
System Architecture Support for Green Enterprise Computing

Maria Kazandjieva
Stanford University

mariakaz@cs.stanford.edu

Chinmayee Shah
Stanford University

chinmayee.shah@stanford.edu

Ewen Cheslack-Postava
Stanford University

ewencp@cs.stanford.edu

Behram Mistree
Stanford University

bmistree@stanford.edu

Philip Levis
Stanford University

pal@cs.stanford.edu

Abstract—This paper proposes a novel system for
enterprise computing that reduces energy consumption
without sacrificing performance or putting devices to
sleep. It uses a hybrid architecture composed of multiple
device classes and it runs an application in the most
energy-efficient location. Our prototype, called Any-
ware, provides desktop-class performance while reducing
energy consumption by 75% through a combination
of lightweight clients and a small number of servers.
Providing such an elastic system invisibly to end users
requires solving many challenges, including deciding
where to run applications while simultaneously making
it appear they all run locally. Anyware’s hybrid design
suggests a new way to think about using the modern
spectrum of personal computing devices.

Keywords— energy efficiency, system architecture,
hybrid computing

I. INTRODUCTION

This paper argues for taking an architectural approach
to green computing in the enterprise (office) environment.
Rather than focus on one component (e.g., CPU) or device
(e.g., server) within a computing system, redesigning the
system as a whole can have greater benefits with lower costs.
Considering the different power/performance curves of per-
sonal computers, servers, and networking infrastructure, we
propose Anyware: an elastic, hybrid computing architecture
that reduces desktop computing energy consumption by over
75% without sacrificing performance and, in some cases,
even improving it.

Anyware leverages the fact that personal computers today
have a non-linear power/performance tradeoff. By running
most undemanding applications on low power, efficient
personal computers such as laptops, one can reduce each
person’s personal computing energy consumption by over
80%. But this benefit comes by sacrificing performance
and therefore productivity. For some demanding tasks, a
lightweight personal computer such as an Eee PC can take
twice as long as a reasonable desktop. To provide both low
energy consumption and high performance, Anyware uses a
hybrid architecture. Some applications run locally on users’
low power computers and others run remotely on powerful

shared servers. The architecture is elastic since more servers
can be added to scale to users’ workload needs.

Anyware’s goal is to reduce energy consumption without
harming productivity. It is therefore completely invisible
to its users. This is in contrast with existing approaches
such as LiteGreen [1] and SleepServer [2], which put
computers to sleep that users have to wake them up when
needed. Applications running on top of Anyware look and
run identically (configuration, preferences, plugins, etc.)
whether they are run locally or remotely. All of a user’s
files are always accessible. Anyware requires no centralized
application authority: a user can install a new application
on her file system and use it with Anyware immediately.
This invisibility comes without any modifications to user
applications or operating system kernels.

Although Anyware is a synthesis of many existing system
design concepts targeted at these problems, its contributions
lie in answering six research questions:

1) In modern enterprise environments, what are the
highly underutilized resources one can cut to reduce
idle energy or use more of to increase efficiency?

2) How can one run a locally installed application on a
remote server without modifications or user interven-
tion, or even a user noticing?

3) How does a client find remote computing resources
for offloading applications?

4) When should a client offload applications and when
should it run them locally?

5) What does a computing system designed to take
advantage of Anyware look like?

6) How does Anyware affect application performance
and energy consumption?

Anyware trades off local computing power for a small
number of powerful servers and increased network utiliza-
tion. The former is amortized across many clients, while
the latter essentially comes for free as network power
is independent of its utilization [7]. Anyware applications
run remotely by having very thin virtual machines hosted
on remote servers that use the client’s local file system.
Clients can automatically find Anyware offload resources
using DNS with service discovery, such that all a user
has to do is connect to a network and Anyware auto-
configures and starts running applications remotely. We
derive an offload algorithm based on a logistic regression of

978–1–4799–6177–1/14/$31.00 © 2014 IEEE

0 20 40 60 80 100
System Utilization

0

30

60

90

120

150

180

210

240

270

Po
w

er
 D

ra
w

 (w
at

ts
)

Laptop (14 to 24 watts, no screen)

Desktop (100 to 160 watts, no screen)

Network cost (4.5 watts, constant)

Server (130 to 270 watts)

Figure 1. Relationship between power draw and utilization for various
pieces of office equipment. Note that the network cost is low and constant.

multiple application properties and a user study of perceived
performance. Anyware’s design reveals the importance of
efficient but fast I/O, suggesting a future personal computing
device centered around solid-state drives, energy efficient
processors, and GPUs for local applications. Anyware’s
approach of distributed execution and centralized storage,
potentially backed up to the cloud, is a novel point in
end-user computing system architectures, motivated by the
changing tradeoffs between energy, network, and workloads
we see in enterprises today.

II. ENTERPRISES TODAY

Improving the energy-efficiency of enterprise computing
requires first understanding it. This motivates our first ques-
tion:

In modern enterprise environments, what are the
highly underutilized resources one can cut to
reduce idle energy or use more of to increase
efficiency?

Systems have poor power proportionality. Figure 1
shows how power draw increases with system utilization
for representative examples of four different computing
elements within the enterprise: a Mac laptop, a Dell desktop,
an Intel Xeon server, and a single active port on an HP
network switch. All power data in this paper are empirical
measurements of devices within the Stanford Computer
Science building, gathered using custom wireless power
meters. All devices have poor power proportionality [3]:
their idle power draw is 48% to 100% of their draw at full
utilization. One important observation is that the switch’s
power draw is completely independent of its utilization.
Therefore, a computing system that increases network traffic
can still reduce the aggregate energy consumption.

