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ABSTRACT

Virtual worlds and games increasingly deliver 3D meshes
over the Internet using instanced file formats, such as COL-
LADA. However, existing simplification algorithms do not
account for instancing in their inputs, operating instead on
triangle soups or indexed triangle meshes. This makes them
unsuitable for highly instanced meshes, since expanding an
instanced mesh to an indexed triangle mesh and then simpli-
fying it can result in a larger output file size. The high cost
of delivering these larger files over the Internet results in long
network latencies and low performance.

This paper presents instance-aware simplification (IAS),
an algorithm designed to efficiently simplify instanced 3D
meshes. To ensure smaller output file sizes, IAS incorporates
the existing compression of mesh instancing into its cost met-
rics. Unlike existing algorithms, IAS strictly reduces file size
as it simplifies, so that IAS-simplified meshes of a given file
size have higher visual quality than meshes simplified using
existing algorithms. On highly instanced models, IAS results
in simplified versions that are orders of magnitude smaller
than existing algorithms for a given triangle count.

Index Terms— 3D Meshes, Simplification, Instancing.

1. INTRODUCTION

Increasing numbers of virtual worlds are now hosted as
Internet-based services, and deliver their 3D models over the
network. These models often need to be delivered to the client
in a simplified form that has fewer triangles than the origi-
nal model but similar visual quality. From vertex clustering
to edge contraction, many approaches exist to generate low-
resolution, simplified versions of 3D models. These existing
approaches generally assume that a model is represented as
an indexed triangle mesh, consisting of a set of vertices and a
set of triangles indexing into those vertices. However, many
real-world model formats, including the COLLADA standard
and 3ds, describe a 3D model as an instanced mesh (or equiv-
alently, a scene graph). An instanced mesh is composed of
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a set of submeshes which are instanced using different trans-
formation matrices (Figure 1). Instances are organized hierar-
chically such that the transformation matrix of an instance is
the product of all transformation matrices from the root down
to the instance.

A key benefit of instancing is that it enables greater com-
pression of models with symmetric or identical sub-parts. Ex-
amples include leaves on a tree, slats on a chair, or a building’s
architectural features. Substantial recent work has focused on
automatically detecting instances within large meshes, so they
can be represented in a more compressed format [1].

Unfortunately, this compression is at odds with existing
simplification algorithms. Existing algorithms are unsuitable
for simplifying instanced meshes because reducing the trian-
gles in a mesh can increase its file size. This is especially
problematic if the simplified version of the mesh has to be
delivered over the network, since the download time for a
graphical client would increase substantially. This problem
occurs because existing algorithms require expanding the in-
stanced model into an indexed triangle mesh before they can
be simplified. On expansion, the models can become much
larger because submesh data must be duplicated for each new
instance. The same submesh data may have to be duplicated
hundreds or even thousands of times in an input mesh. Even
after removing a few triangles, the expanded mesh’s file size
will remain larger than the original mesh. As more graphical
content is downloaded dynamically over the Internet, there
will be a need for algorithms that can simplify instanced mod-
els while reducing their file size.

This paper presents instance-aware simplification (IAS),
an algorithm that simplifies instanced meshes without first ex-
panding them. Instead, IAS simplifies an instanced mesh by
computing the cost of and collapsing submesh edges directly.
This ensures that the file size of a simplified instanced mesh
decreases as its level of detail is reduced. Our results show
that on meshes having more than 1.75 instances per submesh,
IAS consistently yields smaller output file sizes than quadric
simplification, while introducing comparable geometric er-
ror. For highly instanced meshes where one submesh is in-
stanced hundreds of times, the file size of the simplified mesh
is smaller by orders of magnitude, while the geometric error
remains approximately the same. In addition, IAS runs up to



2.6 times faster on such meshes. We have incorporated IAS
into the Sirikata virtual world platform. We refer the reader
to [2] for details on how IAS fits within Sirikata.

