
Falcon — A Flexible Architecture For Accelerating
Cryptography

Kevin Kiningham, Philip Levis, Mark Anderson, Dan Boneh, Mark Horowitz, Maurice Shih
Stanford University

{kkiningh, pal, mark01, dabo, horowitz, maurices}@stanford.edu

Abstract—Internet of Things (IoT) devices, once deployed,
must remain secure for their entire lifetime, which can be as long
as 20 years. Over this lifetime, devices must be able to update
which ciphers they use to meet evolving security requirements.
However, devices cannot rely on software updates for their cryp-
tography because software implementations consume too much
energy. At the same time, fixed function hardware accelerators
such as an AES engine cannot support new ciphers.

This paper presents Falcon, a hardware architecture for
accelerating a broad range of cryptography on energy limited
devices. Rather than accelerate a fixed set of current ciphers,
Falcon provides a general execution engine that accelerates
dominant and emerging ciphers, such as AES, Cha-Cha, SHA-
256, RSA, ECC with Curve25519, as well as post-quantum
ciphers such as R-LWE. For cryptography, Falcon provides the
flexibility of software while reducing the energy consumption
of cryptography by 5-60x compared to software. This reduction
makes it feasible for IoT applications to upgrade the ciphers
they use after deployment, allowing them to keep up to date
with security best practices without reducing their deployment
lifetime or reducing the application workload. In an application
monitoring the temperature of sensitive medical supplies in
hospitals, Falcon doubles the deployment lifetime (2.2x).

Index Terms—Security, Cryptography, Accelerator architec-
tures, Internet of Things

I. INTRODUCTION

The term “Internet of Things” (IoT) describes a broad range
of technologies and applications that incorporate powerful
computational, sensing, and actuation capabilities into physi-
cal objects. Examples include smart thermostats, door locks,
industrial machinery, automobiles, light bulbs, and watches.
Networking these devices provides new, valuable services
and allows them to perform better. These benefits, however,
are limited by the fact that the security of IoT devices is
notoriously poor; security flaws in IoT devices have been used
to take control of vehicles [1] and take down key parts of the
Internet infrastructure [2].

Cryptography is a critical component of securing IoT ap-
plications. Cryptography, however, is typically highly com-
pute intensive, which poses a problem for energy limited
IoT devices. To make cryptography energy-efficient enough
to be practical, many embedded microcontrollers for IoT
devices include dedicated cryptographic accelerators. These
accelerators typically support particular cryptosystems, such
as AES-128 [3] or SHA-256 [4]. Some generalize slightly, by
accelerating lower-level primitives, such as modular arithmetic
or operating on Galois fields [5]. These dedicated accelerators
can reduce the energy costs of cryptography by two orders of

magnitude, making it practical, and are commonly used on a
wide variety of commercially available devices.

However, fixed function accelerators cannot be easily
adapted to new ciphers. While this may be acceptable for
applications with short lifetimes or fixed security requirements,
many IoT devices deployed today may remain in operation
for 10-20 years. On a multi-decade timescale, the changes in
security standards, laws, and application requirements can be
immense; 20 years ago, AES, the dominant symmetric cipher
used today, had only recently been published and standardized.
This leaves IoT applications with a difficult choice: rely on
hardware accelerated ciphers for energy efficiency and fall
behind in security best practices, or keep up to date and reduce
the application workload due to increased energy costs.

To resolve this tension, we propose Falcon, a flexible
accelerator designed to reduce energy consumption for both
current and future cryptosystems. Falcon allows software
like programmability while still reducing the energy cost of
cryptosystems by a factor of 5-60x compared to a software
only implementations. This cost reduction makes it possible to
dynamically upgrade crypto after deployment, improving secu-
rity and allowing applications to be deployed for significantly
longer. In one application, Falcon doubles the deployment
lifetime.

A. Contributions

This paper makes the following three contributions:
• An analysis of existing and emerging cryptosystems that

identifies common primitives (Section III)
• The design and implementation of a novel cryptographic

accelerator designed to both directly accelerate common
primitives as well as exploit parallelism using a SIMD
design (Sections IV and V)

• The evaluation of a range of cryptosystems on a fully
synthesized implementation of Falcon, considering area
and energy, as well as demonstrating Falcon’s advantages
on the design of an application (Section VI)

II. MOTIVATING APPLICATION

We introduce the following IoT application to motivate the
design of Falcon. Hospitals must constantly monitor refrig-
eration units containing sensitive medical supplies, such as
vaccines, to ensure they are stored at the correct tempera-
ture [6]. This is typically performed by an employee who visits
each unit, reads an attached monitoring device, and records the



minimum and maximum observed temperature in a log book.
These checks occur frequently (at least daily) to ensure that
the supplies do not spoil.

However, monitoring a large number of units involves both
a significant amount of physical labor and the potential for
human error. To address this, battery powered IoT devices have
been proposed. The devices record the temperature every 10
minutes, storing it in flash memory. The data is collected by a
hospital employee who walks near each unit and automatically
downloads the data over BLE using a mobile phone.

Initially, the connection between the IoT monitoring devices
and the employee’s phone is authenticated using a pre-shared
secret and symmetric encryption (AES-128). After the initial
deployment, the project switches to using contractors who
must authenticate and pair themselves with the device each
time they download data. As part of the pairing process,
the devices use an elliptical curve key-exchange algorithm
(ECDHE). Many years later, the project switches to R-LWE,
a quantum resistant algorithm, after significant advances in
quantum computers undermine the security of ECDHE.

