the best results
when simulating external interference.

3. ALGORITHMS FOR MODELING
SIGNAL POWER

To improve the TOSSIM simulator, we propose to collect
signal power traces over long periods of time and then to
use the CPM algorithm to predict signal power. There is a
substantial research challenge in producing traces of signal
power.

3.1 Collecting Signal Power Traces
Collecting signal power traces is more complex than col-

lecting noise traces for several reasons. First, any signal
power value refers to a link between a pair of nodes; thus,
any trace needs to involve both a sender and a receiver.
Noise, on the other hand, is local to an individual node in
the network.

Furthermore, signal power is not known to the sensor net-
work mote directly. The best estimate is the RSSI = |S+N|
upon packet reception. Due to the steepness of the SNR-
PRR curve (Figure 2), RSSI must be corrected for this
noise error. This is not just a matter of subtracting the
noise value since the phases of waves must be considered.

In addition, while noise can be sampled discretely in any
environment, and there will always be a sample when one is

requested, this is not the case for signal power. Recall that
signal power requires the communication between two nodes;
if the link fails and a packet is not delivered, then there will
be no RSSI or signal power value available for this time.
Thus, the signal power trace needs to be post-processed and
filled-in for completeness and to avoid missing samples.

We suggest two separate steps to account for these chal-
lenges: (1) filling in missing signal power values into the ex-
perimental trace, and (2) correcting for the phase differences
between noise and signal traces. Each of these algorithms
assumes that a trace of RSSI values has been collected by
measuring the received signal power from a network of two
motes. This is accomplished by a TinyOS application that
we wrote that sends packets at an interval of 4 Hz on the
sending side, and records the RSSI value at reception. The
algorithms also expect that the environmental noise in the
environment that we aim to simulate has been characterized,
such that the average noise N (in dBm) over the period of
the RSSI-collection experiment is known or can be approx-
imated well. A TinyOS application similar to RSSISample

[3] can be used to measure average noise. Furthermore, we
make one assumption of three about phase differences be-
tween noise and signal in each of these algorithms, quantified
by p, where

p =

8<: −1, Noise and signal are assumed in phase
0, No correction for phase difference
1, Noise and signal are assumed out of phase

.

(4)
We test all three assumptions in this paper by setting the
phase correction factor p when constructing the signal power
trace.

3.2 The Expected Value PMF (EVP) Algorithm
First, we consider the Expected Value PMF (EVP) Al-

gorithm. Pseudocode is given in Algorithm 1.
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Figure 4: An example of the Average Signal Power Value algorithm. This trace shows 6 of 11 packets were
received, with RSSI values of −82 dBm, −87 dBm, −85 dBm, −86 dBm, −82 dBm, and −81 dBm. The RSSI
values of the five missed packets are not known, and this is indicated by “??”s in the figure. In this algorithm,
these missing values are filled in with the average signal power value, rounded to an integer.

Algorithm Expected Value PMF Average Signal Power Value
Running Time (seconds) 11.529 11.244

Table 1: Running time of the preprocessing code using the suggested algorithms on a laptop with a 2.6 GHz
processor. This run generated signal power traces and TOSSIM scripts for both directions of the link under
the three phase assumptions studied. The RSSI traces had over 80,000 packets. Times were measured using
Java’s System.currentTimeMillis() function. The output can be used for many TOSSIM simulations.

Algorithm 1: Expected Value PMF

Data: Average noise N , list of successful reception
times T ⊆ [0, l], RSSI trace
R : T → dBm value collected from
experiment of length l at 4 Hz, and phase
assumption p

Result: A filled in signal power trace
S : [0, l]→ dBm value mapping for time
duration l at 4 Hz

Initialize PMF P;
foreach t ∈ T do
r = R(t);

Find s = 10 log10

“
10

r
10 + p× 10

N
10

”
;

Add mapping (t, round(s)) to S;
Add s to P with frequency 1

prr(s−N)
− 1;

foreach (t ∈ [0, l]) 6∈ T do
Add mapping (t, sample(P)) to S;

return S;

The algorithm accepts as input the average noise in the
environment to be simulated N (in dBm), a set of successful
reception times T from an experiment conducted at 4 Hz,
an RSSI trace R which maps time values where the RSSI is
known to the corresponding RSSI values measured in dBm,
and a phase assumption p. Then, for each of the known
RSSI values, a signal power value is generated by correcting
the RSSI value for the noise error using the expression

s (in dBm) = 10 log10

„
10
R(t)
10 + p× 10

N
10

«
. (5)

The intuition is that if a signal and noise are in phase, then
the actual signal power is lower than the RSSI value de-
tected, so p = −1. If the signal and noise are out of phase,
then the actual signal power is higher than the RSSI value
detected, so p = +1. Finally, if the phase differences can-
cel each other out, then p = 0 and s = R(t). After it is
computed, s is added to the signal power trace S at time t.

