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Abstract

We present DIP, a data discovery and dissemination pro-
tocol for wireless networks. Prior approaches, such as
Trickle or SPIN, have overheads that scale linearly with the
number of data items. For 7" items, DIP can identify new
items with O(log(T")) packets while maintaining a O(1) de-
tection latency. To achieve this performance in a wide spec-
trum of network configurations, DIP uses a hybrid approach
of randomized scanning and tree-based directed searches.
By dynamically selecting which of the two algorithms to
use, DIP outperforms both in terms of transmissions and
speed. Simulation and testbed experiments show that DIP
sends 20-60% fewer packets than existing protocols and can
be 200% faster, while only requiring O(log(log(T))) addi-
tional state per data item.

1 Introduction

Reliable data dissemination is a basic building block for
sensor network applications. Dissemination protocols such
as XNP [3], Deluge [8], Sprinkler [16] and MNP [21]
distribute new binaries into a network, enabling complete
system reprogramming. Dissemination protocols such as
Maté’s capsule propagation [9] and Tenet’s task propaga-
tion [7] install small virtual programs, enabling application-
level reprogramming. Finally, dissemination protocols such
as Drip [20] allow administrators to adjust configuration pa-
rameters and send RPC commands [22].

Dissemination protocols reliably deliver data to every
node in a network using key, version tuples on top of some
variant of the Trickle algorithm [11]. We describe these
protocols and their algorithms in greater depth in Section 2.
The key characteristic they share is a node detects a neigh-
bor needs an update by observing that the neighbor has
a lower version number for a data item (key). The cost
of this mechanism scales linearly with the number of data
items: 7' data items require 7' version number announce-
ments. Even though a protocol can typically put multiple
announcements in a single packet, this is only a small con-
stant factor improvement. Fundamentally, these algorithms
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scale with O(T) for T total data items. This linear factor
introduces a basic cost/latency tradeoff. Nodes can either
keep a constant detection latency and send O(T') packets,
or keep a constant cost and have an O(T') latency.

The key insight in this paper is that dissemination pro-
tocols can break this tradeoff by aggregating many data
items into a single advertisement. Because these aggregates
compress information, they can determine that an update is
needed, but cannot always determine which data item needs
an update. Section 3 outlines existing dissemination algo-
rithms and describes a new algorithm, search, that breaks
the cost/latency tradeoff, enabling fast and efficient dissem-
ination. By using a hash tree of data item version numbers,
a protocol using search can discover an update is needed
with O(log(T)) transmissions.

In simple collision-free and lossless network models,
search works well. However, two problems can make the
hash tree algorithm perform poorly in real networks. First,
packet losses can make it difficult to quickly traverse the
tree. Second, the multiple advertisements caused by packet
losses are completely redundant: there is typically only one
subtree to explore. Through controlled simulation experi-
ments, we find that in cases of very high loss or when a
large fraction of items require updates, the underlying con-
stant factors can cause randomized scans to be more effi-
cient than hash tree searches.

Section 3 presents an analytical framework to understand
these tradeoffs. The analysis shows that whether periodic
advertisements or searches is more efficient depends on
three factors: network density, packet loss ratios, and the
percentage of items that need updates. While they have sim-
ilar efficiency when reasonably close to their equality point,
one can be a factor of two more efficient than the other at the
edges. This analysis indicates that a scalable dissemination
protocol can get the best of both worlds by using a hybrid
approach, dynamically switching between algorithms based
on run-time conditions.

Section 4 presents such a protocol, called DIP (DIssemi-
nation Protocol). DIP continuously measures network con-



ditions and estimates whether each data item requires an
updates. Based on this information, it dynamically chooses
between a hash tree-based search approach and scoped ran-
domized scanning. DIP improves searching performance
by combining hashes over ranges of the key space with a
bloom filter. Hashes allow it to detect whether there are
version number inconsistencies while Bloom filters let it
quickly pinpoint the source of the inconsistency.

Section 5 evaluates DIP in simulation and on a mote
testbed. In simulated clique networks, DIP sends up to 30-
50% fewer packets than either scanning or searching and
is correspondingly 30-50% faster. In the Intel Mirage mul-
tthop 80 node testbed, DIP sends 60% fewer packets than
scanning or searching. In some cases, DIP sends 85% fewer
packets than scanning, the dominant algorithm in use today.
By improving its transmission efficiency, DIP is also able
to disseminate faster: across real, multihop networks, DIP
is 60% faster for a few items and over 200% faster for many
items. Section 6 presents how DIP relates to prior work.

These results show that DIP is significantly more effi-
cient than existing approaches. This improvement comes
at a cost of an additional log(log((T)) bits of state per
data item for 7' items. Section 7 discusses the implica-
tions of these findings. The tradeoffs between scanning and
searching touch on a basic tension in sensornet protocol de-
sign. While searching can find inconsistencies quickly by
exchanging higher-level metadata, its deterministic opera-
tion means that it cannot leverage the communication re-
dundancy inherent to wireless protocols. While scanning
can take advantage of this redundancy through randomiza-
tion, it does so by explicitly avoiding any complex metadata
exchange. DIP’s results suggest the complex tradeoffs be-
tween randomized versus deterministic algorithms in wire-
less networks deserve further study.