Small increases in performance can have a high power
cost. Power and performance have a non-linear relationship.
Beyond a certain point, small increases in performance cost
a lot of energy. Figure 2 illustrates these diminishing returns

0 1 2 3 4 5 6 7 8 9
3DMark06 CPU Score x 103

0

20

40

60

80

100

120

M
ax

 P
ow

er
 R

at
in

g
(W

)

desktop
laptop

0 1 2 3 4 5 6 7 8 9
3DMark06 CPU Score x 103

0

20

40

60

80

100

120

M
ax

 P
ow

er
 R

at
in

g
(W

)

desktop
laptop

Figure 2. Processor performance as rated the 3DMark benchmark versus
maximum power dissipation. For modern processors, power draw increases
non-linearly with performance.

for several modern mobile and desktop processors [4].
The performance is rated using the 3DMark benchmarking
tool [5]. The power ratings reflect the maximum processor
power dissipation, an upper bound for active power draw.

A typical mobile CPU draws about of 15-20 watts during
operation, while a desktop processor reaches 100 watts or
more — four to five times as much [6], [7]. While the dif-
ference in power draw is significant, this four-fold increase
in energy cost does not come with a four-fold increase in
performance. We could build more energy-efficient systems
by using multiple points from the design space.

User systems have low average utilization but occa-
sionally need high performance. Prior work [7], [8], [9]
has consistently shown that PCs are often underutilized. It
is not uncommon for a machine’s CPU to be under 25%
utilization for more than 75% of the time. Office workloads
only occasionally tax a machine’s resources, but systems are
provisioned for those uncommon, bursty events. The non-
linear relationship between power and performance means
this over-provisioning has a significant cost: hundreds of
machines consume energy for the rare cases when one of
them needs high performance.

Networks are significantly overprovisioned.
Enterprise networks are also highly underutilized [7]. Cu-

mulative traffic is often only several percent of capacity, with
the peak at about 20% or less. This unused capacity within
the enterprise LAN can be put to use without increasing the
energy cost of the network.

Current power saving techniques trade off productiv-
ity for efficiency.

Thin clients are one common approach to reducing energy
consumption. They consist of an end user system which is
typically no more than a display and a lightweight processor
for graphics draw calls. They provide no local compute or
storage resources. Instead, a small number of powerful back-
end servers run all user programs and sessions, assuming
that multiplexing the server resource across users improves
average utilization without reducing peak performance. Thin

clients have two major limitations. First, the lack of local
compute resources means they cannot handle graphics-
heavy tasks. Second, thin clients draw as much power as
lightweight computers such as laptops (15–20W) [10].

Recent research on enterprise energy efficiency has con-
centrated on putting idle desktops to sleep by using sleep
proxies and migrating user sessions [1], [2], [8], [11]. A
common limitation to these approaches is that they require
users to wait for their compute environment to become
available. This fundamentally trades off convenience and
productivity for improved energy efficiency. Furthermore,
putting personal computers to sleep is not always possible.
For example, in our organization, computers need to be
awake at night for nightly backups, and as prior work has
pointed out [12], network wakeup mechanisms are fragile
and difficult to rely on in practice.

III. RUNNING APPLICATIONS REMOTELY

The very low average PC utilization in the enterprise
means that most work can be handled by lower power,
lightweight computers such as Eee PCs, laptops, and Mac
Minis. For example, if laptops have an average power draw
of 20 watts while desktops have an average draw of 100
watts, simply replacing all desktops in the enterprise with
laptops will reduce idle power by 80%, more than any
existing sleep solution. Furthermore, the power/performance
curve of these lower power devices means that they can
provide a reasonable fraction of desktop performance at a
fraction of the cost.

But some occasional workloads need the performance of
desktop, and running them on a laptop can be significantly
slower. To conserve energy without harming productivity,
an enterprise computing system needs multiple classes of
computing devices that appear as a single enterprise system.
This leads to our second question:

How can one run a locally installed application
on a remote server without modifications, user
intervention, or even a user noticing?

To answer this question we present Anyware– a hybrid,
elastically-provisioned system architecture for enterprise
computing provides . It is hybrid because a single user
can be executing some tasks on a local low-power client,
while other workloads are offloaded to a more powerful
remote server. It is elastically-provisioned because in the
spirit of cloud computing, resources can grow as needed by
adding more backend servers. Anyware requires neither OS
nor application changes; it exports directories via NFS and
reassigns MIME types via a configuration file.

An Anyware client machine has a processor with a very
high performance-per-joule, such as a laptop or a low-
end PC. Anyware shares a small number of servers across
many users, amortizing their cost similarly to thin client
systems. But unlike them, an Anyware client is a fully
operational computer that can function disconnected from

the server, if necessary. Unlike sleep approaches, the user’s
work environment can always remain on, instituting no
wakeup latency or penalty.

Our approach requires only one change to the OS config-
uration and allows Anyware to run entirely in user space.
The approach trivially extends to other Unix-like systems
and can be engineered for other OSes.

An Anyware client maintains a full operating system,
with all user files, configuration data, libraries, and appli-
cations. A small number of high-performance servers on
the enterprise cloud host virtual machines. A given client
can have at most one VM per server but may have VMs
on multiple servers. Each server VM contains a minimal
OS installation, configured only to be able to bootstrap
execution of the user’s software. The Anyware client is
an NFS server, exporting data and program directories.
Anyware server VMs mount the necessary directories via
NFS with the sync option. All other communication between
the Anyware client and VM are over SSH. X11 forwarding
allows remote-execute applications to appear as if running
on the client machine. On the server side, certain core system
configurations also need to be unique. For instance, the client
and the VM do not share the same fstab file or log files.
They also do not share network-related configurations.

Anyware flexibly places applications by intercepting all
user-initiated program executions through a level of in-
direction to operating system MIME type associations.
It introduces two shadow files, mimeinfo.cache and
mimeapps.list, that cause all file extensions and applica-
tion shortcuts to be associated with the Anyware executable.
Once intercepted, the Anyware daemon decides where to run
the application and invokes the original program on that host.