The next section overviews related work in more detail.
Section 3 introduces IAS, a new simplification algorithm de-
signed to efficiently simplify instanced models. Section 4
demonstrates the benefits of using IAS on a large set of 3D
models. Section 5 then discusses some implications and
trade-offs of using IAS for simplification.

2. RELATED WORK

A vast body of work exists in the area of simplifying polygo-
nal 3D models. Most of this prior work addresses how to sim-
plify models stored on local disk, which is connected to the
GPU through a high-bandwidth channel. For this reason, ex-
isting work focuses on reducing the triangle count of 3D mod-
els, not their file sizes. This paper targets systems where 3D
models are loaded over the Internet, a much lower-bandwidth
channel. This makes model file sizes a crucial concern. In
that way, this paper presents an additional tool in the toolbox
of a game/virtual world developer: it aims to complement, not
replace, existing techniques.

Quadric simplification [3, 4], perhaps the most popular
mesh simplification algorithm, uses an incremental approach
that aims to minimize an error metric at every step. For every
edge, it finds the optimal point at which the edge collapse
would introduce the least error. Follow-up techniques ex-
tend this approach to consider other attributes, such as texture
coordinates and normals [5, 6]. View-dependent simplifica-
tion [7] and perceptually modulated level-of-detail (LOD) [8]
exploit the camera’s current viewpoint for high quality ren-
dering, but can only operate at runtime on a client.

Billboard clouds [9] are an alternative technique for ex-
treme simplification that projects a 3D model onto a set of
planes with textures and transparency maps. This allows a
complex model to be represented with something as simple
as a textured cube. However, this only yields a good ap-
proximation when the object being viewed is distant and has
parallax limitations. Further, the additional textures can in-
crease memory cost and computing the billboards is time-
consuming. Similar approaches are used by image-based
techniques, such as hierarchical image caching [10] and im-
postors [11]. One positive of these approaches is that they
can work for all kinds of meshes, including instanced meshes,
without any modification.

A number of metrics exist to measure visual error on sim-
plified meshes. One of the more well-established metrics is
MetroMn [12], which has been shown in studies to correlate
strongly with human perceptions of quality [13]. However, all
of these algorithms assume that a model is an indexed triangle
mesh and do not account for geometry reuse or instancing.

Finally, a great deal of recent work aims to find symmet-
rical substructures within 3D models. [1] provides a good
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Fig. 1. The structure of an instanced mesh file.

overview of these approaches. Finding these symmetrical
substructures can compress a complex shape into a smaller
set of instanced submeshes. These algorithms are comple-
mentary to our work, as they create more highly instanced
models.

3. TAS: INSTANCE-AWARE SIMPLIFICATION

When an instanced mesh is expanded into an indexed trian-
gle mesh, it results in duplicated geometry and a much larger
model. Simplifying such an expanded mesh is a one-way
transformation: once edges in one copy of a submesh are col-
lapsed, that copy cannot be easily factored back into a single
submesh. As a result, a simplified instanced mesh can reduce
graphical complexity while increasing file size. Our instance-
aware simplification algorithm (IAS) addresses this problem.
Before we explain IAS, we provide some background on
quadric simplification. We use quadric simplification as a
base algorithm due to its excellent speed/performance trade-
off and support for multiple moderately complex objects [14],
both of which are important for games and virtual worlds.

3.1. Background: Quadric Simplification

Quadric mesh simplification executes in two phases. Dur-
ing the initialization phase, the algorithm assigns an error
quadric, Q, to each vertex, v. Q is computed on the ba-
sis of the planes (triangles) neighboring v, and is given by
O = Y peplanes(v) @p» Where Q) is the quadric for plane p and
is computed as:
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Qp = area(p).

Here a, b, c and d are the normalized coefficients of the equa-
tion ax + by + cz+ d = 0, which defines the plane p, while
area(p) is the area of the triangle corresponding to plane p.
With this formulation, given a vertex w, w! Ow is a measure
of the distance of vertex w from the set of planes in planes(v).
For every edge (vi,v2), assuming that quadrics Q; and Q»
are associated with v; and v,, it then computes an optimal
contraction target v for which the cost is given by

cost(v) =71 (Q1 + Q2)7. (2)



Assuming K = (Q; + Q»), v is computed as:
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In the edge collapse phase, edges are collapsed iteratively in
increasing order of these error values, with the cost of vertices
neighboring v; and v, updated after each collapse.