We estimated the energy consumption of this application
running on a Nordic nRF51822, a common microcontroller
for BLE-enabled IoT devices. Table I summarizes our results,
showing the energy required per day.

TABLE I: Increase in energy consumption over baseline in
model IoT application.

Application Energy (µJ) Increase

Base Application 3100 1.0x
With ECDHE 5400 1.7x
With R-LWE 9300 3.0x

The key result of this analysis is that the changes in security
requirements mean a significant increase in the total energy
usage of the application. Although the nRF51822 does include
a cryptographic accelerator, it only supports a single cipher,
AES-128. This means that while initially cryptography was
a small component of the overall energy budget, the total
energy usage of the application must increase substantially
after additional crypto is added. Since the hospital must collect
the data each day, the updated devices must be replaced much
sooner than the initial design (in this case, 1/3rd the original
lifetime.)

The goal of this research is to address this issue by designing
an accelerator that allows for upgrading the ciphers used in an
application, while still maintaining the efficiency of dedicated
hardware.

III. CRYPTOGRAPHIC COMMONALITIES

In this section, we examine many different cryptographic
algorithms used in IoT applications to identify the common
primitives that may be accelerated. We divide these algorithms
into three categories:

1) Symmetric ciphers: The workhorses of secure com-
munication, used to ensure data confidentiality and/or
integrity. Examples include AES and ChaCha.

2) Hash functions: Used to verify that data has not been
tampered with, and when combined with ciphers can
authenticate that the sender has a certain key. Examples
include SHA256.

3) Asymmetric cryptography: Most commonly used in
IoT applications for cryptographic signatures and key
agreement. Asymmetric ciphers are very computation-
ally expensive compared to symmetric ciphers or hash
functions, and so are typically used sparingly.

For this work, we analyzed 38 different cryptographic
algorithms, including 27 symmetric ciphers, 7 hash functions,
and 4 asymmetric operations drawn from cryptographic design
competitions, widely used protocols, and emerging use cases.
Table II breaks down the percentage of the important opera-
tions we found. While symmetric ciphers and hash functions
have a relatively wide range of operations, the dominate oper-
ations are ”bit-and-byte” operations such as shifting, rotating,
or permutations. On the other hand, the asymmetric operations
we studied only needed modular multiplication and addition.

TABLE II: Percentage breakdown of operations found in
different cryptographic algorithms.

Symmetric

Block Stream Hash Asymmetric

Multiply 17% 0% 0% 100%
Add/Sub. 61% 67% 71% 100%
Bit Shift 91% 100% 86% 0%
Rotate 41% 56% 100% 0%
Permute 44% 78% 100% 0%
Table Lookup 72% 22% 28% 0%

The bitwidth of operations also varies significantly between
ciphers. Table III shows the percentage of ciphers that had
operations of a particular bitwidth. For symmetric ciphers and
hash functions, operations tend to use 64 or fewer bits, with the
majority using 32 or fewer. This can be attributed to the fact
that many of these algorithms were designed to be efficient
on machines with 32-bit datapaths. Asymmetric ciphers, on
the other hand, use much larger bit widths. This is due to the
fact that the mathematical foundations of these algorithms are
based on modular arithmetic.

TABLE III: Percentage of ciphers studied that have operations
of a particular bitwidth

Symmetric

Bitwidth Block Stream Hash Asymmetric

≤16 56% 11% 14% 0%
32 72% 56% 71% 0%
64 6% 0% 28% 0%
> 64 0% 0% 0% 100%

The results of this analysis make clear that providing
acceleration on the same hardware across all operations is
challenging. Asymmetric ciphers in particular do not share
many of the of operations that are used by symmetric ciphers
and hash functions. Symmetric ciphers use a lot of wide



modular arithmetic, while symmetric operations use mostly
narrow ”bit-and-byte” operations. Thus, it is important that our
design efficiently supports multiple datapath sizes, especially
for arithmetic operations.

IV. FALCON DESIGN

A. Design Guidelines

Motivated by the cryptographic commonalities described in
Section III and previous analysis [7], Falcon has four key
design goals to increase the energy efficiency of a wide range
of cryptosystems.

No data-dependent control flow: An accepted requirement
for cryptosystems today is that they have no data-dependent
branches, as these branches expose timing differences that can
leak information. As a result, the architecture should support
only fixed branches. Algorithms that do have data-dependent
branches can be implemented with a combination of masking
and redundant computation.

Wide, but flexible, data widths: Most cryptosystems use
“wide” operations that operate on many bytes. For example,
in the AES symmetric cipher the wide operation is a single
function applied in parallel to each byte of state. In asymmetric
systems such as RSA, DSA, and ECC, the wide operations
are long-word modular exponentiation and multiplication. The
width varies across different ciphers and even in different
versions of the same cipher. For example, the size of the
long-word operations needed by elliptic curves for commonly
used curves can range anywhere from 163-bits to over 500
bits depending on exactly which field and curve is used. The
architecture therefore needs to provide a wide, but width-
configurable, data path.

Support for bit and byte operations: Symmetric ciphers,
because they depend on the mixing of bits through substi-
tutions and permutations, rely heavily on bit-level and byte-
level operations. While they operate on wide (e.g., 128 or 256
bits) units of data, the operations on these wide units are not
arithmetic in nature. In particular, permutations involve shifts
and masks.

Small instruction size: Because many cryptosystems execute
many instructions on relatively small units of data, instruction
fetches can dominate data movement. This is especially true
in microcontrollers, which typically do not have caches and so
directly fetch instructions from RAM or flash. For example, a
software implementation of RSA on a RISC-V microprocessor
fetches hundreds of thousands of instructions. These fetches
consume a lot of energy so need to be minimized.