IV. FINDING REMOTE RESOURCES

A careful composition of user-level settings such as
MIME type bindings and exported filesystems allow Any-
ware to execute workloads remotely in a way that is invisible
to the user. This goal of creating a minimally invasive
computing system, raises an additional challenge:

How does a client find available remote computing
resources for offloading applications?

Anyware adopts a zero-configuration (Zeroconf) method-
ology that takes advantage of DNS-based Service Discovery
(DNS-SD) [13]. DNS-SD uses standard DNS queries to
allow network clients to look up a service within a specific
name domain. For example, Bonjour is an implementation
of DNS-SD for Mac OS, enabling services such as iTunes
sharing on the same network. This technology is well suited
for Anyware which operates on enterprise LANs.

The current implementation of Anyware uses the Avahi
Zeroconf implementation for Linux and BSD [14]. Remote
Anyware servers use it to advertise themselves by placing
a configuration file in the /etc/avahi/services folder.
A new Anyware client can bootstrap the entire process

via one of these advertisements; it requires a thin layer of
software to execute an Avahi query and parses the returned
advertisement, which has the server’s IP address and port.
The client then uses them to establish a socket connection
and download the rest of the setup scripts from the server.

First, the client takes several local configuration steps.
It creates a public/private key pair (currently, without a
passphrase) and modifies /etc/exports to export its di-
rectories. Next, it sends information about its operating
system and architecture so that the server can instantiate a
new virtual machine. During this step the server can pass
additional information to the VM, including the client’s
username and IP address. After the VM is up and running the
client’s NFS directories are mounted. In addition to giving
the VM access to applications and user data, the mount also
implicitly sets up the SSH connection: both the private and
public keys live in the same folder and are accessed by the
server and client respectively. From the client’s perspective
this is equivalent to a ssh localhost. At this point, the
VM signals that the setup is complete.

Taking a zero configuration approach to Anyware is key
to being invisible to the user. A client only needs to execute
a simple program to look for advertisements in order to
start using Anyware; everything past the first step is an
automated exchange of network messages, letting users
focus on more productive tasks. From a system’s perspective,
Zeroconf allows flexibility on both the remote and local
sides of Anyware. Additional server resources can be added
on demand, by initiating new advertisements. Clients can
automatically find who to offload applications to and have
the ability to choose one or more servers to connect to.

V. EXECUTION PLACEMENT

Sections III and IV described the mechanisms by which
an Anyware client can invisibly run applications remotely.
However, we cannot expect enterprise users to be experts in
the needs or performance of applications and force them to
decide where to run applications. Instead, the system needs
to decide so automatically, leading to the question:

When should a client offload applications and
when should it run them locally?

The centralization worldview, argued by the administra-
tors of a lab filled with thin clients, is that remote execution
is almost always better because it can use high-end server
hardware. The local execution worldview, argued by our
local system administrators, posits that the added latency
and bottleneck of the network mean local execution will be
generally better. Where does the balance lie?

We perform a small-scale user study in which subjects
complete a wide range of computer tasks using either
a laptop or remote Anyware execution. The results from
the study (Section V-B) together with a set of application
features allow us to develop a statistical model. This model,
described in Sections V-C and validated in Section V-D,

Table I
APPLICATION FEATURES COLLECTED IN ORDER TO BUILD A

PREDICTIVE MODEL FOR ANYWARE.

Collection
Identifier Explanation mechanism

instr Instructions executed (×109) perf
ipc Instructions per cycle perf
llc % last-level cache misses perf
xmsg Number of X messages xtrace
procs Number of processes spawned strace
opencalls Number of open system calls strace
mbread Data read (MB) strace
mbin Data sent over the network, from

server to laptop (MB)
iptables

mbout Data sent over the network, from lap-
top to server (MB)

iptables

Table II
EXECUTION PLACEMENT CLASSES DETERMINED FROM USER

EXPERIMENTS.

Class Description

Local only Remote execution is unusable, local is usable
Local preferred Both executions are usable, local is better
Either Both remote and local were acceptable, no difference
Remote preferred Both executions are usable, remote is better
Remote only Local execution is unusable, remote is usable
Fail Neither local nor remote is usable

shows how a few application properties can be used to
predict user preferences for remote and local execution.

A. Methodology

Five subject participated in the study by performing 39
unique tasks in two conditions. In the laptop condition, task
were executed locally. In the Anyware condition, tasks were
offloaded to a server using Anyware. The jobs span a variety
of applications that capture the workloads of an enterprise
environments. These include office programs (e.g., create
a slide presentation, edit photos, read and fill out PDFs,
compress files), social communication (e.g., send an instant
message or an email), and games. After performing a task in
either the laptop or Anyware condition, the subject answered
whether the application performance was acceptable (yes or
no). At the end of each workload, the subject answered
whether the first or second execution was better (first,
second, or no difference).

Lastly, we profiled each workload separately to collect
application features. Table I summarizes the features and
how they were measured. Based on the user responses, we
classified applications into six classes, shown in Table II.

B. Experimental Results

While there was some disagreement between test subjects
on whether there was no difference between conditions or
one condition was better, the results were never inconsistent.
In no case did one subject mark a task as better with
Anyware’s remote execution and another subject mark it
as better running locally. Most applications were rated as
usable in both the local and remote scenario. A majority of

users classified PDF viewing and photo organizing as local
preferred. Users preferred remote execution for many of the
image processing tasks, as well as the Open Office document
manipulation tasks. One user placed Thunderbird in the fail
class due to its slow response to user interactions.

Only two applications were classified as local only by
two or more people – video playback and Google Earth.
These tasks highlight the failure case of systems in which
all computation is remote (thin clients or remote VMs). Both
applications update screen graphics at a high rate, making
it difficult to run remotely. The model derived in the next
delves deeper into this issue and show an evaluation of one
of these local only tasks in Section VII-C.