This paper makes three research contributions. First, it
proposes DIP, an adaptive dissemination protocol that can
scale to a large number of items. Second, it introduces us-
ing a bloom filter as an optimization to update detection
mechanisms in dissemination protocols. Third, it evaluates
DIP and shows it outperforms existing dissemination pro-
tocols, reducing transmission costs by 60% and latency by
up to 40%. These results suggest the complex tradeoffs be-
tween randomized versus deterministic algorithms in lossy
networks deserve further study.

2 Motivation and Background

Efficiently, quickly, and reliably delivering data to every
node in a network is the basic mechanism for almost all
administration and reprogramming protocols. Maté virtual
machines disseminate code capsules [9]; Tenet disseminates
tasks [7]; Deluge [8], Typhoon [12] and MNP [21] dissem-
inate binary images; Drip disseminates parameters [20] and
Marionette builds on Drip to disseminate queries [22].

2.1 Trickle

All of these dissemination protocols use or extend the
Trickle algorithm [11]. Trickle periodically broadcasts a
summary of the data a node has, unless it has recently heard
an identical summary. As long as all nodes agree on what
data they have, Trickle exponentially increases the broad-
cast interval, thereby limiting energy costs when a network
is stable. When Trickle detects that other nodes have differ-
ent data, it starts reporting more quickly. If a node hears an
older summary, it sends an update to that node.

In practice, protocols assign keys to data items and sum-
maries use version numbers to determine if data is newer or
older. For example, the Maté VM assigns each code cap-
sule a unique number. Installing new code in the network
involves selecting a capsule, incrementing its version num-
ber, and installing the new version on a single source node.
That node starts quickly advertising it has a new version,
shrinking its advertisement interval to a small value (e.g.,
one second). Neighbors hear the advertisement and quickly
advertise they have an old version, causing the source to
broadcast the update and spread the new code.! This pro-
cess repeats throughout the network until all nodes have the
update. Trickle’s transmission rate slows down, following
the exponential interval increase rule up to a maximum in-
terval size (e.g., one hour).

Systems use Trickle because they are efficient and scale
logarithmically with node density. As nodes suppress re-
dundant advertisements, Trickle can scale to very dense net-
works. This suppression is not perfect: packet losses cause
the number of redundant advertisements to scale logarith-
mically with network density. By constantly adjusting its
advertisement interval, Trickle advertises new data quickly
yet advertises slowly when a network is consistent.

2.2 A Need for Scalability

While using Trickle enables dissemination protocols to
scale to dense networks, no protocol currently scales well
to supporting a large number of data items. As sensor-
net applications grow in complexity and nodes have more
storage, administrators will have more parameters to adjust,
more values to monitor, and a need for a larger number of
concurrent capsules, tasks, or queries.

When an administrator injects new data to a single node,
that node knows the data is newer. Therefore, disseminating
new data with Trickle is comparatively fast. The more chal-
lenging case is when nodes need to detect that there is new
data. This case occurs when disconnected nodes rejoin a
network. Both the old and new nodes think that the network
is up to date, and so advertise at a very low rate.

Because current protocols advertise (key, version) tuples,
their transmission costs increase linearly with the number

IMNP [21] extends simple trickles in that it uses density estimates to
decide which node sends the actual update.



of distinct data items. To detect that a data item is different,
a node must either transmit or receive a tuple for that item.
This approach causes the cost/latency product of a trickle
to scale with O(T'), where T is the total number of data
items. Some protocols, such as Drip and Deluge, maintain
a constant latency by keeping a fixed maximum interval size
and disseminating each item with a separate trickle. As the
number of items grows, the transmission rates of these pro-
tocols grow with O(T'). Other protocols, such as Tenet’s
task dissemination, keep a constant communication rate so
detection latency grows with O(T").

As sensor systems grow in complexity, linear scalabil-
ity will become a limiting factor in the effectiveness of
these protocols: it will force administrators to choose be-
tween speed and efficiency. The next section quantifies
these tradeoffs more precisely, and introduces a new hash-
tree based algorithm that resolves this tension, so dissemi-
nation protocols can simultaneously be efficient and fast.

3 Protocol Tradeoffs

Dissemination protocols have two main performance
metrics: detection latency and maintenance cost. Mainte-
nance cost is the rate at which a dissemination sends packets
when a network is up-to-date. Traditionally, these two met-
rics have been tightly coupled. A smaller interval lowers
latency but increases the packet transmission rate. A larger
interval reduces the transmission rate but increases latency.
Trickle addresses part of this tension by dynamically scal-
ing the interval size, so it is smaller when there are updates
and larger when the network is stable. While this enables
fast dissemination once an update is detected, it does not
help with detection itself.

Protocols today use two approaches to apply Trickle to
many data items. The first establishes many parallel Trick-
les; the second uses a single Trickle that serially scans
across the version numbers to advertise. This section pro-
poses a third approach, which uses a hash tree to obtain con-
stant detection latency and maintenance cost. To achieve
this, searching introduces an O(log(T")) overhead when it
detects an update is needed.

3.1 Scanning and Searching

Parallel detection uses a separate Trickle for each data
item. Because the maximum trickle interval is fixed, par-
allel detection provides a detection latency bound indepen-
dent of the number of items. However, this bound comes at
a cost: parallel detection has a maintenance cost of O(T).

Serial detection uses a single Trickle for all items. Each
transmission contains a selection of the (key,version) tuples.
Because serial detection scans across the tuples, it requires
O(T) trickle intervals to transmit a particular tuple. There-
fore, serial detection has a latency of O(T).