B. ISA Overview

Falcon is a 256-bit wide, in-order SIMD machine with 256-
bit registers and support for lane masking. Falcon’s SIMD
instructions support a large number of data widths; 8, 16,
32, 64, 128, and 256 bits. Additionally, it has a permutation
and bitslice instruction useful for implementing the bit and
byte-wise operations common in many symmetric ciphers and

hash algorithms. Finally, Falcon’s instruction set uses a short,
simple encoding to maximize density.

C. SIMD Operation

Every Falcon instruction is SIMD: it executes an identical
operation on data packed in one of 16 256-bit registers. The
input and output sizes of this operation are the lane width.
The lane width is not set on a per instruction basis, but instead
defined in a global register set by the SET_WIDTH instruction.
The SET_WIDTH instruction can be executed at any point,
which means the lane width can change during program
execution. This saves encoding space since instructions do not
have to encode the width of their operands.

The lane width determines the total number of lanes, which
is 256 divided by the current lane width. This means Falcon
can, with a single instruction, either execute 32 parallel
operations on 8-bit lanes or a single operation on a 256-bit
lane.

SIMD instructions can be prevented from executing for a
particular lane by setting a lane’s mask. Lane masks are set
using the SET_MASK instruction, which sets a corresponding
bit in a global 32-bit register to the least significant bit of each
lane. The operation of a masked lane depends on the current
lane width; if the lane width is larger than 8 bits, only the least
significant bit of the mask for that lane is used. This allows
simple conditional execution, albeit with the restriction that
instructions on both branches are fetched.

D. Instruction Encoding

Opcode R3 R2 R1

Opcode Imm (7) R1

Short (r):

Short (i):

Opcode Imm. width R1Long: Imm*

5 3 4 4 8 - 256

Fig. 1: Instruction encodings

For almost all instructions, Falcon minimizes code size
with a short, 16-bit encoding. In immediate form, the short
encoding allows for a single destination register and a 7-
bit immediate. In register form, the encoding allows one
destination register (R1) and two operand registers (R2 and
R3). Falcon has 16 registers. R3 has only 3 bits for its
encoding, R3’s encoding is extended with the most significant
bit of R1. This allows for easy translation to a 2-operand form
by simply replacing R3 with the least significant 3 bits of R1.

Falcon also supports a ”long” encoding that supports a
single destination register and a variable length immediate.
This encoding is used exclusively for the load-immediate
(LDi) instruction, which allows immediate values of up to
256-bits long. While most ciphers do not require arbitrary
memory lookups (with the exception of S-Box lookups), many
require special constants. Furthermore, specialized operations
such as permutations require long constants to describe the
permutation. The LDi instruction supports these operations



without requiring additional memory lookups by directly em-
bedding the values in the instruction stream.

To reduce the number of long load immediate instructions,
load behavior depends on the current lane width. If the load
is smaller than the lane width then the immediate load is
performed across all lanes and masked to its size. For example,
an 8-bit immediate load executed when the lane width is 32
bits sets the bottom 8-bits of all lanes to the immediate value.
If the load is wider than the lane then the immediate is repeated
to fill 256 bits and then broken into chunks of the lane width.
For example, if the lane width is 32 bits and the load is 128
bits, then the 128 bits is repeated twice. The resulting 256 bits
is then split into 8 32-bit chunks, with one assigned to each
lane. Lane 0 and lane 4 will have the same chunk loaded.

E. Lane Permutation and Bitslicing

x0 x1 x2 x3

1 3 0 2

x1 x0 x2x3

R3

R1

R2

(a) Lane Permutation

1 1 0 1 0

1

0 0 0 1 0 0 1 0 0 1

1 0 1 00 1 1 00 0 0 10 0

0

0

R2

R1

(b) Bitslice

Fig. 2: Execution of a 4-way Permutation and Bitslice opera-
tion. Each color represents a different lane

Permutation operations are a common mechanism in sym-
metric ciphers and hash functions. Rather than rely on lookup
tables or multiple bit operations, Falcon accelerates permu-
tations with a PERMUTE instruction that allows for arbitrary
permutation of values between lanes. The PERMUTE instruc-
tion takes three registers as arguments: a destination register
(R1), a shuffle register (R2), and a data register (R3). The value
from each lane in R3 is stored in the R1 of the lane specified in
R2. Masked lanes do not change their value. Figure 2a shows
an example of a 4 lane permutation.

Bitslicing is a technique first described for software DES
and used in many cipher implementations [8]. Bitslicing
reduces computation to elementary logic operations on the
individual bits of the input, rather than on entire words. These
logic operations are executed across every word of the input
in parallel, exposing additional parallelism. Bitslicing can also
eliminate table look-ups [9], which is beneficial because they
frequently lead to exploitable side channels.

Falcon also provides a BITSLICE instruction to acceler-
ate these operations. The BITSLICE instruction takes two
registers as arguments: a destination register (R1) and a data
register (R2). If the current lane width is W , the bits of R1
are permuted such that the ith bit of lane j is swapped with
jth bit of lane i when the lane width is 256/W . Figure 2b
shows an example of a 4 lane bitslice operation. If the lane
being swapped is masked, the corresponding bit is set to zero.
If no masking is present, the BITSLICE operation is its own
inverse.