C. Logistic Regression Model

We use the features in Table I and user classifications to
create a model of where Anyware should run applications.
The model is built using logistic regression, a type of re-
gression analysis that is well-suited for predicting a boolean
value [15] from predictor variables. To build a model, one
specifies a data set of numeric prediction variables and their
corresponding boolean results. Given a set of prediction
variables, a model produces a number between 0 and 1,
indicating the predicted probability that the result is true.

In the case of Anyware, the predictor variables are ap-
plication features and the boolean value is whether to run
an application locally. For model training, local only and
local preferred are local execution (value is 1), while either,
remote only, and remote preferred are remote execution
(value is 0). The either case defaults to remote in order
to enable thinner, lower power clients. Anyware runs an
application locally if the output of the model is ≥ 0.5.

To generate a more compact model, reduce the number
of features Anyware must collect, and gain insight into
which features are most important, we simplify the model
using single-term deletions. Single-term deletion removes
individual features or combination of features whose re-
moval does not lead to a statistically significant difference
(at p− value < 0.05) in the model’s predictive power.

D. Model Training and Validation

In order to train and test a user-independent model that
determines an application’s execution environment, we need
to collapse the five user’s ratings into one. Section V-B dis-
cussed how different user responses diverged. For example,
four users place a task in the either category, while the last
user places it in the local preferred. In these situations, we
assign the task to the category that majority of users chose.

To evaluate the effectiveness of logistic regression based
on these features and classes, we randomly select 29 of the
tasks to be in the training set and test the resulting model
on the remaining 10. We generate and test 20 such models,
each with a different division of the 39 workloads. This
evaluates whether training on a reasonable set of tasks can

generate a model that is broadly applicable to many more
tasks. All resulting reduced-feature models use the following
same variables:
−k × instructions
+l × MB send
+m × MB received

The constants (k, l, m) depend on the training data set and
the units for each feature, e.g. megabytes versus kilobytes.
What is important is the sign of each contributing variable. A
positive coefficient increases the output of the function, such
that a higher value for that feature will push the application
to run locally. Conversely, a negative coefficient means a
higher value will push the application to run remotely.

This highly simplified model captures the inherent trade-
off between processing and I/O capabilities. The number of
instructions an application executes is a proxy for how CPU
intensive the task is; higher instruction counts bias towards
remote execution that can use the server’s more powerful
CPU. Conversely, tasks that perform substantial I/O between
server and client (MB sent and MB received) can become
network latency bound in comparison to local systems.

The average prediction accuracy is 88%, the minimum is
60% (in one of the 20 models), and a maximum of 100%
accuracy (in five models). In only one case, there is an
application assigned to an unusable environment – Google
Earth which is classified as local only is predicted to be
offloaded to the server. The remaining errors are tasks in the
local preferred class, which the model predicted as remote.
These include firefox, thunderbird, unzip, and full-screen
text editing – all tasks with a high number of instructions
executed. On the flip side, the FreeCiv game which users
did not have a preference for, was predicted as local by the
model, due to its higher network traffic.

VI. ARCHITECTURAL SUPPORT FOR ANYWARE

The Anyware architecture trades off an increase in I/O for
the ability to choose where to run an application. Given that
the client serves user data, a question emerges:

What does a client system designed to take advan-
tage of Anyware look like?

Laptops and low-end PCs often have low performance
storage systems, such as low-speed (5400RPM) disks. This
hardware decision becomes a performance bottleneck for the
I/O-centric nature of Anyware clients. Table III shows the
time in seconds it takes on average (over ten runs) to execute
three sample workloads with warm caches. Section VII-A
describes the experimental methodology in detail; in this
context, the important point is that Anyware client perfor-
mance lags behind a desktop, in some cases drastically.

The Gnumeric workload, which is a mixture of CPU and
I/O, has a 31% increase in completion time on the laptop,
while the Eee PC gives an 76% increase, compared to the
desktop. This verifies that simply switching out equipment

Table III
EVEN WITH ANYWARE, REPLACING A DESKTOP WITH LOWER-END

MACHINE HAS A LARGE NEGATIVE EFFECT ON SYSTEM PERFORMANCE.

Runtime in seconds Gnumeric GIMP Kate

Desktop 6.93 42.19 2.42

Laptop only 8.72 51.06 2.72
(+31.5%) (+21.0%) (+12.4%)

Anyware on Laptop 8.21 37.11 4.75
(+18.5%) (-12.0%) (+96.3%)

Eee PC only 12.25 155.39 4.33
(+76.8%) (+268%) (+78.9%)

Anyware on Eee PC 9.48 44.13 4.48
(+36.8%) (+4.6%) (+85.1%)

is not an acceptable path to energy savings. Anyware makes
up for some of the slowdown by taking advantage of the
faster CPU, but there is still an 18% and 37% increase in
completion time relative to the base case.

The advantage of the server-side CPU is more visible in
the CPU-bound GIMP workload. In the extreme case, The
Eee PC execution sees a 200% increase in completion time.
The combination of a single-core slow CPU, a slow disk, and
not enough memory is devastating for the task. Anyware’s
remote run remedies this. When used on the laptop, Anyware
performs better than the power-hungry desktop; on the Eee
PC, it is close to the desktop.

The last workload has higher I/O demand that the previous
two since it requires the reading and writing of a 3.2MB
file. The slower hard disks affect execution time by 12%
and 80% for the two clients, and adding Anyware makes
things even worse. NFS served from a slow drive become
a serious bottleneck for Anyware, resulting in almost 100%
increase in execution time compared to the desktop. Since
Anyware uses NFS mounts with the sync option, every write
has to hit the laptop disk, before the application can proceed.
The Kate workload causes NFS to send 72 ‘WRITE’ remote
procedure calls over the network, compared to 12 and 6 for
Gnumeric and GIMP, respectively.

On one hand, the data in Section V was collected on the
laptop and users rated application performance as satisfac-
tory. Yet, the data in Table III illustrate that the slowdown
is not insignificant.