Protocol Latency | Cost Identify
Parallel Scan o) o(T) 0O(1)
Serial Scan o(T) O(1) o(1)
Search o(1) O(1) | O(log(T))

Table 1. Scalability of the three basic dissem-
ination algorithms.

Term Meaning

T Total data items
N New data items
D Node density

L Loss ratio

Table 2. Network parameters.

The parallel and serial approaches represent the O(T)
cost/latency product that basic trickles impose. One can
imagine other, intermediate approaches, say where both
cost and latency increase as O(+/T). In all such cases, how-
ever, the cost/latency tradeoff persists.

A third approach is to search for different items using a
hash tree, similar to a binary search. When a node sends
an advertisement, it sends hashes of version numbers across
ranges of data items. When a node hears an advertisement
with a hash that does not match its own, it sends hashes of
sub-ranges within that hash. This simple protocol backs up
one tree level on each transmission to prevent locking.

When a network is stable, nodes advertise the top-level
hashes that cover the entire keyspace. As these hashes
cover all items, searching can detect new items in O(1) time
and transmissions. Determining which item is new requires
O(log(T)) transmissions. As these transmissions can occur
at a small Trickle interval rate, the latency of identifying the
items is insignificant compared to detection.

While searching is much more efficient in detecting a sin-
gle new item, it can be inefficient when there are many
new items. This can occur, for example, if an adminis-
trator adds nodes that require all of the software updates
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Figure 1. As T increases but NV is constant,
the chances a scan will find a new item goes
down, and searches become more effective.



and programs running in the network. Since searching pays
an O(log(T')) cost for each item, with N new items its
cost will be O(N - log(T)). In the worst case, this can be
O(T - log(T)), which is more expensive than the O(T') of
scanning approaches. Table 1 summarizes these tradeoffs,
and Figure 1 shows which algorithm is better as 7' changes.

3.2 Analysis

Loss and density affect protocol performance. In the rest
of this paper, we describe networks with the terms in Ta-
ble 2. Trickle introduces a communication redundancy R
of log% (D). This comes from the probability that a node
with an area of density D will advertise even if R — 1 nodes
have already advertised because it lost those packets.

In the case of a parallel scan protocol, these extra trans-
missions are completely redundant: there will be R-T" trans-
missions per interval, and detection latency remains O(1).
In serial scan protocols, these extra transmissions are not
completely redundant: nodes may be at different points in
their scan, or might be advertising a random subset. Be-
cause they are not redundant, scanning’s latency goes down:
these extra transmissions further cover the keyspace. There-
fore, the detection latency of parallel scans are O(%).

Extra messages in search protocols are redundant for the
same reason they are in serial scans. When nodes detect
a hash mismatch, they will all respond with the same set
of sub-hashes. Furthermore, if a node does not hear a sub-
hash, it assumes consistency and backs up one level in the
hash tree: heavy packet loss can slow tree traversal.

Searching is typically advantageous when NN is small
compared to 7. If N is large, then scanning is effective
because a random selection of items is likely of finding an
inconsistency. In contrast, searching requires traversing the
tree, introducing control packet overhead. When NV is small,
this overhead is less than the number of packets a scan must
send to find a new item.

Together, these tradeoffs mean that which of the algo-
rithms performs best depends on network conditions. High
R and N values improve scanning performance. But when
N is small, searching is more efficient. Furthermore, the
two approaches are not mutually exclusive; a protocol can
search until it determines the new item is in a small subset,
at which point R may make scanning that subset more ef-
ficient than continuing the search. Thus an ideal protocol
should switch from a scan to a search when nodes are down
to their last few items and adjust to network conditions. The
next section proposes such as protocol.

4 DIP

DIP is a hybrid data detection and dissemination proto-
col. It separates this into two parts: detecting that a differ-
ence occurs, and identifying which data item is different.
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Figure 2. Example estimate values for a 16-
item hash tree.

DIP dynamically uses a combination of searching and scan-
ning based on network and version metadata conditions.
To aid its decisions, DIP continually estimates the prob-
ability that a data item is different. DIP maintains these
estimates through message exchanges. When probabilities
reach 100%, DIP exchanges the actual data items. It is an
eventual consistency protocol in that when data items are
not changing, all nodes will eventually see a consistent set
of data items.

This section starts with a broad overview of how DIP
works. It introduces DIP’s metadata structures, the mes-
sages it exchanges, its use of Trickle, and the details of
its estimate system before finally describing the algorithms
DIP applies when receiving and transmitting packets.

4.1 Overview

DIP stores a version number for each data item. In the
steady state where all nodes are up to date and have the same
versions, DIP uses Trickle to send hashes that cover all of
the version numbers. Nodes that receive hashes which are
the same as their own know they are consistent with their
neighbors. If a node hears a hash that differs from its own,
it knows that a difference exists, but does not know which
specific item or who has the newer version.

In addition to the version number, DIP maintains a soft-
state estimate of whether a given item differs from a neigh-
bor’s. It is soft in that if estimates are temporarily inaccurate
or lost, the protocol will still proceed. In contrast, version
numbers must be correct for consistency and correctness.

When DIP detects a hash of length H that differs, it gives
each item covered by the hash a conservative estimate of %
This estimate is conservative because at least one of the H
items is different.