SET WIDTH 32
BITSLICE R0 , R0
LDi R1 , \

0 x10071415 0x1D0C1C11 \
0x010F171A 0x05121F0A \
0 x0208180E 0x201B0309 \
0x130D1E06 0x160B0419

SET WIDTH 8
PERMUTE R0 , R1 , R0
BITSLICE R0 , R0

SET WDITH 32
LDi R1 , 1 / / B i t 1
SRi R1 , 15
AND R1 , R1 , R0
SLi R1 , 15
OR R2 , R2 , R1
LDi R1 , 1 / / B i t 2
SRi R1 , 6
AND R1 , R1 , R0
SLi R1 , 5
OR R2 , R2 , R1
. . . / / 30 more

Fig. 3: Falcon assembly implementations for an 8-way parallel
32-bit half block DES permutation. Taking advantage of the
PERMUTATION and BITSLICE instructions (left) results in
3.8% the number of instructions, 7.5% as many cycles, and
39.8% the number of bytes when compared to using a mask
and shift approach (right).

The permutation and bitslicing instructions can be combined
to support complex bit operations without the overhead of
masking and extracting individual lane values. For exam-
ple, the DES permutation operation executes a complicated
permutation of 32 bits every round. Since this operation is
performed repeatedly, its execution time is important for the
overall performance of the algorithm. In listing 3 we show the
difference in code required to support the DES permutation
using bitslicing and permutations, compared to the using a
more traditional masking approach. Together, they cut the code
size of a 32-bit half block DES permutation by 96.2%, and
the number of instructions issued by 92.5%.

V. HARDWARE IMPLEMENTATION

Memory Bus

Fetch/
Pre-Decode

Buffer
(8-Entry)

Decode

PC

Loop Stack
(4-Entry)

Control
Unit

Frontend

Regfile
16x16

Regfile
16x16

Byte Permute/Bitslice
Execute Execute
Accum. Accum.

Masks

Lane 
Control

Backend

…

…
…

Fig. 4: Architectural overview of Falcon.

Our implementation of Falcon is designed to be run as
an independent co-processor, communicating over a bus with
a main processor that issues high level commands. It is



completely in-order, with no register renaming or instruction
level parallelism. A hardware overview of Falcon is shown in
figure 4.

A. System Interface

As is common for many cryptographic accelerators [10],
Falcon operates as a co-processor that communicates with a
host processor using memory mapped registers. To execute a
Falcon program, the host processor first writes instructions to
memory. It then passes Falcon a pointer to the program by
writing it to a specific memory mapped register. Falcon then
resets all internal state, checks the validity of the pointer, and
starts executing instructions from the provided address.

To communicate data during the execution, Falcon’s input
and output data buffers are associated with a different set
of memory mapped registers. Writes to these registers are
buffered using a FIFO that can be read by Falcon during
execution. If the FIFO is empty, Falcon will block execution
until data is available. Similarly, writes by Falcon are also
buffered, and can be read later by the host or peripherals
attached to the main memory bus. This allows Falcon to
support streaming operations, which are commonly used in
many IoT applications.

Falcon can also be configured to use a scratchpad memory,
intended for storing cryptographic secrets such as certificates
or private keys. This is special, possibly non-volatile, storage
that is inaccessible to the host, but readable by Falcon. For
added isolation, the scratchpad memory is able to use a mem-
ory bus that is kept physically separate from the main memory
bus. This isolation minimizes the chance that cryptographic
secrets are accidentally leaked to the host processor. A high-
level overview of the Falcon’s memory system is given in
Figure 5.

Scratchpad/Memory Bus

Input
Buffer

Output
Buffer

LD Unit ST Unit

Memory UnitTo Backend

Fig. 5: The memory unit datapath. The memory bus can be
configured to use a shared memory or a private scratchpad
memory

B. Frontend

The frontend performs instruction fetch and decode, and
was designed to remain minimal and efficient while still sup-
porting the compact representation outlined in Section IV-A.
It consists of a fetch unit, an instruction decode unit, and a
”loop stack”, shown in Figure 4. Each cycle, the fetch unit
loads 32-bit bundles of up to 2 instructions from memory.
It also co-ordinates with the loop stack to keep track of the
current and next instruction, as well as manage loop state.

Fetched instruction bundles are stored in a fetch buffer until
they can be fully decoded. Once a full instruction has been
fetched, the decode unit decodes the instruction and passes it
to the backend for execution.

1) The Loop Stack: An important design feature of Falcon
is it’s lack of data dependent branches. As mentioned in
Section IV-A, the main motivation for disallowing data de-
pendent branching is that it simplifies control decisions during
instruction fetch. It also allows us to eliminate the logic related
to frontend mis-predicts, such as squashing, since all control
decisions can be predicted perfectly.

However, the lack of data dependent branching increases
the code size needed for ciphers with loops. To address this,
we use a hardware ”loop stack” which keeps track of state
needed for currently executing loops.

When a LOOP_BEGIN instruction is detected, the fetch unit
pushes the current instruction pointer along an iteration count
to the top of loop stack. When a LOOP_END instruction is
detected, the iteration count at the top of the stack is examined.
If it’s greater than zero, the instruction pointer is set to the
saved instruction pointer and the current iteration count is
decremented. Otherwise, the loop is ended by popping the
top entry off the loop stack and execution continues with the
next instruction.

2) Pre-Decode and Decode Unit: Loop instruction detec-
tion is done by the pre-decoder. Loop instructions are required
to be 32-bit aligned, which means pre-decoder only needs to
check a small number of instruction bits on each fetch to detect
a loop. This allows the pre-decode step to be very fast, and
stay off the critical path of the machine.