3.2. Instance-aware Simplification Algorithm

Instance aware simplification converts the hierarchical repre-
sentation of an instanced mesh M into a flat representation of a
list of instances. The transform associated with each instance
is the product of all transforms from the root of the hierar-
chy to the instance itself. Each instance indexes into a list
of a submeshes, which contain geometry information in in-
dexed triangle mesh format. Formally, M = {I, b, L, ...,1,},
where n is the number of instances in the mesh. Each in-
stance [; =< T},S; >, where T} is the transformation matrix
associated with /; and Sy is the submesh /; references. The
submesh Sy is from a list of submeshes {S},S,...,Sn,}, such
that 1 < k < m and m < n. Each submesh S consists of a set
of vertices and a set of triangles referencing those vertices.

IAS uses the observation that the error quadric Q associ-
ated with a vertex v is derived from the set of planes neighbor-
ing v. In an instanced mesh, therefore, Q for a submesh ver-
tex v can be computed by accounting for all the neighboring
planes that exist in all instances of the submesh. Suppose T is
the transformation matrix for a given instance of a submesh,
and v is a submesh vertex which maps to x in that instance.
Since x = T'v, we can write the distance of x from its set of
neighboring planes as

x'Ox = (Tv)TQ(Tv) =V TT QTv 4)

where Q is computed from the neighboring planes in that in-
stance.

Then, (TTQT) is the error quadric giving the distance of
the submesh vertices from the neighboring planes in the in-
stance. Summing it over all instances, the error for a submesh
vertex is

E,=Y T'0T; (5)
iel
where [ is the set of of instances of the submesh, 7; is the
transform associated with instance i, and Q; is the quadric
computed for the instantiated vertex.

Using this new quadric, we can find optimal contraction
targets for submesh edges and simplify an instanced mesh
down to a target triangle count as follows:

1. For each instance i applying 7; to submesh S;:

(a) For each triangle ¢ in submesh S;:

i. Transform ¢ by applying 7; to each of its ver-
tices.

ii. Compute Q,, the error quadric for the trans-
formed triangle, using Equation 1.

iii. Compute the error quadric for the untrans-
formed triangle 7 as 7, 0, 7; and add it to the
error quadrics for each of #’s untransformed
vertices.

2. In each submesh S;, compute the optimal contraction
target v and its cost for each submesh edge (vq,v) us-
ing Equations 3 and 2, where Q; and O, are the sub-
mesh error quadrics for v and v, respectively.

3. Collapse submesh edges in increasing order of their
cost. Compute how many triangles become degenerate
after each collapse and decrement the number of trian-
gles in the model by that times the number of instances
of the submesh. At each step, since only a submesh
edge is collapsed, the cost has to be updated only for
neighboring vertices in that submesh.

As the algorithm proceeds, all edges of a submesh may
collapse due to which the submesh may not remain visible.
This is particularly a problem when there are many instances
of a very simple submesh, such as the leaves of a tree: a
single edge collapse in the submesh may cause all leaves to
disappear. To handle this case, IAS employs a variation of
stochastic simplification [15]. First, it does not collapse an
edge if that causes a submesh to disappear. Second, to deal
with many instances of a simplified submesh, it eliminates
some instances of the submesh, while scaling up the remain-
ing instances to preserve surface area. To do this, it computes
the number of instances of the submesh needed to achieve the
target triangle count. It keeps and scales up that number of
instances while removing the rest. In doing so, it prioritizes
keeping those instances which, if scaled up, remain within the
original bounding box of the model.