DIP sends advertisements that improve its estimate ac-
curacy by using smaller hashes. For example, a node that
receives a differing hash of length H can respond by send-
ing two hashes of length % As Figure 2 shows, one can
think of these levels of hashes defining a hash tree over the
version number set; going down the tree involves sending
smaller hashes, while going up the tree involves sending
longer hashes.



Identifying which data item is different and which node
has the newer version requires exchanging actual version
numbers. In the hash tree, version numbers are hashes of
length 1. Section 3 showed how if the probability of a ver-
sion number difference is large enough, then transmitting
a random subset of the version numbers can be more effi-
cient than traversing the hash tree. To take advantage of this
behavior and determine the transition point, DIP monitors
network conditions, such as Trickle communication redun-
dancy. Rather than always walk to the bottom of the hash
tree, DIP starts sending precise version information when
estimates reach a high enough value that suggest random
scanning would be more efficient.

4.2 Metadata

DIP maintains a version number and unique key for each
data item. As a result of having a unique key, it also assigns
each data item an index in the range of [0,7 — 1]. DIP can
describe a data item ¢ as a tuple (k;, v;) where k; is the data
item key and v; is its version number. The implementation
of DIP we describe in this paper uses 32-bit version num-
bers, to preclude wrap-around in any reasonable network
lifetime; smaller or larger values could also be used.

In addition to version numbers, DIP maintains estimates
of whether an item is different. DIP stores estimates as
small integers in the range of [0,log(T)].> An estimate
value of E' means that DIP detected a difference at level
F in the hash tree. With a tree branching factor of b, this
means a hash that covers bE% items.

Together, these two pieces of metadata are log(V') +
log(log(T)) bits per data item, where V' is the maximum
version number. In practice, log(V') is a small constant
(e.g., 4 bytes). Compared to the basic Trickle, which re-
quires O(T) state, DIP requires slightly more, O(T + T -
log(log(T))), as it must maintain estimates. In practice,
the log(log(T)) factor is a single byte for simplicity of im-
plementation, so DIP uses 5 bytes of state per data item in
comparison to standard Trickle’s 4 bytes.

4.3 Messages

The prior section described the per-item state each DIP
node maintains with which to make protocol decisions.
This section describes the types of messages DIP nodes use
to detect and identify differences in data sets among their
neighborhood. DIP, like Trickle, is an address-free, single-
hop gossip protocol that sends all messages as link-layer
broadcasts. DIP seamlessly operates across multihop net-
works by applying its rules iteratively on each hop. DIP
uses three types of messages: data, vector, and summary.

Data Messages: Data messages transmit new data. They
have a key k;, a version number v;, and a data payload. A

2The implementation we describe in Section 5 actually stores values in
the range [0, log(T") + 2] to save a few bits in transmit state.

data message unambiguously states whether a given item
is different. On receiving a data message whose version
number is newer than its own, DIP installs the new item.

Vector Messages: Vector messages hold multiple key, ver-
sion tuples. The tuples may have non-consecutive keys.
Vector messages, like data messages, unambiguously state
whether a given item is different. They do not actually up-
date, however.

Summary Messages: Figure 3 illustrates a complete sum-
mary message. Summary messages contain a set of sum-
mary elements and a salt value. Each summary element
has two indices describing a set of version numbers, a sum-
mary hash over the set, and a bloom filter of the set. The
salt value is a per-message random number that seeds the
summary hash and bloom filter to protect from hash colli-
sions.> When the size of the set covered by the summary
hash is small enough, the filter can circumvent several hash
tree levels to find which item is inconsistent. The number
of summary elements in a summary message determines the
branching factor of the DIP hash tree.

The summary hash function SH is SH(i1,i2,s) where
i1 and iy are two indices representing left and right bounds
of the search, and s is a salt value. Its output is a 32-bit
hash value. For example, SH(0,T — 1, s) would be a hash
over all the current version numbers for all data items. The
specific function is a one-at-a-time hash using a combina-
tion of bit shifts and XOR operations, which an embedded
microcontroller can compute without much difficulty.

Each summary message has a bloom filter, a probabilistic
data structure that can be used to test an item’s membership.
Computing a bloom filter of length B bits involves taking a
hash BH (i, v, s) of each covered item, where 4 is the item
index, v is the version number, and s is the salt. The result
of each BH modulo B is a single bit position that is set to
1 in the filter*. If two bloom filters share an (index, version)
tuple, they will both compute the same bit to be 1: there
are no false negatives, where both sets agree but the filters
differ. Bloom filters can have false positives, where two sets
differ but have the same filter.

Each of the three message types provides DIP with dif-
ferent information. Data and vector messages can identify
which data items are different. However, the detection cost
of finding the item is O(T"). Summary messages can tell
DIP that there is a difference, but not definitively which item
or items differ. Summary messages have a O(1) detection
cost and a O(log(T)) identification cost. In practice, for
reasonable 7" values (below 1,000), the bloom filter signifi-
cantly reduces the identification cost.

3We borrow the term “salt” from UNIX password generation [15].
4Bloom filters generally use k hash functions to set k bits. In DIP,
k=1
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Figure 4. Estimate values. Ep = |log,(T)],
where b is the humber of summary elements
in a summary message (the branching fac-
tor). Eo denotes a neighbor has an older
item, while £y denotes a neighbor has a
newer item.

4.4 Updating Estimates

The prior two sections explained the state that DIP main-
tains and the messages it exchanges. As version numbers
only change on data updates, estimates constitute most of
the complexity of DIP’s state management. This section ex-
plains how DIP adjusts its estimates in response to receiving
packets. The next section explains how DIP decides what
packets to send.