Once an instruction bundle has been pushed into the fetch
buffer, the decode unit splits the bundle one instruction at
a time. Since the decoding of some instructions (such as
LDi) depend on the current SIMD width, the decoder keeps
track of the value of the most recent SET_WIDTH instruction.
The current SIMD width is also passed with the decoded
instruction to the backend for execution.

C. Backend

Falcon’s backend executes the arithmetic and specialized
cryptographic operations for each instruction. It is a SIMD
design, organized into 16 logical lanes with a datapath width
of 16 bits for each lane. If Falcon’s lane width is less than
16, each lane can be split into two. Instruction execution is
split into three stages: register read, execute, and write back.
Since the frontend does not allow data dependent branching,
there are no hazards between stages except for register read-
after-writes (RaW), which are handled using forwarding paths.
The only other source of stalls are memory access (which
stalls execution until fully completed) and long-word SIMD
operations, which we expand on below.

1) Execution Units: Falcon’s ISA can be broken up into
three sets of operations that need to be supported by the
backend: byte-level permutations and bitslicing, 8-bit SIMD
operations, and long-word arithmetic operations. The key
design goal of the execution unit was to allow all three of



MAC
A + B + C x D Logical

Unit

Execution UnitTo Acc.

From Perm. NetworkFrom Acc.

Fig. 6: Datapath of the execution unit.

these operations to share as much hardware as possible while
still remaining power efficient.

Each individual execution unit contains a 4-input, 16-bit
MAC that can be internally segmented into two separate 8-
bit MACs. This lets the execution unit support both 8-bit and
16-bit arithmetic operations in a single cycle. Logical SIMD
operations are supported using the 16-bit logical unit.

To support wider SIMD widths, Falcon performs school
book multiplication using the permutation network to broad-
cast individual digits. Each cycle, the MACs sum a 32-bit
partial product plus the previous accumulation value. In order
to coordinate these operations, Falcon includes a small state
machine inside of the backend’s control logic. This allows
Falcon to support arithmetic operations of up to 256 bits in
16 cycles or less.

2) Permutation Network: Falcon contains a 8x32 permu-
tation network to support permutations between SIMD lanes.
The network is designed to efficiently support broadcasting
operations needed for the long-word operations described in
Section V-C1 (i.e., a single lane can be broadcast to all other
lanes in less than a cycle). For arbitrary permutations, the
permutation network requires 1–4 cycles depending on the
current SIMD width.

We chose this design for a few reasons. First, a large
permutation network proved to be significantly expensive in
area and power, and by only supporting an 8x32 network we
decreased the cost by a factor of 4. Second, the majority of
ciphers we examined only needed 32-bit permutations rather
than arbitrary byte permutations (64%). Additionally, most bit-
wise or byte-wise permutations can be transformed into word-
wise permutations through the use of bitslicing. As a result, we
decided to use a smaller permutation network at the expense
of latency for some ciphers.

VI. EVALUATION

A. Experimental Setup

We implemented a parameterized version of Falcon in Sys-
temVerilog and performed behavioral RTL simulation using
Synopsys VCS to ensure correctness. We then synthesized our
implementation with the Synopsys Design Compiler targeting
a 180 nm process with power and timing related optimiza-
tions enabled. We implemented large memories using the
provided memory compiler, optimizing for power. Finally,
we performed place-and-route using Synopsys ICC. Although
Falcon is not designed or evaluated for high throughput, we

AXI-Lite Memory Bus

Falcon SRAM
(64KB) RISC-V

Fig. 7: Overview of experimental setup. Falcon is configured
to use a shared memory instead of a scratchpad.

report our maximum achievable clock frequency of 120MHz
for completeness.

To provide a fair baseline for evaluation, we synthesized
several cipher specific accelerators (AES128, SHA2, and
ChaCha20), as well as a size optimized, microcontroller class
implementation of RISC-V [11], [12]. Our ChaCha20 imple-
mentation was based on the description of the quarter round
serial implementation of Salsa20 given by Good [13]. We
chose these ciphers for comparison because they are the most
common crypto accelerators available in existing SoCs for IoT.

All designs were synthesized separately using the same op-
timization settings and clock frequency. In order to accurately
estimate Falcon’s energy consumption inside of a real SoC, we
implemented a simple test harness intended to mimic an actual
SoC implementation (Fig. 7). Falcon and the RISC-V core
are connected over an AXI-Lite bus to a 64K SRAM macro
block. Additionally, Falcon is configured to use the SRAM
as it’s scratch pad memory. All instructions, data, and control
signals are sent over the shared AXI-Lite bus. Because we
are evaluating on energy consumption rather than latency or
throughput, we used a fixed clock frequency of 50MHz for a
fair comparison between components. This lower clock speed
also represents a more conservative estimate of total energy
consumption since the proportion of leakage will be higher.

B. Area

TABLE IV: Breakdown of area and leakage for Falcon imple-
mentation in TSMC 180nm

Component Area(um2) (%) Power(uW ) (%)

Falcon 566392 100.0 2.6912 100.0

Frontend 31151 5.5 0.2002 7.5
Regfile 298632 52.7 1.3953 52.3
Execute 236982 41.8 1.1258 42.2

Comb. 317117 56.0 1.4860 55.3
Register 249275 44.0 1.2016 44.6

RISC-V 306065 100.0 1.5098 100.0

AES128 303275 100.0 1.6669 100.0
SHA2 320425 100.0 1.9601 100.0
ChaCha20 123576 100.0 1.4028 100.0

In table IV, we breakdown the area and leakage power for
each component of Falcon. Since the frontend was explicitly
designed to be as simple as possible, it has almost negligible
impact on the total area or static power consumption of the



design. On the other hand, the register file and execution stages
are very wide, consuming the vast majority of both power
and area, with the register file being slightly higher for both.
Compared to the RISC-V processor, Falcon uses 1.85x the area
and consumes 1.78x the amount of leakage power. However,
the types of devices we’re targeting are typically not hyper
area constrained; many SoCs we investigated include multiple
such accelerators as well as large peripheral modules such as
BLE radio. As such we believe this is an acceptable tradeoff
for the additional flexibility.