Even though a workload can benefit from the fast CPU
at the server, it turns out that with careless hardware con-
figurations the local hard-drive become bottlenecks. Given
that many user workloads are not CPU-bound but rather
I/O-bound, Anyware’s reliance on client storage becomes
a liability. Therefore, Anyware clients, follow the trend
of storage today and replace their hard disk drives with
solid state drives. In our prototype, we replace the laptop
and Eee PC drives with OCZ Vertex 4 256GB SSDs. We
calculate that a low-end laptop ($500) with an SSD ($200-
300) and its share of the server cost ($200) is comparable to
current desktop enterprise purchase budges of about $1000

Table IV
HARDWARE USED TO EVALUATE ANYWARE. NON-DESKTOP CLIENTS

HAVE SLOWER CPU AND I/O PERFORMANCE.

Machine CPU Mem HDD
(GB) (RPM)

Desktop Intel Core2 Quad, 2.40GHz 4 7200 or SSD
Mac Laptop Intel Core2 Duo, 1.6GHz 4 5400 or SSD
Eee PC Atom D425, 1.8GHz 2 5400 or SSD

Server Intel Xeon, 12 cores, 3GHz 48 7200
User VM 4 cores 4 7200

to $1300.

VII. EVALUATION

This section quantitatively evaluates how closely Anyware
can mimic desktop performance, answering the question

How does Anyware affect application performance
and energy consumption?

The results in Table III suggest that storage I/O is critically
important: Section VII-B evaluates Anyware using SSDs
rather than HDDs, showing it matches and in some cases
exceeds desktop performance. Section VII-C illustrates the
benefits of a hybrid approach by allowing applications with
I/O bound workloads to run locally. Next, Section VII-D
discusses how Anyware’s performance is affected when
multiple users share the server’s resources. The section
concludes with an analysis of Anyware’s energy savings.

A. Experimental Methodology

Our experimental Anyware setup has a client at the user’s
desk and a backend virtual machine running on a shared
server. We use a midrange desktop to compare Anyware
to a more traditional setup. The laptop, desktop, and VM
all run on 64-bit Ubuntu 11.10. The server has Ubuntu
10.04 LTS. All machines are on the same VLAN; the client
machines are located on the second floor, while the server
resides in the basement server room. Average ping time
between client and server is 270us with a standard deviation
of 44us. The server is a 12-core, 3GHz Xeon Anyware
server with 7200RPM drives and 48GB of RAM. Clients
are a Macintosh PowerBook laptop or an Eee PC. Choosing
two points in the low-end PC design space allows us to see
how client hardware variations affect performance. Table IV
contains the details on each device.

To simulate realistic user interactions with applications,
we use a Perl package that automates interaction with
X11 GUIs [16]. Because we are interested in performance
bottlenecks, the script executes commands as quickly as
possible by waiting for and firing X11 events. For example,
to open a file the script may send the keys Ctrl+O to the
application, wait for the file open dialog to open, then send
keys to open the correct file.

We use three sample workloads used to evaluate Anyware.
The first is in the Gnumeric spreadsheet application. It

Desktop
only

Laptop
only

EeePC
only

Anyware
on Laptop

Anyware
on EeePC

SSD Experiment

0

2

4

6

8

10

12

14

16

T
im

e
 (

s)

1.00 1.03
2.24

1.04
2.43

3.51 3.55
3.95

3.54
3.51

2.36 3.29

6.23

2.25

2.736.87
7.87

12.42

6.83

8.67

Open & Load Create Graph Save & Exit

Figure 3. On the Gnumeric Anyware performs identically to the desktop.
The results are averaged over 10 runs, which are all within 0.6% of each
other.

involves opening a data file, selecting the data, and creating
and saving a graph. The second is CPU-bound. It consists of
opening a large image in GIMP and applying the ‘Van Gogh’
visual filter to the picture. The third task involves opening
a 3.2MB text file, editing it by adding a few sentences,
then saving and exiting the Kate text editor application. In
addition, we also play a video to evaluate a case in which
remote application execution is not desirable. The following
section presents Anyware’s performance on these workloads.

B. Anyware Client Performance

Spreadsheet. Figure 3 shows the average performance of
the Gnumeric workload for different setups, all using SSDs.
Comparing to the data in Table III reveals that the desktop
does not benefit tremendously from the SSD addition since
it already has a relatively fast hard drive. All other setups,
on the other hand, see a significant reduction in completion
time. Most notably, adding an SSD to Anyware makes its
performance on the laptop comparable to the desktop’s; it
takes 6.87 seconds to create and save a graph on the desktop
and 6.83 seconds using Anyware.

Since it is a hybrid setup, Anyware gets the best of
both worlds – a fast data drive on the local side and
a fast processor on the remote side. Delays due to the
network transfers are negligible. While the laptop spends
3.29 seconds saving a figure (which involved CPU due to
image compression), Anyware is able to do the same over
the network in 30% less time, outperforming even the power-
hungry desktop. The Eee PC+Anyware setup is within 10%
of the desktop – a performance degradation that will be
acceptable to most user.

Image Editing. Both Anyware configurations complete
the GIMP task faster than the 100+ watt desktop. Figure 4
summarizes the results; data are averaged over ten runs
and total application execution time is within 3% for all
iterations. The Eee PC sees an improvement of 10 seconds
over the hard-drive case, to a total execution time of 147
seconds (bar omitted in figure.) This is an example of a task
that makes the most out of the additional resources made
available by Anyware.

Desktop
only

Laptop
only

Anyware
on Laptop

Anyware
on EeePC

0

10

20

30

40

50

60

Ti
m

e
(s

)

3.12 4.24 5.73 6.14

33.17
40.72

26.90 27.96

3.64

3.96

4.10 3.98
39.93

48.92

36.73 38.08

Open & Load Process Image Save & Exit

Figure 4. The Van Gogh GIMP filter is a CPU-intensive task so both the
laptop and the Eee PC benefits from Anyware’s access to the server. The
missing ‘Eee PC only’ bar is at 147 seconds.