Section 4.2 stated that estimate values E are in the range
of [0,l0g(T")], where a O represents a belief that the data
item is consistent with all neighbors, and value of log(T')
represents certainty that the item is different We denote
log(T) as Ep, as it denotes a difference exists. In addition
to this range, DIP reserves two extra values: Eo, which de-
notes a nearby node has an older version, and Ep, which
denotes a neighbor has a newer version. These two values
are necessary because E'p only denotes that a node has a
different version than one of its neighbors, but not the dif-
ference direction. Figure 4 summarizes the estimate values.

DIP uses the information in data, vector, and summary
packets to update its estimates. On receiving a packet that
indicates a neighbor has the same version number for an
item, DIP decrements that item’s estimate, to a minumum
of zero. In the base case, when all nodes agree, estimates
converge to zero. On receiving a packet that indicates a
neighbor has a different version number, DIP improves its
estimates for the relevant items as well as it can from the in-
formation it receives. More precisely, DIP adjusts estimate
values with the following rules:

1. Receiving a vector or data message with an older ver-

sion number sets that item to Ey unless it is Fp .
2. Receiving a vector or data message with the same ver-

sion number decrements that item’s £, to a minimum
of 0.

3. Receiving a data message with a newer version num-
ber, it updates the item and sets it to Fp.

4. Receiving a vector with a newer version number sets
that item to F'y.

5. Receiving a summary element with a differing hash of
length H sets E for all items that hash covers to be the
maximum of their current E and log(T') — log(H).

6. Receiving a summary element with a differing hash
and differing bloom filter sets all items with a differ-
ing bloom filter bit to E'p.

7. Receiving a summary element with a matching hash
decrements the £ of all items the hash covers, to a
minimum of 0.

The first two rules are identical for vector and data mes-
sages. In the case of receiving an older version number, DIP
sets the item to be E, denoting it should send an update,
unless the item is already E, denoting it should receive
an update. Sending an update with an out-of-date item is a
waste, so a node prefers to wait until it is up-to-date before
forwarding updates.

The third and fourth rules define what occurs when DIP
receives a packet with a newer version number. If the ver-
sion number is in a vector message, DIP knows it needs an
update, so sets the item to E. If the version number is in a
data message, then DIP has received the update, which it in-
stalls. DIP then sets the item to E, as chances are another
node nearby needs the update as well.

The last three rules define how DIP responds to sum-
mary messages. Like data and vector messages, receiving a
matching summary decrements estimate values. When DIP
receives a differing hash that can provide a more precise es-
timate, it increases its estimates to the value the hash will
allow. If the bloom filter allows DIP to pinpoint that an
item is different, then it sets that item’s estimate to Ep. It
determines this by checking the bloom filter bit for each
item index, version pair. If the bit is not set, then there is
certainly a difference. Because summary messages contain
multiple summary entries, a single message can trigger one,
two, or all three of rules 5, 6 and 7.

4.5 Transmissions

Section 4.4 described what happens on a message recep-
tion. This section describes how DIP decides which mes-
sage types to transmit and what they contain.

DIP uses a Trickle timer to control message transmis-
sions. In the maintenance state when no data items are dif-
ferent, the DIP Trickle timer is set at a maximum interval
size of 75,. As soon as a difference is detected, the Trickle



interval shrinks to the minimum interval of 7;. When all es-
timates return to 0, DIP doubles its Trickle interval until 7,
is reached again.

DIP also uses hierarchical suppression to further prevent
network flooding. Messages of the same type may suppress
each other, but summary messages cannot suppress vector
messages. This is because vector messages are more pre-
cise and are often used near the end of a search. This hier-
archical suppression prevents nodes from suppressing more
precise information.

DIP’s transmission goal is to identify which nodes and
items need updates. It accomplishes this goal by increas-
ing estimate values. In the steady state, when all nodes are
up to date, DIP typically sends summary messages whose
summary elements together cover the entire set of version
numbers. All DIP transmissions are link-layer broadcasts.

All tuples in vector messages and summary elements in
summary messages have the same estimate value: a packet
always represents a single level within the DIP hash tree.
DIP always transmits packets which contain information on
items with the highest estimate values. Together, these two
rules mean that DIP transmissions are a depth-first, paral-
lelized, search on the hash tree.

We now describe the decisions DIP makes. DIP’s de-
cisions are made based on local information to each node.
This, coupled with the soft-state properties of the estimates,
allow nodes running DIP to seamlessly leave and join both
singlehop and multihop networks.

If an item has an estimate of ¥ = E, DIP sends a data
message. Because receiving an update causes DIP to set I
to Ep, forwarding an update takes highest priority in DIP.
Of course, hearing the same data message, or other packets
that decrement E may prevent this data transmission; how-
ever, since DIP is based on randomized Trickle timers, in
practice it soon discovers if a node is out of date and in-
creases IV to Ep.

If ¥ # Eo, DIP compares the vector message and
summary message costs of identifying a difference. If v
key/version pairs can fit in a vector message and d data
items need to be covered (computed from F), then DIP
requires % transmissions to scan through all d items. For
summary messages, DIP requires EF'p — E (the number of
levels until the bottom of the hash tree) transmissions. As-
suming lossless communication, DIP transmits summaries
when (Ep — E) > £ and vectors when (Ep — E) < 4.
This inequality means that if an item has an estimate of F'p
or E'n, DIP always transmits a vector message.