C. Energy Consumption

Since there is no standard of base settings or implemen-
tations for cipher operations, it is difficult to provide a fair
comparison between designs. For example, the choice of mode
for a block cipher can have a significant impact on the overall
parallelism, which in turn impacts the throughput and energy
consumption. Moreover, many existing implementations have
been hand tuned for a specific architecture.

Nonetheless, we have chosen what we believe to be a
representative sample of ciphers for evaluating Falcon’s total
energy consumption and implemented them in Falcon’s as-
sembly language. For AES128-ECB, ChaCha20, and SHA256,
we evaluated our implementation by calculating the average
energy consumed per block after running the algorithms over
1 kB of data. For AES128-ECB, we used a bitsliced imple-
mentation instead of a more traditional lookup-table based
approach since lookup-tables are highly susceptible to side
channels and generally not favored in modern high security
software implementations. ECB mode was chosen since it is
used as the core operation in other commonly used modes such
as CBC or GCM. For Curve25519, we computed a shared
secret key, basing our implementation on an ARM NEON
implementation [14]. For RSA2048, we perform a signing
operation. For R-LWE, we implement the accept operation
(excluding the final SHA3 step) based on an ARM NEON
implementation [15].

As a baseline, we implemented the same operations in C
and optimized them for RISC-V. To match our implementation
for Falcon, we implemented AES128 using bitslicing. The C
implementations were compiled using GCC with -O3 and run
on our RISC-V implementation using the same conditions as
our energy evaluation for Falcon.

To perform energy estimation, we used Synopsys Prime-
Time PX to propagate simulated activity factors onto the final
placed-and-routed design and report average power usage by
hardware block. The leakage power of the SRAM block was
not included since it’s power consumption is independent from
Falcon. This average power estimate was multiplied by the
total number to cycles to get a total energy estimate.

Table V shows the total energy consumed by each cipher
and gives the improvement achieved by Falcon. Overall,
Falcon achieves between 5x and 61x improvement across all
benchmarks tested.

We breakdown power consumption by source for each
cipher and normalize it to the RISC-V baseline in Figure 8.

TABLE V: Total energy consumption and improvement be-
tween the RISC-V baseline and Falcon.

Operation Baseline (nJ) Falcon (nJ) Decrease

Bitsliced AES Encrypt 9036.0 147.5 61.3x
ChaCha20 Encrypt 2021.6 302.3 6.7x
SHA256 Hash 12630.0 3279.0 3.8x
Curve25519 Key-xchg 40454.0 8163.0 5.0x
RSA2048 Sign 87401.0 16840.0 5.2x
R-LWE Accept 109502.0 19822.0 5.5x

Falcon reduces the amount of energy used for the frontend
(fetch and decode) by about 20% across all ciphers tested.
This is due to our SIMD design allowing us to avoid repeatedly
paying the decode energy for parallel instructions. For ciphers
with high amounts of internal parallelism (Bitsliced AES,
ChaCha20) and ciphers with large numbers of arithmetic
instructions (Curve25519, RSA, and R-LWE) most of the
savings is used for execution. SHA256, on the other hand,
has less parallelism and more energy is needed to move data
between registers.

However, this only accounts for part of the energy savings
on AES. We identify two other areas that account for the
rest of the improvement. First, our implementation of AES
is bitsliced using pure logical operations and no memory
accesses except for instruction fetching. This means Falcon
never needs to stall, and achieves close to it’s theoretical
maximum IPC of 1. Second, our implementation is able to take
advantage of BITSLICE instruction along with the parallel
nature of bitslicing to dramatically reduce the total number of
instructions executed. For example, while the RISC-V baseline
requires about 50 cycles to convert between the arithmetic and
bitsliced representations, Falcon executes the same operation
in a single cycle. For the entire AES algorithm Falcon executes
just 13% the number of instructions as the baseline processor.

D. Application Analysis

The overarching goal of Falcon is to provide a meaningful
reduction in energy consumption for an entire IoT device, such
that previously infeasible operations could be incorporated
in applications and the secure lifetime of a device can be
extended. To examine whether the improvements given in
Section VI-C are large enough to make such a difference,
we evaluated Falcon’s impact on the application described in
Section II.

TABLE VI: Falcon energy consumption compared to a soft-
ware only baseline in a model IoT application.

Baseline Falcon

µJ Increase µJ Increase

Base Application 3100 1.00x 3100 1.00x
With Curve25519 5400 1.74x 3560 1.15x
With R-LWE 9300 3.00x 4200 1.35x

To perform our analysis, we used the estimated the power
consumption of our model application from Section II. We



Fig. 8: Energy consumption by source for each cipher

then assumed a 5.0x improvement for Curve25519 and a 5.5x
improvement for R-LWE, per our results in Section VI-C. The
overall increase energy consumption for the final application
using R-LWE was 3.0x for the baseline and 1.36x for Fal-
con. Since this application has a fixed battery capacity, this
translates to a roughly doubled (2.2x) deployment time, a
significant increase.

E. Future Flexibility

An important design goal of Falcon is to be flexible, even
in the face of a changing security landscape. We make three
arguments to support our belief as to why Falcon achieves this
flexibility.