The algorithm also adds each signal power s computed
from the experimental trace to PMF P at a frequency cor-
responding to the number of packets that are expected to
be lost, quantified by

Expected lost =
1

prr(s−N)
− 1 (6)

where prr maps a signal to noise ratio (SNR = s − N on
the dB scale) to the corresponding PRR value, following
the curve illustrated in Figure 2. This expression effectively
extrapolates the number of packets that should have been
received at this signal power value, based on the probability
of receiving this single packet. One is subtracted to account
for the packet that has just been received. Note that this
number is stored as a float value, so it is possible to have
fractional amounts of expected missing packets.

Finally, for every missing signal power value in S, i.e. for
every time that a packet was lost in experiment, the PMF of
expected missing values P is sampled, and these times are
mapped to signal power values corresponding to the propor-
tion of signal power values that are found to be missing.

The number of expected lost packets is greater than the
actual number of lost packets in the example shown in Fig-
ure 3. This is also the case in the real traces studied. We
conjecture that this may be because of the 1 dBm granular-
ity of the RSSI values collected by the CC2420 radio in our
experiments. However, the full reason for this difference and
its causes and implications is a topic of future work that we
are interested in pursuing. As expected, this observation re-
sults in lower power values being common in traces filled in
using the EVP algorithm since these values are most likely
to be added to the trace.

3.3 The Average Signal Power Value (AV) Al-
gorithm

We also consider the Average Signal Power Value
(AV) Algorithm. Pseudocode for this method is given in Al-
gorithm 2. This algorithm accepts as input the average noise
N (in dBm), a set of successful reception times T from an



experiment collected at 4 Hz, an RSSI trace R which maps
time values where the RSSI is known to RSSI values mea-
sured in dBm, and a phase assumption p. Then, the signal
power trace is computed for these known times using the
expression (5) and all known values are added to the signal
power trace S. The average signal power of the received
packets, P , is computed (in terms of dBm) and rounded to
an integer, to conform to the output of the CC2420 radio for
real packet values. Note that this average signal power has a
sampling bias, as it only considers received packets. Finally,
the algorithm fills in the signal power trace by inserting the
average signal power value for all time values that are miss-
ing from S. Figure 4 shows an example of the execution of
the AV algorithm.

Algorithm 2: Average Signal Power Value

Data: Average noise N , list of successful reception
times T ⊆ [0, l], RSSI trace
R : T → dBm value collected from
experiment of length l at 4 Hz, and phase
assumption p

Result: A filled in signal power trace
S : [0, l]→ dBm value mapping for time
duration l at 4 Hz

foreach t ∈ T do
r = R(t);

Find s = 10 log10

“
10

r
10 + p× 10

N
10

”
;

Add mapping (t, s) to S;
Let P be the average value of power values in S,
rounded to an integer;
foreach (t ∈ [0, l]) 6∈ T do

Add mapping (t, P ) to S;
return S;

3.4 Implementation and Performance of Sig-
nal Power Correction Algorithms

Both of these algorithms have been implemented using
a Java preprocessor that accepts text files of traces that
are collected from a TinyOS application developed for this
purpose. The application outputs the signal power traces S
to a text file that is used as input to a modified version of
the TOSSIM simulator, which uses CPM (see Section 2.4)
to predict signal power when a simulation is performed. Our
preprocessor also automatically generates Python scripts for
use with TOSSIM for all three phase assumptions discussed
above. The preprocessing step needs to be run only once for
an arbitrary number of simulations of a certain wireless link.
Table 1 gives timing results collected for these preprocessing
steps.

To decide on the effectiveness of these simulation tech-
niques, we collected experimental noise and signal power
traces discussed in the next section.

4. EXPERIMENTAL WORK
In conducting this study, we noticed a lack of experimental

traces for signal power variations. Thus, we collected our
own experimental traces in order to audit these simulations.
Each experiment we conduct has one sender mote and one
receiver mote, placed at specific locations on the Cornell
University campus shown in Figure 5.

Duffield  
Hall

Figure 5: Map of experimental collection lo-
cations for this investigation; each pair is rep-
resented by an arrow. The link in Phillips
hall had two motes separated by one floor,
and in all other experiments the motes were
located on the same floor. Base map from
http://www.parking.cornell.edu/pdf/Stu_combo_2006.pdf.