Because real networks are not lossless, DIP adjusts its de-
cision based on the degree of communication redundancy it
heard in the last trickle interval. Hearing more messages
in a given interval is related to a failure in the suppression
mechanism and most likely caused by a loss rate or dense
network. DIP accounts for this by changing the vector mes-
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Figure 5. Two nodes exchanges summaries
and vectors to determine that the left node
needs an update for item 5. The arrays show
each node’s estimate values during each step
of the packet exchange. In this example,
summaries contain 2 summary elements.

sage calculation from % to % where c is the redundancy.” If
it takes % vector messages to determine a new data item, but
it is receiving c messages, then weight the required number
of vector messages by a factor of c.

When DIP transmits version messages, it selects a ran-
dom subset of the data items which have the highest esti-
mate value. As Section 3 showed, randomization is critical
as communication redundancy increases with density.

When DIP transmits summary messages, it performs a
single linear pass across the data items to find contiguous
runs of items that have the highest estimate value. It gen-
erates summary elements for these items that are one level
lower on the hash tree. For example, if DIP finds a run
of items with an estimate of F, it generates summary ele-
ments which each cover bE% items. While the items within
each summary element must be contiguous, the summary
elements themselves do not need to be.

Finally, when DIP transmits, it decrements the estimate
values of all data items the transmission covers. In the case
of data and vector messages, it decrements the estimates
of the items version numbers that are in the packet. In the
case of summary messages, it decrements the estimates of
all items covered by a summary element.

4.6 Example

To give a concrete example of what a DIP search looks
like and how the estimate update rules work, Figure 5 shows
two nodes running DIP detecting that one node needs an up-

SWe borrow the term ¢ from Trickle’s communication counter.



date for item 5. For simplicity, this example assumes bloom
filters never help, and DIP only sends vector messages at the
bottom of the hash tree. Each time a node transmits a sum-
mary message or a vector message, it reduces the estimate
of the covered items. First, the left node transmits a full
summary. The right node sees that the right summary hash
(covering items 4-7) is different, so replies with summary
hash of 4-5 and 6-7. The left node sees that 4-5 is differ-
ent, so replies with the version numbers of 4 and 5. The
right node replies with the data for item 5. The left node
rebroadcasts the data in case any neighbors do not have it,
which propagates the update acros the next hop. The nodes
exchange a few more summary messages to make sure that
the different summary hashes covered only one update.

5 Evaluation

We divide our evaluation of DIP into two parts. In the
first part, we look at improvements. We measure the ef-
fectiveness of DIP’s two primary optimizations: bloom fil-
ters and using scans when the chance of hitting a new item
is high. These experiments are all in simulation. In the
second part, we look at comparisons. We compare DIP
against a scan and search protocols in simulation and a real
network. In simulation, we measure how parameters af-
fect DIP’s transmission costs by measuring the cost for the
whole network to complete all updates. On a mote testbed,
we compare the performance of the three algorithms for dif-
ferent N.

5.1 Methodology

We implemented DIP in TinyOS 2.0: it compiles to 3K
of program code. In our implementation of DIP, we had 2
summary elements per summary message, and 2 key/ver-
sion tuples per vector messages. The maximum Trickle in-
terval was set at one minute, and the minimum interval at
one second, though these numbers can be adjusted on a real
deployment. We also implemented intelligent versions of
the serial scan and search algorithms that use DIP-style es-
timates. Using estimates greatly improves the performance
of these algorithms as they maintain some state on what
to advertise. All three protocols use a single underlying
Trickle. Scanning sends two (key,version) tuples per packet
and sequentially scans through items. Searching uses a bi-
nary hash tree. When search identifies a different item, it
updates the item and resets to the root of the tree.

To evaluate simple clique networks and multihop simula-
tions, we used TOSSIM, a discrete event network simulator
that compiles directly from TinyOS code [10]. In TinyOS
2.0, TOSSIM uses a signal-strength based propagation and
interference model. Nodes have uniformly distributed noise
along a range of 10dB and a binary SNR threshold of 4dB.
The model distinguishes stronger-first from stronger-last
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Figure 6. Bloom filter effectiveness with L =
0%, T = 256 with two different densities and
varying N.

collisions, such that if a stronger packet arrives in the mid-
dle of a weaker one, the radio does not recover it (this is
how the CC2420 radio on Telos and micaZ nodes behaves).
Therefore, lossless communication in TOSSIM does not
mean all packets arrive successfully: there can still be col-
lisions. Fully connected networks are not collision-free be-
cause TOSSIM models radio RX/TX turnaround times.

To set a uniform loss rate, we configured TOSSIM to
have noise values in the range of -110dBm to -100dBm and
tuned the signal strength to obtain the desired loss rate. For
a loss rate of 10%, we set link strengths to be -96.5dBm; for
20%, -97dBm; for 30%, -97.5dBm; for 40%, -98dBm, and
for 50% we set the signal strength to be -99dBm. These val-
ues are not a simple linear progression as uniform loss dis-
tributions would suggest because TOSSIM samples noise
several times during a packet. We ran several iterations for
validity and averaged their results when applicable.