Finally, IAS handles boundary edges in a special manner
due to their importance. A boundary edge is an edge that ex-
ists in only one triangle. IAS considers an edge to be a bound-
ary edge as long as it is a boundary edge within its submesh.
For each boundary edge, IAS generates a perpendicular con-
straint plane running through the edge. It then computes the
quadric for this constraint plane, weights it by the length of
the edge and adds it to the quadrics for the endpoints of the
edge. This results in much better results than simply marking
such edges as incollapsible since it still allows small boundary
edges to be collapsed in place of other longer edges.

4. RESULTS

Table 1 shows results for instance-aware simplification (IAS)
on four sample models with different degrees of instancing,



Instances per Time Time Time Size Size Size

Model Submeshes Instances (o chaps) UMl | (o adric)  (IAS) Reduction | (Quadric)  (IAS) Reduction
Bunny 1 1 1 20,000] 390ms 1890 ms 02:1| 235KB 235KB 1:1
Patio Chair 6 68 11.33 2,240 40 ms 43 ms 0.9:1 32KB 31KB 1:1
Maple Tree 18 9324 518 1,818,074 13s 5s 2.6:1 17MB 110KB 154:1
Village 79 13523 171.18 1,254,696 30s 175 1.8:1| 31MB 6MB 51

Table 1. Performance comparison of IAS and Quadric simplification for the three models shown in Figures 2— 4 as well as the
Stanford bunny. Each model was simplified to 20% of its original triangle count. Instance-aware simplification outperforms
quadric simplification in speed for highly instanced meshes while simultaneously better reducing file sizes.

(a) Quadric (20% triangles, 17 MB) (b) Original, 546 KB (c) IAS (20% triangles, 110 KB)

Fig. 2. Maple tree (518 instances per submesh) from Table 1 simplified to 20% of the original triangle count. Each leaf is an
instance of the same submesh. Using a simplification algorithm that is not instance aware causes the file to increase in size by
a factor of 30. Note how IAS preserves the appearance of individual leaves while reducing file size by 80%.

(a) Quadric (6MB) (b) Original (16 MB) (c) IAS (6 MB)

Fig. 3. Village (171 instances per submesh) from Table 1 simplified to 6MB in size. Quadric simplification removes all of
the roads, reduces all of the homes to their roofs, and turns trees into simple crossed triangles. Although each road segment is
small, their repeated, regular presence makes them a visually important feature of the scene.
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(a) Quadric, 32 KB (b) Original, 92 KB (c) IAS, 31 KB

Fig. 4. Patio chair (11.3 instances per submesh) from Table 1 simplified to approximately one third of the file size. IAS
preserves the slats while quadric simplification removes some of them.
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Fig. 5. For the tree model in Figure 2, IAS is able to maintain
the same triangle count as quadric simplification at one hun-
dredth the file size. Even after 99% simplification, the quadric
simplified model is larger than the original file.

measured by their instance count per submesh (IPS). Fig-
ures 2—4 show the visual results. We do not show visual re-
sults for the Stanford bunny because IAS devolves to standard
quadric simplification, so it is visually identical.

The dense maple tree and village (Figures 2 and 3) are
highly instanced meshes with over a million triangles each
and on average over 100 instances per submesh. Simplifica-
tion with IAS results in a much smaller output mesh that has
greater visual quality. In the case of the maple tree, IAS re-
duces file size by a factor of 5 and maintains the visual quality
of the leaves; quadric simplification distorts the leaves while
increasing file size by a factor of 30. In the case of the vil-
lage, IAS achieves significantly better visual quality for the
same target triangle count.

Figure 5 shows the size of the tree model under IAS and
quadric simplification. Simply applying quadric simplifica-
tion expands the mesh to 36MB. Reducing it to 1% of its
original triangles is 891KB, larger than the original file size.
In contrast, IAS strictly decreases file size as LOD reduces.

Using IAS, simplification of these heavily instanced mod-
els proceeds faster than quadric simplification, because IAS’s
edge collapse operates only on submesh edges. There are
fewer submesh edges than edges in the overall mesh and col-
lapsing a single submesh edge effectively collapses multiple
edges in the overall mesh.