Desktop
only

Laptop
only

EeePC
only

Anyware
on Laptop

Anyware
on EeePC

0

1

2

3

4

5

Ti
m

e
(s

)

1.01 1.03
2.12

1.13
2.090.31 0.27

0.32

0.27

0.29
1.18 1.18

1.26

1.15

1.34
2.50 2.48

3.70

2.55

3.72
Open & Load Edit Text Save & Exit

Figure 5. Editing a 3.2MB text file with the Kate Editor has comparable
performance for all three setups, with variation between runs of at most
0.25 seconds.

Text Editing. Lastly, Figure 5 presents data on the text
edit workload. Anyware performance match that of the
powerful desktop. The Eee PC is slower due to its lower
memory capacity; the entire slowdown is due to application
startup, which does not affect productivity on longer tasks.

Cold Cache. To present a complete picture of Anyware’s
performance profile, we execute the three task on just-booted
hardware, with empty data, instruction, and NFS caches.
This is similar to starting an application immediately after
booting a desktop. Figure 6 shows these worst-case data for
the spreadsheet and text edit workloads. The GIMP workload
is not affected, compared to running on the desktop because
of the remote CPU gains. The Gnumeric task can be slowed
down by as much as 35% (using the Eee PC) and the text

Desktop Anyware
Laptop

Anyware
EeePC

Desktop Anyware
Laptop

Anyware
EeePC

0

2

4

6

8

10

12

Ti
m

e
to

 c
om

pl
et

e
(s

ec
on

ds
)

1.0 2.05 3.12
3.55

3.57
3.73

2.37
2.24

2.61
6.92

7.86

9.46Gnumeric

1.01
3.06

6.31
1.17

1.16

1.2

2.55

4.52

7.81
Kate Edit

Load App. Exec Task Save & Exit

Figure 6. Executing applications with a cold cache represents worst-case
performance for Anyware, similar to a just-booted desktop.

Table V
REMOTE VIDEO PLAYBACK RESULTS IN LOW FRAMES-PER-SECOND

AND DEGRADED VIEWING EXPERIENCE. ANYWARE HAS THE BENEFIT
OF BOTH LOCAL AND REMOTE RESOURCES SO SUCH TASKS WILL

REMAIN LOCAL.

Not % Not
Setup Decoded Dropped Total Displ. FPS

Desktop 1 2 14308 0 24
Laptop 0 5 14309 0 24
Remote 1670 2923 12639 32 18.08

edit suffers the most due to to the large amount of data it
needs to load. The user will experience such performance
on rare occasions. We leave it as future work to modify
Anyware so that it pre-caches applications to produce the
performance of a warm cache at all times.

Summary. The time-to-completion data in this subsection
highlight two important points. First, the switch from hard
drives to SSDs illustrates how choosing the right hardware
in combination with a new system design can produce
the needed performance. Second, testing Anyware on two
different client machines shows that flexibility in the client
setup can yield different results. In a practical deployment,
the IT staff and users can make a hardware decision based
on a balance between hardware, price, and energy.

C. Local-only Applications

Section V revealed that some applications cannot be
offloaded. Workloads that require large transfer of data over
the network or that take advantage of special hardware, e.g.
acceleration for graphics, will perform better locally. Google
Earth’s data traffic and heavy graphics makes remote-
execution unsatisfactory. Another such application is video.

In order to quantify what a user might call ‘unsatisfactory
performance’, we play a 10 minute video through mplayer.
Table V shows the result when the video is played locally
and remotely (using Anyware.) The percent of undisplayed
frames is a user-centric metric for quality. The video player
can skip displaying a frame for two reasons – decoding takes
too long or it is too late to even start decoding the frame.

Running mplayer remotely using Anyware results the
video playing at 18 frames per second. In contrast, the laptop
and desktop deliver 24 FPS. The unacceptable remote-run
performance of the video task is not a drawback for Any-
ware. Instead, it validates the need for a hybrid computing
approach that makes use of local resources when those
are needed. Thin clients cannot accommodate such tasks,
leading to unsatisfactory user experience.

D. Sharing Server Resources

Section VII-B showed that Anyware can achieve accept-
able performance for a variety of workloads. However, the
measurements so far have been collected under ideal condi-
tions with no additional load on the server. One of the keys
ways in which Anyware saves energy is by consolidating

0 20 40 60 80 100
CPU Load %

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Ti
m

e
(r

el
at

iv
e

to
 0

%
 C

PU
)

x

x
9.67s

x59.1s

Gnumeric: 6.71s
GIMP: 36.73s

Gnumeric
GIMP

0 20 40 60 80 100
CPU Load %

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Ti
m

e
(r

el
at

iv
e

to
 0

%
 C

PU
)

x

x
9.67s

x59.1s

Gnumeric: 6.71s
GIMP: 36.73s

Gnumeric
GIMP

Figure 7. As pre-existing CPU load on the server increases, so does the
execution time of workloads. An offloading policy should take into account
current utilization before assigning tasks for remote execution.

user workloads on the server. Therefore, it is important to
understand how a single user’s experience will be affected
by sharing server resources. We stress three components of
the server – the memory, CPU, and network and rerun the
three test workloads using the laptop+SSD hardware.

To introduce server memory pressure, we use a perl script
that allocates memory and keeps it live by reading it. The
memory usage increases from 0% to 95% (4.8GB). There is
no observed effect on execution time for the Gnumeric and
Kate workloads and an increase of one second in the GIMP
execution time at 90% of memory use.

To generate pre-existing CPU load, the server runs mul-
tiple threads of a python script that does a variety of
computations. The CPU utilization increases in steps of
5%, until it reaches 99%. The I/O-bound text edit task
is not affected. The other two tasks experience increasing
execution time as CPU utilization goes up.