To collect empirical data, we ran our experiments on the
Mirage testbed [2]. It is composed of 100 MicaZ motes
that are distributed throughout an office environment. Each
MicaZ consists of an Atmel Atmegal28L microcontroller,
128K program flash, and an 802.15.4 compatible radio
transceiver that transmits at 250kbps. We instrumented the
DIP code to write to the UART various statistical informa-
tion when events occur. Then using a UART to TCP bridge,
we listened on on the port of each node and collected the
information at millisecond granularity. Although there are
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100 nodes in the network, we could only connect to 77 of
them for data gathering purposes.

5.2 Improvements

We evaluate how bloom filters improve DIP’s perfor-
mance by measuring how many summary messages suc-
cessfully used a bloom filter to identify which item needed
an update. Detecting with a bloom filter enables DIP to
circumvent subsequent summary exchanges to traverse the
tree, reducing the number of summary transmissions.

Figure 6(a) shows results from the very simple case of a
pair of TOSSIM nodes with lossless communication. For
different N, bloom filter optimizations have a hit rate of
35%-80%.

Figure 6(b) shows that bloom filters are also effective in
a 32-node network, albeit less so than a single node pair.
At higher densities, different nodes will require different
items over time. Thus the issue is not that a single node
requires many items, but rather many nodes require a few
items, making /N small for each node.

To better understand the decisions that DIP makes, we
measured the distribution of transmitted summary and vec-
tor messages for different loss rates and new items in a 32
node clique. Figure 7(a) shows that as the number of new
items increases, DIP uses more vectors and at a higher pro-
portion. This is a result of DIP’s dynamic adjustment to the
number of new items. When the network becomes lossy as

shown in Figure 7(b), an increase in [N causes DIP to use
more vectors and at a larger proportion, but this increase
is not as fast as in a lossless network. High loss slows the
increase of estimate values, leading to more summary mes-
sages and delaying when it uses vector messages. Although
the X-axis on Figures 7 show N doubling, DIP’s total trans-
mission count does not double, as using pure searches might
suggest: its message adaptation allows it to take advantage
of high hit rates.

These results show that bloom filters improve DIP’s de-
tection and DIP dynamically improves its transmission pol-
icy based on network conditions.

5.3 Protocol Comparisons (TOSSIM)

Because there are four possible parameters, we explore
each one independently using TOSSIM. For simplicity,
these experiments are all fully connected networks with a
uniform loss rate.

In our first experiment, we evaluated the scalability of
each protocol by having a constant number of new data
items (N = 8) while varying up the total number of data
items (I'). We measured the total number of transmissions
required to update each node. Figure 8(a) shows the results.
As expected, searching requires O(log(T')) transmissions
and scanning requires O(T"). DIP performs much better be-
cause it detects items quickly through the bloom filter. Even
though messages are lost, a single successful bloom filter
will identify the items and thus not require a full search.
Furthermore, DIP keeps a narrow search by estimate-based
back outs, making bloom filters more effective.

Figure 8(b) shows how density affects scanning and
searching performance. Because both improved protocols
handle redundancy, they have similar lines. Scanning, how-
ever, is better than searching because there is no overhead
associated with scanning. At high densities, the improved
scan protocol does not pay extra to cover its entire keyspace.
DIP again performs the best because it has the benefits of
both low overhead through bloom filters, but also being able
to find items quickly through searching.

Figure 8(c) shows how performance changes as the num-
ber of new data items changes. When there are many new
data items, the log(T') search overhead becomes noticeable,
but not significant due to the fact our search protocol im-
plementation handles redundancy. The scan protocol scales
linearly because each additional new item requires a con-
stant amount of identification overhead. When almost all
data items are new, it may seem counterintuitive that search-
ing is better. The reason for this is because after nodes have
been updating, the few remaining items at the end are hard
to identify. Thus, the early scan advantage cancels out at
the end. DIP scales linearly, but at a smaller constant factor.

Figure 8(d) shows how performance changes as the loss
rate increases and the results are similar to that of figure 8(b)
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due to redundancy.

In a multihop network, we are interested in how many
transmissions are required for the whole network to detect
new items. In multihop topologies, nodes must request new
data from neighbors, while at the same time servicing other
neighbors. We used the 15 by 15 sparse grid in the TinyOS
2.0 TOSSIM libraries, which uses Zuniga et al.’s hardware
covariance matrix [23] to model link asymmetries and other
real-world effects. We modified the multihop implementa-
tions of the scan and search protocols to perform better in
multihop situations as well. The scan protocol re-advertises
items 3-4 times after receiving an item, while the search
protocol uses estimates to back out rather than resetting.

Our first experiment examines transmission costs when
N = 8 and T = 256. Figure 9(a) shows the results. The
scanning protocol completes a large majority of nodes very
close together, but the last few nodes take exceedingly long.
When different items are discovered, the scan protocol re-
peatedly transmits high estimate items until estimate lev-
els have decreased. At the end, when only a few nodes
have old items, scanning cannot find those few items very
well. Searching performs far worse because nodes are both
senders and receivers in multihop topologies and searching
requires efficient pairwise communication. DIP has simi-
lar performance to scanning until around half the nodes are
complete. Afterwards, it begins searching and completes
the remaining nodes. The gap between when the first and
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last node completes is marginally smaller in DIP. DIP’s tail
begins to occur when a majority of the nodes have finished.
Finally, DIP uses only 40% as many transmissions as scan-
ning, a 60% improvement.