We developed a TinyOS application that sends packets at
a rate of 4 Hz from the sender to the receiver. We chose this
frequency as a baseline to investigate long RSSI traces and
we plan to investigate other collection frequencies as future
work. The sender mote uses this application to send pack-
ets at this rate; the receiver simply listens for packets and
records the sequence number and the RSSI of each received
packet. For each experiment, we tested the link in both di-
rections, i.e. first one mote is the sender and the other mote
is the receiver, and then the sender and the receiver are
switched for the purposes of collecting another trace. We
collected an RSSI trace of about 12 hours (or more) for each
pair of nodes.

The nodes used were Telosb motes [16] with TI/Chipcon
CC2420 radios [2], the radio that is modeled by TOSSIM.
The experiments were conducted in Rhodes, Upson, and
Phillips Halls on the Cornell University campus. These
buildings are high traffic, high use academic facilities around
the clock and they are both connected with 802.11abg wire-
less networks. There are also cordless phones, microwaves,
and personal wireless access points in use in both buildings.
Thus, there are many factors that can impact the quality of
the wireless connection between the nodes.

5. EVALUATION
We evaluate the proposed model on two levels. First, we

show that using the proposed algorithms, along with an ap-
propriate choice of assumptions about phase differences be-
tween the signal and noise, we can achieve predictive packet
reception rates simulation compared directly to experiment.
Then, we evaluate the correlation among packets and show
that our algorithms provide KW distances lower by a fac-
tor of about 3 compared to the best alternative simulation
methods.

5.1 Comparing Simulation and Experiment
PRRs

In this section, we compare a first order parameter, packet
reception rate (PRR), between simulation and the environ-



ment that we are trying to simulate. The different algo-
rithms proposed above have a different level of correspon-
dence to experiment with respect to PRR.

PRR is a very basic simulation parameter. It is possible
to get a perfect PRR simulation by simply accepting packets
at a rate equal to the PRR that was derived from the exper-
iment. Unfortunately, such a simulation will not take into
account temporal variation of signal power or packet recep-
tion correlation that is known to be found in sensor network
links [10]. Furthermore, in complex networks it may be im-
possible to dictate the reception rate, since such a simulation
does not consider the interactions between different pairs of
motes.

PRR is a very difficult parameter for general simulators
to get right. For example, we ran simulations of our exper-
iments with the analytical model suggested in Section 2.2
and got PRRs that were very different from those that we
observed experimentally. In most cases, these results were so
far off that they do not even provide a basis for comparison.

At the same time, correctly modeling packet reception
rate is extremely important in wireless sensor networks, es-
pecially for those links in the intermediate range. It is vi-
tal for protocol designers to have an idea of the propor-
tion of packets that are received as compared to those that
are lost in order to correctly account for these losses, either
in information, time, or both, when programming the net-
work. Physically-based simulation introduced in TOSSIM
2.0.1 and 2.0.2 has greatly increased the ability of the simu-
lator to correctly capture packet reception rates. For exam-
ple, Metcalf [15] shows that TOSSIM 2.0.2 produces largely
correct results in terms of PRR for good and bad links. In
that work, TOSSIM’s gain value is set to the average RSSI
of the link, which approximates signal power. However, ex-
amining the figures in Chapter 4 of [15], we note that PRR
differences between experiment and simulation values occur
mostly in intermediate links. Although there are relatively
few intermediate links in that study, their PRR is not pre-
dicted precisely in many cases.

The model that we propose improves upon the prediction
of PRR for the following reasons. First, it considers the
variations in signal power which may account for some PRR
variations. There are two algorithms proposed for filling-in
experimentally determined signal power traces, and due to
varying environmental conditions one or the other may be
more appropriate. In addition, our model corrects for the
phase differences between signal and noise waves for each
of the links when converting RSSI to signal power. This
correction needs to be tuned to the environment, and it can
cause major differences in the overall PRR of a given link.

Note that in any physically-based simulation model, it is
almost always possible to get an exact PRR by modifying
the signal power with a constant coefficient or a constant
additive value. This is, essentially, a brute-force method of
searching for the appropriate phase correction. The pro-
posed method shows that using a signal power trace with
just three assumptions about phase, it is usually possible to
achieve nearly the same result.