First, in our evaluation we were able to accelerate a diverse
set of ciphers, each of which tested a different aspect of our
design. While we were not able to evaluate all ciphers studied,
the ciphers we implemented represent essentially all of the
operations identified in our previous analysis.

Second, portability to existing platforms is a key require-
ment for the adoption of new ciphers. While ciphers could
be developed that Falcon cannot accelerate, we believe it
is unlikely such a cipher would gain widespread use since
it would also be unlikely to be compatible with existing
hardware.

Finally, we see a broad trend of new ciphers being designed
to use the SIMD units included in modern ISAs. For example,
the designers of ChaCha20 [16] specifically mention SIMD as
an important consideration in their design. This bodes well for
Falcon since our evaluation shows it performs best on ciphers
with large amounts of parallelism. While none of these reasons
can provide a guarantee of compatibility, taken together, we
believe that Falcon provides sufficient flexibility to accelerate
future cryptographic operations.

VII. RELATED WORK

Cryptoraptor: Cryptoraptor [7] is the work that most strongly
resembles Falcon. It features a reconfigurable, 4-way, 20 stage
pipelined processor with a compact finite state machine encod-
ing for control and execution units specialized for symmetric
ciphers and hash functions. However, Cryptoraptor explicitly
does not support asymmetric ciphers or ciphers that require
multiplication. Falcon supports asymmetric ciphers, along with
symmetric ciphers and hash functions, providing the full range
of ciphers used on IoT devices.

Reconfigurable crypto co-processors: Other flexible crypto-
graphic co-processors similar to Falcon have been proposed.
Cryptomanic [17] and CCproc [18] are 4-wide VLIW ar-
chitecture designed to support many operations common in
symmetric ciphers. Cryptonite [19] is another co-processor
design that targets symmetric ciphers and hash functions. It
uses a simple 3-stage pipeline with a highly flexible arithmetic
unit. Eslami, et. al [20] demonstrate an unnamed architecture
designed to accelerate AES, TDES, and ECC, using a 256-
bit wide datapath. COBRA [21] targets block ciphers using
a course grained reconfigurable array structure of processing
elements, similar in spirit to an FPGA.

All of these works are limited to a fairly small range of
ciphers and only Cryptonite is evaluated on hash functions.
Falcon adds significantly more flexibility, allowing for the
support of symmetric and asymmetric ciphers, as well as hash
functions. Additionally, Falcon includes as a design goal future
compatibility and is able to modern ciphers such as ChaCha20
or R-LWE.

Instruction set extensions: Many processor instruction sets
include instructions or extensions to accelerate a predefined
set of ciphers [22]–[25]. While these can make specific ciphers
extremely efficient, they are limited to a small set of supported
cryptographic operations.

Other instruction extensions have been designed to accel-
erate a broader range of applications and have particular
applicability to cryptography. In particular, bitslicing [26],
permutation [27], and table look-up [28] extensions have all
been proposed as more general ways to accelerate bit-and-
byte operations. These are similar to Falcon’s BITSLICE
and PERMUTE instructions, although Falcon adds significant
additional flexibility in the data width.

Likewise, SIMD instruction sets are commonly used to
accelerate cryptogrograpy [9], [14]. However, while adapting
SIMD hardware has proven successful in the past for through-
put, previous research has not found a significant energy
improvement from SIMD alone. Falcon adds features that
allow it to improve overall energy consumption compared to
existing architectures. Additionally, Falcon builds on previous
designs by adding additional flexibility in data width, using a
very short encoding scheme, and by reducing the complexity
of supported control flow.

Differences between Falcon and previous work There are



several important distinctions between Falcon and the previous
work we identified. First, Falcon has the design goal of
supporting low power devices, instead of targeting maximum
throughput. This has several important consequences, includ-
ing minimizing the width of Falcon’s execution units and the
simplification of our encoding scheme.

Second, to the best of our knowledge, Falcon is the
only crypto-specific accelerator in the literature to support
asymmetric cryptography, symmetric cryptography, and hash
functions in a single design. This support was a key motivator
for the flexible datapath width, which was a key contribution
of our design.

Finally, Falcon provides a more diverse performance eval-
uation compared to most previous work. Most previous work
(with the exception of Cryptoraptor) only evaluated their
designs on algorithms with similar structures. In our work,
we evaluate Falcon using several different kinds of algorithms,
including traditional round-based symmetric ciphers, modern
stream ciphers, long word asymmetric operations, and post-
quantum signature schemes. We also evaluate these results
in the context of a deployed device, and estimate how our
improvements affect the tractability of future cipher flexibility.

VIII. CONCLUSION

IoT devices with a long lifetime must support new ciphers
as security requirements evolve, which limits the effectiveness
of current fixed function accelerators. However, limited energy
budgets mean these devices cannot just rely on software,
instead requiring a form of hardware acceleration that could
provide significant energy savings, while supporting a wide
range of cryptographic operations.

To this end, we designed Falcon, an architecture designed
to flexibly accelerate cryptography. We evaluated Falcon by
synthesizing our design and measuring it’s performance on
key set of ciphers commonly used in IoT applications. We
found that Falcon can provide between a 5x-60x improvement
in energy consumption at a cost of 1.85x additional area com-
pared to a RISC-V baseline. Since many IoT deployments are
energy rather than area constrained, we believe this tradeoff is
acceptable for the increased flexibility. On a model application
with an evolving security model, this translates to 2.2x the
overall device lifetime.

REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Exper-
imental security analysis of a modern automobile,” in Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, (Washington,
DC, USA), pp. 447–462, IEEE Computer Society, 2010.