Figure 7 shows the performance of the Gnumeric and
GIMP tasks at different points of CPU load. For Gnumeric,
execution time increases from 6.7 seconds to 9.7 second
at 99% CPU utilization. The effect of sharing the CPU is
even more visible in the case of GIMP, which is a CPU-
intensive task. There is a steady increase in execution time
which accelerates past 20% utilization. At 30% utilization,
Anyware still completes the GIMP task as fast as a desktop
(40 seconds). At its worst, when the 99% of the CPU is
occupied by other tasks, it takes 60% (20 seconds) longer
to execute the task, compared to what it would have on a
standard desktop.

We use iperf to generate additional network traffic go-
ing into the server. The traffic load increases in steps of
100Mbps to maximum of 960Mbps. There is no effect for
the GIMP application and minimal effect for the spreadsheet
one. As expected, the text edit task is affected. Its completion
time becomes visibly variable, between 2.5 and 3.4 seconds,
when the traffic on the link is past 500Mbps. A breakdown
reveals that the extra 0.9 second is from opening files.

VIII. ENERGY SAVINGS

Anyware has a low energy footprint because server re-
sources are shared among users. We estimate that one server
can support about 25 users VMs. The choice of this number
is backed by data from three real-world thin client IT

Table VI
AVERAGE POWER DRAW OF DIFFERENT TYPES OF COMPUTING

EQUIPMENT IN WATTS. THE PER-USER SERVER VALUES ASSUME 25
VMS PER ONE PHYSICAL SERVER.

Equipment Idle (W) 100% CPU (W)

Desktop 100 165

Server (total) 130 270
Server (per user) 5 11
Laptop 14 24
Eee PC 13 22

Anyware (per user) 18-19 33-35

0 5 10 15 20 25
Number of Users

0
30
60
90

120
150
180
210
240
270
300

Po
w

er
 p

er
 U

se
r (

W
)

100% cpu
server

 100% cpu
server & laptop

idle

0 5 10 15 20 25
Number of Users

0
30
60
90

120
150
180
210
240
270
300

Po
w

er
 p

er
 U

se
r (

W
)

100% cpu
server

 100% cpu
server & laptop

idle

Figure 8. Anyware’s energy savings depend on how many users can share
the same server. Total per-user power draw lies within the shaded region.

setups. Two of them are in administrative departments at
a university; the other is an academic department.

Using a thin client setup for making Anyware estimates is
acceptable because in those types of deployments all work
is done at the server. Therefore, if the typical thin client
office can support 25 users with no local processing power,
Anyware will be able to support at least as many, with
a subset of tasks being completed on local machines. The
three compute setups that inform the 25-VM assumption are
supported by the following hardware:

• 20 user VMs: two E5450 Xeon quad-core 3GHz CPUs
with 32GB RAM;

• 30 user VMs: two dual-core AMD Opteron 2.8GHz
CPUs with 16GB RAM;

• 55 user VMs: Dell PowerEdge R810 with four 6-core
2.0GHz processors and 256 GB RAM.

Table VI summarizes the power draw of the equipment
used to evaluate Anyware. The data is from empirical
measurements collected at the device plug level; these
numbers are lower than the data in Figure 2 which used
maximum power dissipation data. The data do not include
LCD screens; assume that users will use the same display
regardless of PC choice.

In the best case scenario, when the setup is idle, the
Anyware setup consumes fewer than 20 watts. This is an
80% decrease from the desktop running at 100W. In the
worst-case scenario from an energy perspective, at 100%
utilization, the hybrid setup will still draw only 35 watts.

Anyware’s energy savings are subject to our specific
equipment setup and the assumption of 25 VMs per server.
Figure 8 shows the total per-user power draw changes as
the number of users per server varies. Even a system that
can support 10 clients per server will have a power draw of
roughly 35 watts, or a 65% reduction over desktops.

IX. RELATED WORK

Sleep systems. Many energy saving techniques for PCs
involve switching a PC to sleep mode when idle. In practice,
however, users rarely activate these features and IT depart-
ments disable them to make patching and backups easier.

Sleep proxies were proposed [17] as a way to facilitate
access to machines in sleep mode. Hardware [12] and
software [8] proxies can reply to network packets on behalf
of the host or wake it up. A real-world deployment of
one such architecture achieved energy savings of about
20% [11]. More recently, GreenUp [18] has demonstrated
that a distributed proxy can save 31% over a setup with
always-on desktops. SleepServer [2], in contrast, proxies
applications in trimmed-down virtual machines, reducing
energy consumption by up to 60%. LiteGreen [1] runs the
entire user desktop environment in a virtual machine, which
can be migrated to a server so the desktop can be put to
sleep, achieving savings of up to 74%.

Anyware’s key difference is that it achieves comparable
savings without requiring machines to sleep. This means
that users never have to worry about whether their work
environment is immediately available.

Remote Execution. The idea of offloading execution has
been explored in the past [19], [20]. Most recently, migration
of code at runtime has been used in smartphone-based
systems such as MAUI [21] and CloneCloud [22]. These
systems migrate portions of an executable to more powerful
machines in the cloud. This results in lower energy use
on the mobile device and faster completion of workloads.
Programmers using MAUI are required to annotate methods
for offloading. CloneCloud eliminates this need for special
support for applications running in a application-layer VM.
This assumption simplifies the task of migrating pieces of
code on mobile devices but makes it impractical for office
computing environments. To overcome these challenges,
Anyware migrates a complete application to a minimally
configured VM on the server, along with the relevant exe-
cutables configuration files.

X. DISCUSSION

Anyware shows that it is possible to build an invisibly
different enterprise computing infrastructure that consumes
only one fifth the energy of systems today. This hybrid com-
puting system, by using both highly energy efficient clients
as well as high performance servers, achieves these savings
without sacrificing performance and therefore productivity.
Furthermore, Anyware supports disconnected operation. If a

person takes their client home or the network fails, all that
happens is some tasks that would run better remotely run
locally. The system also provides flexibility in its elasticity.
The ratio of servers to clients can scale with the degree of
demanding applications a particular enterprise runs.