In Figure 6, we compare the absolute differences between
experimental and simulation PRRs of the various algorithms
that we propose in this work under different assumptions
about phase. We also perform the same comparison to the
corresponding experiments as simulated by TOSSIM 2.0.2.
The TOSSIM simulator assumes that signal power is con-

0.426 0.591 0.672 0.755
0.00

0.10

0.20

0.30

0.40

0.50

(a) Expected Value PMF Algorithm

In Phase
No Correction
Out of Phase
TOSSIM 2.0.2 

Experimental PRR

|E
xp

er
im

en
ta

l P
R

R
 ­ 

S
im

ul
at

ed
 P

R
R

|
0.426 0.591 0.672 0.755

0.00

0.10

0.20

0.30

0.40

0.50

(b) Average Signal Power Value Algorithm

In Phase
No Correction
Out of Phase
TOSSIM 2.0.2 

Experimental PRR
|E

xp
er

im
en

ta
l P

R
R

 ­ 
S

im
ul

at
ed

 P
R

R
|

Figure 6: Absolute differences between the PRR
of experiments and simulations for various assump-
tions about phase using (a) the expected value PMF
algorithm and (b) the average value algorithm for
filling in signal power traces. In both plots, the
TOSSIM 2.0.2 value takes gain (signal power) to be
the average RSSI, without rounding.

stant, and we input the average RSSI value of the corre-
sponding experimental trace into TOSSIM. This is a com-
mon assumption; for example, Metcalf used this approxima-
tion as the gain parameter in TOSSIM in the aforementioned
study [15]. In each case, noise+interference is modeled by
CPM using a noise trace collected in the experimental envi-
ronment without sending packets.

In the present experimental study, we noted similar re-
sults: the bad links and the good links perform sufficiently
well in TOSSIM 2.0.2. As we can see in Figure 6, how-
ever, TOSSIM does not give satisfying results for interme-
diate links and gives somewhat arbitrary PRR results given
a consistently calculated gain value.

By correctly tuning the choice of assumptions it is possible
to perform an effective simulation using the suggested tech-
nique. Given the appropriate phase assumption, the EVP
algorithm approximates PRR to within an absolute differ-
ence of 22% in the worse case (less than 10% in all but one
case), while the AV algorithm approximates the PRR value
to within 30% (less than 10% in all but one case).

Conducting an analysis similar to Figure 6 allows sensor
network designers to fit experimental data from their deploy-
ment location to one of the algorithms proposed. Thus, it
is possible to use this method to choose the best simulation
technique for a given wireless link.
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Figure 7: CPDFs for PRR=58.5% link. The nega-
tive x-axis plots consecutive packet successes, while
the positive x-axis plots consecutive packet failure.
We note that the experimental plot (a) is generally
correlated in x with a sharp decreasing trend as x in-
creases, and that the trace simulated with CPM (b)
also follows such a correlation. The constant signal
CPDF (c) and the Log Normal Shadowing simula-
tion CPDF (d) show no apparent correlation. Values
for x with no bar indicate that no data was collected
from this value, not a PRR of 0%.
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Figure 8: CPDFs for PRR=82.5% link. The nega-
tive x-axis plots consecutive packet successes, while
the positive x-axis plots consecutive packet failure.
We note that the experimental plot (a) is correlated
in x with a gently decreasing trend as x increases,
and that the trace simulated with CPM (b) also fol-
lows such a correlation. The constant signal CPDF
(c) shows no apparent correlation, while the Log
Normal Shadowing simulation CPDF (d) appears to
have a slightly increasing PRR value as x increases.
Values for x with no bar indicate that no data was
collected from this value, not a PRR of 0%.
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Figure 9: The KW distance comparing various sig-
nal power modeling algorithms to the real power
algorithm.

5.2 KW Distances of Fixed-PRR Simulations
We note that not only is our approach effective at repro-

ducing experimental PRRs in simulation, it can also model
packet correlation effectively. Such correlations were shown
to have an effect on higher-order protocols [10]. Clearly, the
overall PRR of a long-term experiment is not the only factor
that has to be considered for correct simulation.

To investigate the impact of applying our model for signal
power on packet reception correlation, we apply a constant
noise so that signal power is the only factor varied. Then,
we change the noise value for the various simulation models
such that the packet reception rates are essentially the same.
We consider the following several signal power modeling al-
gorithms in this fashion. Real signal power traces are from
actual experiments and are corrected using the algorithms
given above. CPM signal power traces are generated by in-
putting the real power traces into the CPM algorithm and
keeping a history of k = 20. Constant signal power traces
assume that signal power is constant and pre-determined.
Log Normal Shadowing signal traces use the analytical ex-
pression suggested in Section 2.2 to model signal power.