Submeshes in the patio chair are not highly instanced
(IPS=11.33). IAS takes slightly longer than quadric simplifi-
cation since it must perform additional matrix multiplications
to compute quadrics for the transformed submeshes. IAS rec-
ognizes the visual importance of the slats in the chair back
(an instanced submesh) and so maintains them, while quadric
simplification produces holes.

Finally, the Stanford bunny mesh has exactly one instance
per submesh. It takes longer to simplify it using IAS, but
the visual error remains the same. For such meshes with few
instances per submesh, existing algorithms are more efficient.
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Fig. 6. CDF showing the distribution of instances per sub-
mesh in our dataset.

4.1. Running IAS on a model dataset

In order to test if IAS is generalizable to all user-generated 3D
models, we tested IAS on a dataset of 748 models uploaded
by a group of students while building their own virtual worlds.
These models vary widely in complexity from 1 to 1.8 mil-
lion triangles, and from 1 to almost 1000 IPS (Figure 6). We
use this dataset because it contains a representative sample of
models used to construct virtual worlds.

Each model in the dataset was simplified to 20% of its
original triangle count using both quadric simplification and
IAS. The solid blue line in Figure 7 compares the file size of
the resulting simplified models using the two algorithms. Un-
expectedly, in almost 20% of models, quadric simplification
actually results in smaller file sizes than IAS. Most models
where quadric simplification outperforms IAS have a low de-
gree of instancing, measured by its IPS. On the other hand,
if the IPS is higher than 1.75, IAS performs worse in only a
handful of cases. Therefore, IAS switches to quadric simpli-
fication whenever the IPS of the input mesh is less than 1.75.

The dashed red line in Figure 7 shows that, with this opti-
mization, quadric simplification outperforms IAS in only 1%
of models. In these models, the submeshes are so small that
it is more efficient to store them in an expanded format in-
stead of storing their instance transformations. Among the
remaining models, about 16% see more than 20% reduction
in file size using IAS. Some complex models even see more
than 99% reduction in file size using IAS compared to quadric
simplification. On the average, IAS results in 57% smaller
simplified file size than quadric simplification.

Finally, the dashed black line in Figure 7 shows that on
almost 98% of models, IAS also achieves the same or lower
geometric error compared to quadric simplification. In the re-
maining 2% of models, while the percentage error introduced
by IAS relative to quadric simplification is sometimes large,
the absolute error value remains small.

5. DISCUSSION

If every instance of a submesh has the same scaling, then ex-
isting simplification approaches can be trivially applied by
multiplying the edge collapse cost from one instance by the
number of instances. This approach creates artifacts when
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Fig. 7. CDFs showing percentage reduction in file size and
geometric error achieved by IAS compared to quadric simpli-
fication. Metro’s Hausdorff distance is used to measure geo-
metric error. The dashed red and black lines show the results
if IAS switches to quadric simplification when the instances-
to-submeshes ratio is less than 1.75.

there are multiple submeshes and their instances have very
different scalings, as a large instance of a submesh has greater
visual impact than a small one. In our user uploaded dataset
of 748 models, 15% of models have this property.

IAS does not compute quadrics across submeshes. It
knows less about the overall mesh, which could result in lower
quality outputs. However, our evaluations in Section 4 show
that, in practice, IAS typically results in higher quality re-
sults. This is mainly because IAS does not allow instances
of a submesh to diverge. For example, unlike existing algo-
rithms, IAS keeps the leaves of the tree (Figure 2) and the
slats of the patio chair (Figure 4) unchanged after simplifi-
cation. Our current IAS implementation does not optimize
other vertex attributes such as texture coordinates. Extending
the quadric to include these attributes is part of future work.

6. CONCLUSION

This paper presents a new algorithm to simplify meshes for
delivery over a wide area network such as the Internet. The
algorithm, instance-aware simplification, simplifies models
while respecting their existing compression and internal co-
herence through instancing. This generates simplified in-
stanced meshes that have higher visual quality than those gen-
erated by existing algorithms having the same output file size.
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