The current Anyware implementation uses existing com-
puting devices. One interesting question to ask is, were Any-
ware to become a common computing model, how would
one design a client for it? Section VI argued that optimizing
I/O is the most critical step. Section VII demonstrated that an
Anyware setup that has a high performance I/O architecture
can significantly improve performance; it can also reduce
the cost of cold caches. Multiple SSD drives, each on a
separate I/O channel, can improve read/write throughput.
Such an approach would more closely resemble embedded
systems and storage area network architectures (e.g. HP’s
3PAR [23]) than traditional clients. Solid state drives mean
improved performance does not have to cost energy.

Mobile devices have been tremendously successful at
bringing compute resources at a very low energy cost.
Many modern laptop CPU chipsets draw about 15 watts
when idle and 20-30 when active. At the same time, tablets
and smartphones are getting increasingly more capable at
power draws of under 10 watts. An Anyware client can take
advantage of the progress made in mobile computing, in
combination with features common on standard PC to enable
an energy-efficient system with elastic resources. Essentially,
the Anyware client becomes a storage device, with a low-
power processor attached for local applications, and GPU or
perhaps ASICs for video processing since many local tasks
are graphical in nature.

Anyware is a novel system architecture that improves
enterprise computing efficiency by exploiting the non-linear
relationship of power and performance of computing sys-
tems and the generally low demand of enterprise workloads.
With right choice of hardware, Anyware does not require
to sacrifice performance. Unlike sleep techniques, Anyware
is the first system to provide users with an always-on
environment whose performance is comparable to a powerful
desktop but at a fraction of the energy cost. Anyware’s
effectiveness presents an alternative direction for future
personal computers, as storage-centric devices able to run
some applications locally while syncing with the cloud.

REFERENCES

[1] T. Das, P. Padaala, V. Padmanabhan, R. Ramjee, and K. Shin,
“LiteGreen: Saving Energy in Networked Desktops Using
Virtualization,” USENIX Annual Technical Conference, 2009.

[2] R. G. Yuvraj Agarwal, Stefan Savage, “SleepServer: A
Software-Only Approach for Reducing the Energy Consump-
tion of PCs within Enterprise Environments,” USENIX Annual
Technical Conference, 2010.

[3] L. A. Barroso and U. Hölzle, “The Case for Energy-
Proportional Computing,” Computer, vol. 40, no. 12, pp. 33–
37, 2007.

[4] “Processor Performance and Power Data.” http://www.
notebookcheck.net.

[5] “3D Computer Benchmarking.” http://en.wikipedia.org/wiki/
3DMark.

[6] S. Dawson-Haggerty, S. Lanzisera, J. Taneja, R. Brown, and
D. Culler, “@scale: Insights from a Large, Long-Lived Ap-
pliance Energy WSN,” Conference on Information Processing
in Sensor Networks, SPOTS Track, 2012.

[7] M. Kazandjieva, B. Heller, O. Gnawali, P. Levis, and
C. Kozyrakis, “Green Enterprise Computing Data: Assump-
tions and Realities,” in International Green Computing Con-
ference, 2012.

[8] S. Nedevschi, S. Ratnasamy, J. Chandrashekar, B. Nordman,
and N. Taft, “Skilled in the Art of Being Idle: Reducing
Energy Waste in Networked Systems,” in Networked Systems
Design and Implementation, 2009.

[9] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and
R. Gupta, “Somniloquy: augmenting network interfaces to
reduce pc energy usage,” NSDI’09, (Berkeley, CA, USA),
pp. 365–380, USENIX Association, 2009.

[10] M. Kazandjieva, B. Heller, O. Gnawali, W. Hofer, P. Levis,
and C. Kozyrakis, “Software or hardware: The future of green
enterprise computing,” Tech. Rep. CS TR 20011-02, Stanford,
July 2011.

[11] J. Reich, M. Goraczko, A. Kansal, and J. Padhye, “Sleepless
in Seattle No Longer,” USENIX Annual Technical Conference,
2010.

[12] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and
R. Gupta, “Somniloquy: Augmenting Network Interfaces to
Reduce PC Energy Usage,” in NSDI’09, 2009.

[13] S. Cheshire and M. Krochmal, “DNS-Based Service Discov-
ery.” RFC 6763 (Proposed Standard), Feb. 2013.

[14] “Avahi Zeroconf Software.” http://en.wikipedia.org/wiki/
Avahi (software).

[15] “Logistic Regression.” http://en.wikipedia.org/wiki/Logistic
regression.

[16] “X11::GUI Test - Perl Package for User Emulation.” http:
//sourceforge.net/projects/x11guitest/.

[17] B. Nordman and K. Christensen, “Improving the Energy
Efficiency of Ethernet-Connected Devices: A Proposal for
Proxying,” Ethernet Alliance, 2007.

[18] S. Sen, J. R. Lorch, R. Hughes, C. G. J. Suarez, B. Zill,
W. Cordeiro, and J. Padhye, “Sleep Over Availability: The
GreenUp Decentralized Wakeup Service,” in Networked Sys-
tems Design and Implementation, 2012.

[19] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson,
and B. B. Welch, “The sprite network operating system,”
Computer, vol. 21, pp. 23–36, Feb. 1988.

[20] A. S. Tanenbaum and S. J. Mullender, “An overview of the
amoeba distributed operating system,” SIGOPS Oper. Syst.
Rev., vol. 15, pp. 51–64, July 1981.

[21] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “MAUI: Making Smart-
phones Last Longer with Code Offload,” in Proceedings of
the 8th International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’10.

[22] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: Elastic Execution between Mobile Device and
Cloud,” in Proceedings of the sixth conference on Computer
systems, EuroSys ’11, ACM, 2011.

[23] “HP 3Par Architecture.” http://h18006.www1.hp.com/storage/
solutions/3par/architecture.html.