For each of these simulations, we build a conditional prob-
ability plot of packet reception based on the condition

X (x) =


|x| successful sequential receptions, x < 0

x sequential packet losses, x > 0
,

(7)
following an idea first introduced in our previous work [10].
Such a distribution has been called a CPDF. Note that
CPDFs investigate trends in packet reception burstiness [18]
on the time scale of one packet only.

In Figures 7 and 8, we present CPDFs of two intermedi-
ate links that we investigated. The experiment from which
this link was collected received about 59% of the packets,
and varying the constant noise value led to the two different
PRRs for the links in the two figures. For the purpose of
this analysis, we used the EVP algorithm, which provides
the tightest maximum error bound in PRR over many ex-
periments. In addition, we use the out of phase assumption,
which provides a PRR close to the experimentally discovered
PRR using the experimental noise characterization. Note
that the CPDF corresponding to the CPM algorithm shows
a more similar correlation to the Real signal CPDF than
any other simulation method. In Figure 7(a), we note that
there is an overall sharp decrease in PRR as x (as defined in
(7)) increases. The CPDF corresponding to the CPM model

(Figure 7(b)) is the only other that appears to show any
such decrease. On the other hand, the CPDFs of constant
and log normal shadowing signal simulations (Figures 7(c)
and 7(d)) appear to present little correlation. Similarly, in
Figure 8(a), we see a more gentle decrease in PRR as x in-
creases. Again, the CPM signal CPDF (Figure 8(b)) is the
only simulation model that captures this decrease effectively.
The constant signal CPDF (Figure 8(c)) shows no apparent
correlation, and the CPDF generated from the log normal
shadowing model (Figure 8(d)) actually shows a slightly in-
creasing PRR as x increases. Recall that CPDFs are gener-
ated from a probabilistic simulation, so some outliers in the
overall trends are to be expected.

To quantify these observations, we measure the Kanto-
rovich-Wasserstein (KW) distance [8] between CPDFs of
real signal power and the CPDFs of the simulation tech-
niques discussed above. The KW distance computes the
distance between probability distributions in a manner that
places more emphasis on the rare rather than the common
situation. In Figure 9, we show the results of this calcula-
tion. The code used to compute the KW distance uses an
equivalent metric known as Earth Mover’s distance [17].

The CPM algorithm provides the best KW distance as
compared to real signal power. In particular, the CPM al-
gorithm improves the KW distance of the intermediate links
studied by a factor of about 3. This shows that applying
CPM to the signal power traces output from the algorithms
suggested in Section 3 is effective at modeling the temporal
correlation of packets. At the same time, the overall be-
havior of the link is similar to the behavior (i.e. the PRR)
of the corresponding experimental link. Thus, applying our
model leads to a radio link simulation that is quite similar to
the behavior of the real link being modeled, both in terms of
packet reception correlation and in terms of packet reception
rates.

6. CONCLUSIONS
This paper presents an improvement to the TOSSIM sim-

ulator by suggesting a way to model reception power of wire-
less links. In particular, we suggest two algorithms to fill in
for signal traces that are inherently missing from experi-
ment. We also make three assumptions about phase. By
examining the PRR of links in simulation and experiment,
we note that choosing correct parameters in the suggested
model can lead to very close PRR simulations as compared
to the experimental trace. Using the KW distance, we show
that our simulation technique preserves the packet reception
correlation as compared to a real signal power simulation.

The algorithms presented in this paper, along with the
CPM algorithm that we suggested in previous work, can
be used to create a high-fidelity simulation of wireless links
in TinyOS sensor networks using the TOSSIM simulation
framework. Such accurate models and simulations can help
protocol developers learn about the effectiveness of their im-
plementation by collecting traces of signal power and noise
from the intended deployment environment.
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APPENDIX
A. COMPARING PHYSICALLY BASED

SIMULATION PRRS
In Table 2, we take one experiment and compare various

possible simulation techniques using the physically-based
simulation model and TOSSIM. Results from several dif-
ferent algorithms are shown. First, we consider concurrent
pattern matching (CPM ), with history size k = 20, applied
to either noise or power. Second, we assume that the noise
or signal power is constant. In this case, we take the average
value of the RSSI of the packets received in the experimental
trace. Finally, we consider real signal power or noise, which
is the experimentally collected noise or signal power. In the
case of signal power, we use the out-of-phase EVP model to
correct and fill in the experimental trace.

Note that in TOSSIM 2.0.2, the signal power is modeled
as constant, while the environmental noise is modeled with
CPM. From this data, we can see the CPM algorithm can
greatly improve the PRR correctness when applied to the
signal power, as suggested by this work.