In the second experiment, shown in Figure 9(b), there
were 32 new items instead of 8. DIP completed dissemi-
nating to all nodes within 18,000 transmissions. The over-
head of searching caused the search protocol (not shown)
to not finish within 35,000 transmissions. Multihop topolo-
gies force nodes to send and receive in different cells. This
is problematic for searching, which requires pairwise com-
munication to succeed. In contrast, the scan protocol fin-
ished with just over 35,000 transmissions and exhibited a
very long tail, as scans are inefficient at finding the last few
items. DIP has a shorter tail due to its ability to identify
items through the bloom filter.

5.4 Protocol Comparisons: Mirage

We ran two testbed experiments with 7' = 64. We mea-
sured how many transmissions updated the whole network,
and timed out each experiment after 400 seconds.

Figure 10(a) shows the per-node completion CDF for
N = 8. DIP completed with 436 transmissions, while the
search and scan protocols required 868 and 2867 respec-
tively. DIP and the search protocol had steep curves mean-
ing the nodes completed within a short time of each other.
This is because DIP and the search protocol (which was
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items and two different values of new items.

modified) back out after receiving or sending new items,
keeping searches narrow enough for nodes in other cells to
find items. The modified scan protocol is also steep, but
has a long tail, which is caused from being unable to find
the last few items quickly after most of the network has fin-
ished. Furthermore DIP finished with a much better overall
time compared to the other modified protocols. This is due
to DIP’s ability to identify items faster through its bloom fil-
ters. In terms of time, DIP took 86 seconds to deliver all 8
items while scanning took and searching took 107 and 143
seconds, respectively, a speedup of 24-60%.

Figure 10(b) shows results for N = 32. With more new
items, search’s overhead grows, and its performance relative
to scanning degrades. While DIP was able to disseminate to
every node in approximately 860 packets, neither scanning
nor searching completed in over 2500 packets: both timed
out. As dissemination layers today use scanning algorithms,
DIP reduces the cost by up to 60%. While neither scanning
nor searching was able to complete in 400 seconds, DIP
took 131 seconds, a speedup of over 200%. This means, for
example, when introducing new nodes to a network, DIP
will bring them up to date to configuration changes up to
200% faster than existing approaches.
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6 Related Work

DIP draws heavily from prior work in reliable data dis-
semination. Unlike protocols for wired networks, such as
SRM [6] and Demers’ seminal work on epidemic database
replication [5], DIP follows Trickle’s approach of using
local wireless broadcasts [11]. Trickle’s suppression and
rate control protects DIP from many of the common prob-
lems that plague wireless protocols, such as broadcast
storms [17]. Existing systems, such as Deluge [8], Maté [9],
and Tenet [7] use protocols that assume the number of data
items is small. DIP relaxes this assumption, enabling scal-
able dissemination for many items. Unlike flooding and
broadcast protocols such as RBP [19], DIP provides com-
plete reliability as long as the network is connected.

DIP’s hashing is similar to Merkle hash trees [14], a com-
mon mechanism in secure systems. As Merkle hash trees
need to minimize computation, each level is a hash of the
hashes of the level below it. As the tree stores all of these
hashes, changing a single leaf requires only updating log(n)
hashes. In contrast, DIP dynamically computes hashes of
leaf values on demand. This approach stems from how
the resource tradeoffs between sensor nodes and traditional
storage systems differ: on a sensor node, the RAM to store
a hash tree is expensive, while CPU cycles to hash a range
of version numbers is cheap.

Bloom filters have a long history in networked sys-



tems, including web caching, Internet measurements, over-
lay lookups, and keyword searches [1]. Keyword searches
are the most similar, but with an opposite purpose: while
they find similarities in filters, DIP seeks to find differences.
Bloom filters are commonly used in distributed and repli-
cated IP systems (e.g., PlanetP [4]), but to our knowledge
DIP represents their first use in wireless dissemination.

The tradeoffs between deterministic and randomized al-
gorithms appear in many domains. At one extreme of data
reliability, standard ARQ algorithms repeat lost data verba-
tim. At the other extreme, fountain codes [13] used ran-
domized code blocks to reliably deliver data. At the cost of
a small data overhead ¢, a fountain code requires no explicit
coordination between the sender and receiver, trading off a
bit of efficiency for simplicity and robustness. There are
also many techniques that lie between these extremes, such
as incremental redundancy (or Hybrid ARQ) [18], which
randomizes code bits sent on each packet retransmission.
Similarly, Demers et al.’s landmark paper on consistency
in replicated systems explored the tradeoffs between deter-
ministic and randomized algorithms [5]. The Trickle algo-
rithm adds another level of complexity to these tradeoffs
due to its inherent transmission redundancy.

7 Conclusion

This paper presents DIP, an adaptive dissemination al-
gorithm that uses randomized and directed algorithms to
quickly find needed updates. To achieve this, DIP main-
tains estimates of the probability that data items are differ-
ent and dynamically adapts between its algorithms based
on network conditions. This adaptation, combined with
bloom filters, enables DIP to efficiently support dissemi-
nating a large number of data items and achieve signifi-
cant performance improvements over existing approaches.
The tradeoffs between searching and scanning show a basic
tension between deterministic and randomized algorithms.
Acting optimally on received data works best in isolation,
but in the case of redundancy, multiple nodes each taking
a sub-optimal part of the problem can together outperform
a locally optimal decision. DIP leverages this observation
to greatly improve dissemination efficiency; it remains an
open question whether other wireless protocols can do the
same.
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