[2] Wikipedia, “2016 dyn cyberattack.” https://en.wikipedia.org/wiki/2016
Dyn cyberattack.

[3] “Fips pub 197, advanced encryption standard (aes),” 2001.
U.S.Department of Commerce/National Institute of Standards and
Technology.

[4] Anonymous, “Secure Hash Standard (SHS),” Federal Information Pro-
cessing Standards Publication FIPS Pub 180-4, National Institute for
Standards and Technology, Mar. 2012.

[5] M. Integrated, “Low-power, arm cortex-m4 with fpu-based soc with
contactless transceiver.” https://www.maximintegrated.com/en/products/
digital/microcontrollers/MAX32566.html.

[6] J. Hamborsky, A. Kroger, and Wolfe, Epidemiology and prevention
of vaccine-preventable diseases. Centers for Disease Control and
Prevention, 2015.

[7] D. Chiou and G. Sayilar, “Cryptoraptor: High throughput reconfigurable
cryptographic processor,” in Proceedings of the 2014 IEEE/ACM Inter-
national Conference on Computer-Aided Design, pp. 154–161, IEEE
Press, 2014.

[8] E. Biham, “A fast new DES implementation in software,” in FSE,
vol. 1267, pp. 260–272, Springer, 1997.

[9] E. Käsper and P. Schwabe, “Faster and timing-attack resistant AES-
GCM.,” in CHES, vol. 5747, pp. 1–17, Springer, 2009.

[10] Google LLC, “Tock-on-titan.” https://github.com/google/tock-on-titan/
blob/735282fd77ea8c2a6c8cfb69ed8a3ae28fded6a3/h1b/src/crypto/
dcrypto.rs#L18, 2019.

[11] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V
instruction set manual, volume i: Base user-level ISA,” EECS Depart-
ment, UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 2011.

[12] C. Wolf, “PicoRV32 - a size-optimized RISC-V CPU.” https://github.
com/cliffordwolf/picorv32, 2019.

[13] T. Good and M. Benaissa, “Hardware results for selected stream cipher
candidates,” State of the Art of Stream Ciphers, vol. 7, pp. 191–204,
2007.

[14] D. J. Bernstein and P. Schwabe, “NEON crypto,” in Cryptographic Hard-
ware and Embedded Systems – CHES 2012 (E. Prouff and P. Schaumont,
eds.), vol. 7428 of Lecture Notes in Computer Science, pp. 320–339,
Springer-Verlag Berlin Heidelberg, 2012.

[15] S. Streit and F. De Santis, “Post-quantum key exchange on armv8-a:
A new hope for neon made simple,” IEEE Transactions on Computers,
2017.

[16] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop Record of
SASC, vol. 8, pp. 3–5, 2008.

[17] L. Wu, C. Weaver, and T. Austin, “Cryptomaniac: a fast flexible
architecture for secure communication,” in Computer Architecture, 2001.
Proceedings. 28th Annual International Symposium on, pp. 110–119,
IEEE, 2001.

[18] D. Theodoropoulos, A. Siskos, and D. Pnevmatikatos, “Ccproc: A
custom vliw cryptography co-processor for symmetric-key ciphers,” in
International Workshop on Applied Reconfigurable Computing, pp. 318–
323, Springer, 2009.

[19] R. Buchty, N. Heintze, and D. Oliva, “Cryptonite–a programmable
crypto processor architecture for high-bandwidth applications,” in In-
ternational Conference on Architecture of Computing Systems, pp. 184–
198, Springer, 2004.

[20] Y. Eslami, A. Sheikholeslami, P. G. Gulak, S. Masui, and K. Mukaida,
“An area-efficient universal cryptography processor for smart cards,”
IEEE transactions on very large scale integration (VLSI) systems,
vol. 14, no. 1, pp. 43–56, 2006.

[21] A. J. Elbirt and C. Paar, “An instruction-level distributed processor
for symmetric-key cryptography,” IEEE Transactions on Parallel and
distributed Systems, vol. 16, no. 5, pp. 468–480, 2005.

[22] S. Gueron, “Intel® advanced encryption standard (AES) new instruc-
tions set,” Intel Corporation, 2010.

[23] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast
symmetric-key cryptography,” ACM SIGARCH Computer Architecture
News, vol. 28, no. 5, pp. 178–189, 2000.

[24] A. J. Elbirt, “Fast and efficient implementation of AES via instruction
set extensions,” in Advanced Information Networking and Applications
Workshops, 2007, AINAW’07. 21st International Conference on, vol. 1,
pp. 396–403, IEEE, 2007.

[25] S. Tillich and J. Großschädl, “Instruction set extensions for efficient
AES implementation on 32-bit processors,” in International Workshop
on Cryptographic Hardware and Embedded Systems, pp. 270–284,
Springer, 2006.

[26] P. Grabher, J. Großschädl, and D. Page, “Light-weight instruction set
extensions for bit-sliced cryptography,” Cryptographic Hardware and
Embedded Systems–CHES 2008, pp. 331–345, 2008.

[27] R. B. Lee, Z. Shi, and X. Yang, “Efficient permutation instructions for
fast software cryptography,” IEEE Micro, vol. 21, no. 6, pp. 56–69, 2001.

[28] A. M. Fiskiran and R. B. Lee, “On-chip lookup tables for fast symmetric-
key encryption,” in Application-Specific Systems, Architecture Pro-
cessors, 2005. ASAP 2005. 16th IEEE International Conference on,
pp. 356–363, IEEE, 2005.


